基于全光信号处理的微环谐振腔与WDM系统的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光信号处理中需要高集成度的光电子器件和高速长距离的波分复用(Wavelength Division Multiplexing,WDM)传输系统的技术。现有的WDM系统,随着信息容量大、传输距离长、通信质量好、系统安全性可靠等要求的提高,其多信道的平滑扩容升级迅速受到网络研究者和运营商的关注,各种新型的调制格式也日益备受瞩目。而在光电子集成元件方面,微环谐振腔(Micro-ring Resonator)作为典型光子集成的平面光波导回路,具备相当的经济性、结构紧凑性和可靠性。伴随着半导体工艺的发展及成熟、光电子材料及器件集成技术的进步,其研究和应用在当今世界范围内不断地取得突破性成就。
     本论文从微环谐振腔的光学耦合特性和WDM系统中混合调制格式的传输性能入手,研究了相关理论,设计器件和系统结构进行模拟。本论文的工作微环的光学性能方面只做了初步的探究,学习了微环的应用,研究微环的耦合效率和微环其他相关参数的关系。结果表明,在模场传播中,光微环谐振腔的耦合效率随微环半径增大而提高,随着材料折射率、耦合间隙、波导宽度增大而减小。
     文章对幅移键控(Amplitude Shift Keying,ASK)、频移键控(Frequency Shift Keying,FSK)混合调制下的WDM系统传输性能则给出了较为详细的分析,根据不同的色散补偿模式和传输距离,以及调制信号的位置,给出不同情况下系统的传输性能;找到最佳的信号入纤功率,讨论可能限制系统传输结果的因素——如光纤中的非线性效应和色散。
     最后,文章还提出了一种新型ASK-FSK调制格式的高速转换,用以产生高速FSK信号。这种格式转化利用高阶非线性光纤中的光学克尔效应,改变了光场的偏振态并引起交叉相位调制。传统FSK信号的产生速度由皮秒量级提升至飞秒量级。而且理论和实验的结果吻合的非常好。
High-level integrated optoelectronic devices and high-speed and long-haul wavelength division multiplexing (WDM) transmission system are involved in the techniques of all-optical signal processing. The existing WDM system attracts increasing attention from the web operators and researchers for its multi-channel system upgrade in smooth expansion, as it develops with the requirements to enhance large volume of information, long transmission distance, great communication quality and reliable system security. And the study of advanced modulation formats has also been attached with valuable importance. And in the field of optoelectronic integrated components, micro-ring resonator is economical, structure-compacted and reliable, as a typical photonic integrated planar waveguide circuit. Along with development and maturity of semiconductor technology and the growth of optoelectronic materials and devices, the application and research of micro-ring resonator today achieves more worldwide breakthrough.
     In this thesis, we begin with the optical coupling characteristics of micro-ring resonator and transmission performance of mixed modulation formats in WDM system to study relevant theories and to design the structures and models of devices and systems for simulation. Some initial research has been done in the performance in micro-ring resonator, which lies in the application and the coupling efficiency related to other parameters of the structure. The simulation results indicates that the coupling efficiency increases as the ring radius increases too, and deteriorates as the refractive index of materials, coupling gap and width of waveguides raises.
     Detailed analysis is provided to investigate the WDM system under the mixed modulation of Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK). According to various dispersion compensation formats, transmission distance, as well as the location of modulated-signal, differences of characters of the WDM systems are calculated. We look for the best input power for signals and discuss the possible factors which restrict the performance of transmission, for instance, the nonlinear effects and dispersion in optical fibers.
     At last, we propose a novel scheme to realize the high speed transition of advanced modulation formats between ASK and FSK, in order to obtain high speed FSK signals. It is based on the optical Kerr effect in highly nonlinear fiber (HNLF) which changes the polarization state of optical fields and leads to the cross phase modulation. This scheme can realize FSK transmitter of femtosecond’s response time other than picosecond’s response time in traditional setups. The result of experiments went on well with the theoretical analysis.
