基于微环谐振腔的免标记生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以硅为主要材料(包括二氧化硅、氮化硅等)的微环谐振腔是一类非常重要的光学器件。微环谐振腔具有较高的品质因数,由此能够获得较高的灵敏度和较低的探测极限。同时,微环谐振腔的制作工艺与当前的微电子工艺完全兼容,使其可以实现大批量生产,降低成本。此外,它还具有尺寸小、易于集成等优点。本文就是利用微环谐振腔的上述优点,将其用于生物传感,初步实现免标记生物检测。
     本文在国家自然科学基金的资助下,对基于微环谐振腔的免标记生物传感器进行了研究,获得了以下成果:
     在理论上,本文重点对单直波导微环谐振腔的工作原理、耦合模型进行了研究;给出了自耦合因子和传输因子越接近1时,场增强因子越大的物理解释;用耦合相位模型解释了临界耦合时,直波导输出端的光功率为零的现象。
     在制作工艺上,对光刻、刻蚀等微电子工艺进行了学习与掌握。通过实验摸索,对工艺参数与器件性能之间的关系有了较好的理解。通过优化工艺参数,制作了具有较小表面粗糙度和较好侧壁垂直度的微环谐振器。
     由于器件尺寸在微纳米量级,使得对器件性能的测试有别于一般的光学测试。为此,构建了高精度的光学测试平台,并建立了完善的测试流程。在此过程中,解决了红外CCD聚焦的问题,提出了快速确定器件谐振特性的方法。
     通过测试,获得了器件的特征参数,其品质因数可达25000以上。用不同浓度的乙醇溶液进行测试,获得了器件对溶液折射率的探测灵敏度(108.9336nm/RIU)和探测极限(1.836×10~(-4)RIU)。用不同浓度的单链DNA分子进行测试,实验结果表明,器件能够检测出nmol/L的分子溶液的浓度变化。
Due to its naturally high Q factor, microring resonator has become an important optical sensing device with high sensitivity and low detection limit. The microring resonator is based on silicon, SiO2 and Si3N4 materials and can be realized with high-mass production and low costs because its fabrication process is fully compatible with the micro-electronics processing technology. In addition, it has other advantages such as small size, easy integration and so on. With its unique sensing mechanism, it can be used as biosensor to realize label-free detection.
     Supported by National Natural Science Fund, microring resonator based label-free biosensor is studied and following results are obtained:
     Theory of operating principle, coupling model of microring resonator coupled with single straight waveguide is studied. Physical interpretation is given on the phenomenon that field enhancement factor becomes larger as self-coupling factor and transmission factor getting close to 1; coupling phase model is used to explain the zero output optical power from straight waveguide on critical coupling condition.
     Micro-electronic technology such as lithography, etching are studied. By optimization of process parameters, microring resonator with small surface roughness and vertical sidewall is obtained.
     High-precision optical testing platform is set up to satisfy the requirement of device testing which is different from traditional optical testing platform due to the small size of device. Comprehensive testing procedure is established. In the process, problem of focusing infrared CCD is solved and method to quickly determine the resonant characteristics of device is proposed.
     Performance of device is measured, which shows quality factor up to 25,000. Detection sensitivity of 108.9336nm/RIU and detection limit of 1.836×10~(-4)RIU are demonstrated by using various concentrations of ethanol solution as analytes. With different concentrations of single-stranded DNA molecules solution for testing, experimental results show that the device can detect concentration changes of nmol/L.
引文
[1]司士辉.生物传感器.第一版.北京:化学工业出版社, 2003: 1-9
    [2]张先恩.生物传感器.第一版.北京:化学工业出版社, 2006: 1-15
    [3] R. L. Rich, D. G. Myszka. A Survey of the Year 2002 Commercial Optical Biosensor Literature. Journal of Molecular Recognition, 2003, 16(6): 351-382
    [4] H. M. Haake, A. Schutz, G. Gauglitz. Label-free detection of biomolecular interaction by optical sensors. Fresenius Journal of Analytical Chemistry, 2000, 366(6-7): 576-585
    [5]徐永源,赵永刚.激光时间分辨荧光免疫分析法测定人尿中免疫球蛋白G.化学通报, 1992, 6: 38-40
    [6]董裳伦,朱岩,杨景和.稀土离子荧光探针对上腺素的测定.分析化学, 2000, 28(3): 293-295
    [7] J. A. Bernstein, A. B. Khodursky, P. H. Lin, et al. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Biochemistry, 2002, 99(15): 9697-9702
    [8] D. Erickson, S. Mandal, A. H. J. Yang, et al. Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid, 2008, 4: 33-52
    [9] R. H. Ritchie. Plasma losses by fast electrons in thin films. Phys. Rev., 1957, 106: 874-881
    [10] A. Otto. Excitation of surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216: 398-410
    [11] E. Kretschmann, H. Raether. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A, 1968, 23: 2135-2136
    [12] B. Liedberg, C. Nylander, I. Lundstrom. Biosensing with surface plasmon resonance - how it all started. Biosens. Bioelectron., 1995, 10: i-ix
    [13] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sensors and Actuators B, 1999, 54: 3-15
    [14] R. G. Heideman, P. V. Lambeck. Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder Interferometer System. Sensors and Actuators B, 1999, 61: 100-127
    [15] B. Y. Shew, C. H. Kuo, Y. C. Huang, et al. UV-LIGA interferometer biosensor based on the SU-8 optical waveguide. Sensors and Actuators A, 2005, 120: 383-389
    [16] J. N. Yih, Y. M. Chu, Y. C. Mao, et al. Optical waveguide biosensors constructed with subwavelength gratings. Appl. Opt., 2006, 45(9): 1938-1942
    [17] A. Serpenguzel, S. Isci, T. Bilici, et al. Microsphere-based optical system for biosensor applications. Proceedings of SPIE Optical Fibers and Sensors for Medical Applications IV, 2004, 5317: 180-185
    [18] R. W. Boyd, J. E. Heebner. Sensitive disk resonator photonic biosensor. Applied Optics, 2001, 40(31): 5742-5747
    [19] C. Phanthong, M. Somasundrum. The steady state current at a microdisk biosensor. Journal of Electroanalytical Chemistry, 2003, 558: 1-8
    [20] A. Serpengdzel, Y. Yilmaz, A. Kurt. Semiconductor and dielectric microsphere based channel dropping filters and detectors. Optoelectronic Integrated Circuits VII, 2005, 5729: 225-231
    [21] J. Lutti, W. Langbein, P Borri. A monolithic optical sensor on whispering-gallery modes in polystyrene microspheres. Applied Physics Letters, 2008, 93(15): 1-3
    [22] S. Y. Chen, T. L. Yeo, W. Z. Zhao, et al. Development of multi-wavelength microsphere fibre laser system for potential sensor applications. Optics Communications, 2009, 282(3): 401-405
    [23] C. Y. Chao, W. Fung, L. J. Guo. Polymer Microring Resonators for Biochemical Sensing Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 134-142
    [24] A. Yal??n L. C. Popat, C. Aldridge, et al. Optical Sensing of Biomolecules Using Microring Resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148-155
    [25] M. S. Kwon, W. H. Steier. Microring-resonator-based sensor measuring both the concentration and temperature of a solution. Optics Express, 2008, 16(13):9372-9377
    [26] G. D. Kim, G. S. Son, H. S. Lee, et al. Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers. Optics Communications, 2008, 281: 4644-4647
    [27] S. C. Hagnes, D. Rafizadeh, S. T. Ho, et al. FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering- gallery-mode disk resonators. Journal of Lightwave Tech., 1997, 15(11): 2154-2165
    [28] V. Van, P. P. Absil, J. V. Hryniewicz, et al. Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model. Journal of Lightwave Tech., 2001, 19(11): 1734-1739
    [29] Y. Gottesman, E. V. K. Rao, D. G. Rabus. New methodology to evaluate the performance of ring resonators using optical low -coherence reflectometry. Journal of lightwave technology, 2004, 22(6): 1566-1572
    [30] C. Y. Chao, L. J. Guo. Design and optimization of microring resonators in biochemical sensing applications. Journal of lightwave technology, 2006, 24(3): 1395-1402
    [31] Z. Xia, Y. Chen, Z. Zhou. Dual waveguide coupled microring resonator sensor based on intensity detection. IEEE Journal of quantum electronics, 2008, 44(1): 100-107
    [32] K. K. Lee, D. R. Lim, L. C. Kimerling. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Optics Letters, 2001, 26(23): 1888-1890
    [33] C. Y. Chao, L. J. Guo. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett., 2003, 83(8): 1527-1529
    [34] B. Miao, P. Yao, J. Murankowski, et al. Fabrication of silicon microring resonators with narrow coupling gaps. J. Microlith., Microfab., Microsyst., 2005, 4(2): 023013-1-023013-5
    [35] Shijun Xiao, M. H. Khan, Hao Shen, et at. Compact silicon microring resonators with ultra-low propagation loss in the C band. Optics Express, 2007, 15(22): 14467-14475
    [36] M. Melchiorri, N. Daldosso, F. Sbrana, et al. Propagation losses of silicon nitridewaveguides in the near-infrared range. Applied Physics Letters, 2005, 86(12): 121111-1-121111-3
    [37] B. E. Little, S. T. Chu, W. Pan, et al. Vertically coupled glass microring resonator channel dropping filters. Photonics Technology Letter, 1999, 11(2): 215-217
    [38] S. J. Choi, K. Djordjev, Z. Peng, et al. Laterally coupled buried heterostructure high-Q ring resonators. IEEE Photonics technology letters, 2004, 16(10): 2266-2268
    [39] S. Ashkenazi, C. Y. Chao, L. J. Guo. Ultrasound detection using polymer microring optical resonator. Applied Physics Letters, 2004, 85(22): 5418-5420
    [40] J. Guo, M. J. Shaw, G. A. Vawter, et al. High-Q microring resonator for biochemical sensors. Integrated Optics: Devices, Materials, and Technology, 2005, 5728: 83-92
    [41] D. Dai, S. He. Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators. Optics Communications, 2007, 279: 89-93
    [42] S. Y. Cho, G. Dobbs, N. M. Jokerst, et al. Optical Microring resonator sensors with selective membrane surface customization. Proceeding of conference on lasers and electro-optics, 2007
    [43] K. D. Vos, I. Bartolozzi, E. Schacht, et al. Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15(12): 7610-7615
    [44] E. A. J. Marcatili. Bends in optical dielectric guides. Bell Syst. Tech. J., 1969, 48(9): 2103-2132
    [45] Shengmei Zheng, Hui Chen, A. W. Poon. Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1380-1387
    [46] T. Barwicz, M. A. Popovi′c, M. R. Watts et al. Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators. Journal of Lightwave Technology, 2006, 24(5): 2207-2218
    [47] V. Van, T. A. Ibrahim, K. Ritter, et al. All-optical nonlinear switching in GaAs-AlGaAs microring resonators. Photonics Technology Letter, 2002, 14(1): 74-76
    [48] L. Yang, D. K. Armani, K. J. Vahala. Fiber-coupled erbium microlasers on a chip. Apply Physics Letter, 2003, 83(5): 825-826
    [49] B. Liu, A. Shakouri, J. E. Bowers. Passive microring-resonator coupled lasers. Apply Physics Letter, 79(22): 3561-3563
    [50] M. Hamacher, H. Heidrich, U. Troppenz, et al. Waferbonded active/passive vertically coupled microring lasers. Integrated Optics: Devices, Materials and Technologies, 2008, 6896: 8960
    [51] P. P. Absil, J. V. Hryniewicz, B. E. Little, et al. Wavelength conversion in GaAs micro-ring resonators. Opt. Lett., 2000, 25(8): 554-556
    [52]夏志轩.光学微环生物传感器的设计与优化: [硕士学位论文].武汉:华中科技大学图书馆, 2008
    [53]佘守宪.导波光学物理基础.北京:北方交通大学出版社, 2002: 153-156
    [54] Y. A. Vlassov, S. J. McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express., 2004, 12(8): 1622-1630
    [55] D. A. P. Bulla, B. H. V. Borges. Design and fabrication of SiO2/Si3N4 integrated-optics waveguides on silicon substrates. IEEE Transactions on Microwave theory and tech, 2002, 50(1): 9-12
    [56]关旭东.集成电路工艺基础.北京:北京大学出版社, 2003: 211-216
    [57] D. Meyerhofer. Characteristics of Resist Films Produced by Spinning. J. Applied Physics, 1978, 49: 3993
    [58] W. C. Till, J. T. Luxon. Integrated Circuits: Materials, Devices and Fabrication. Englewood Cliffs, NJ: Prentice-Hall, 1982: 452
    [59] B. D. Washo. Rheology and Modeling of the Spin Coating Process. IBM J. Res. Dev, 1997, 21: 190
    [60]陆益民.提高用阿贝折射仪测定乙醇含量的准确度.韶关学院学报, 2003, 24(9): 81-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700