引文
[1]吴重庆,袁保忠.第九讲-光速减慢和光缓存技术.物理学与信息科学技术专题, 2005, 34 (12): 922~926
    [2] W. A. Gambling. The rise and rise of optical fibers. IEEE J. Selected Topics in Quantum Electronics, 2002, 6(6):1084~1093
    [3] R. Ramaswami. Optical fiber communication: from transmission to networking. IEEE J. Communications Magazine, 2000, 5(11): 138~147
    [4] N. Savage. Linking with light. IEEE Spectrum, 2000, 39(8): 32~36
    [5]钟海.影响DWDM系统平滑升级设计的几个因素.电信技术, 2003, 5: 51~52
    [6]钟海. DWDM系统的平滑升级.通讯世界, 2003, 4(6): 39~40
    [7] G. I. Papadimitriou, C. Papazoglou, A. S. Pomportsis. Optical switching: switch fabrics, techniques, and architectures. IEEE J. Lightwave Technology, 2005, 21(2): 384~405
    [8] Wen Yangjing, Mo Jinyu, Wang Yixin. Advanced data modulation techniques for WDM transmission. IEEE J. Communications Magazine, 2006, 44(8): 58~65
    [9] P. J. Winzer, R. J. Essiambre. Advanced Optical Modulation Formats. Proceedings of IEEE, 2006, 94(5): 952~985
    [10]王启明.光网络中关键性光子集成器件的研究与发展(上).光纤通信, 2001, 23(3): 8-14
    [11]王启明.光网络中关键性光子集成器件的研究与发展(下).光纤通信, 2001, 23(4): 8-12
    [12]贺志学. FSK关键技术及其在光标记交换中的应用: [硕士学位论文].武汉:华中科技大学, 2008
    [13]吴建红.高速传输光纤系统的调制格式及其性能分析: [硕士学位论文].西安:西安电子科技大学, 2007
    [14] N. Chi, J. Zhang, P. V. Holm-Nielsen, et al. Experimental demonstration of cascaded transmission and all-optical label swapping of orthogonal IM/FSK labeled signal. IEEE J. Electron. Lett., 2003, 39(8): 676~678
    [15]王启明.光网络中关键性光子集成器件的研究进展.中国科学, 2008, 32(4): 516~522
    [16] Bin Liu, Shakouri, A. Bowers. J.E. Passive microring-resonator-coupled lasers. Appl.Phys. Lett., 2001, 79: 3561~3563
    [17] B. E. Little, S. T. Chu, H. A. Haus, et al. Microring resonator channel dropping filters. IEEE J. Lightwave Technology, 1997, 15: 998~1005
    [18] C. K. Madsen. Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE J. Photon. Technol. Lett., 1997, 10: 1136~1138
    [19] B. E. Little, J. S. Foresi, G. Steinmeyer, et al. Ultra-compact Si-SiO2 microring resonator optical channel dropping filters. IEEE J. Photon. Technol. Lett., 1997, 10: 549~551
    [20] G. Stephan. Optimization of ultrafast all-optical resonator switching. IEEE J. Optics Express, 2005, 13(23): 9502~9515
    [21] E. A. J. Marcatili. Bends in optical dielectric guides. Bell Syst. Tech. J., 1969, 48: 2103~2132
    [22]蔡鑫伦,黄德修,张新亮.给予全矢量模式匹配法的三维弯曲波导本征模式计算.物理学报, 2007, 56(4): 2268~2274
    [23] S. C. Hagness, D. Rafizadeh, S. T. Ho, et al. FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators. IEEE J. Lightwave Technology, 1997, 15(11): 2154~2165
    [24]滕婕.聚合物基微环谐振器的基础研究: [硕士学位论文].大连:大连理工大学, 2007
    [25] J. Scheuer, G. T. Paloczi, J. K.S. Poon, et al. Coupled resonator optical waveguides toward the slowing and storage of light. Optics and Photonics News, 2005, 16(2): 36~40
    [26]陈丽梅.玻璃基微环谐振器的设计与制作: [硕士学位论文].杭州:浙江大学, 2007
    [27]秦莉,陆景彬,马春生等.微环谐振器的弯曲损耗.半导体光电, 2002, 23(2): 99~102
    [28]陈沁.多边形微腔激光器和微腔滤波器的研究: [博士学位论文].北京:中国科学院半导体研究所, 2006
    [29]国伟华.光学微腔及半导体激光器增益测量的研究: [博士学位论文].北京:中国科学院半导体研究所, 2004
    [30]余小燕.基于耦合模理论的微环谐振器模型研究: [硕士学位论文].杭州:浙江大学, 2008
    [31]许晓波.微环谐振器阵列滤波器研究: [硕士学位论文].长春:长春理工大学, 2007
    [32] C. K. Madsen, G. Lenz, A. J. Bruce, et al. Integrated all-pass filters for tunable dispersion and dispersion slope compensation. IEEE J. Photon. Technol. Lett., 1999, 11(12): 1623~1625
    [33] V. Van, T. A. Ibrahim, P. P. Absil, et al. Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Selected Topics in Quantum Electronics, 2002, 8(3): 705~713
    [34] T. A. Ibrahim, W. Cao, Y. Kim, et al. Lightwave switching in semiconductor microring devices by free carrier injection. IEEE J. Lightwave Technology, 2003, 21(12): 2997~3003
    [35] B. E. Little, S. T. Chu. Toward very large-scale integrated photonics. Opt. Photonics, 2000, News 11(1): 24~29
    [36] S. Mookherjea. Semiconductor coupled-resonator optical waveguide laser. Appl. Phys. Lett., 2004, 84(17): 3265~3267
    [37] A. Yariv. Catching the Wave. IEEE J. Quantum Electronics, 2000, 6(6): 1478~1489
    [38] F. Morichetti, C. Ferrari, A. Melloni. Enhanced frenquency shift in optical slow-wave structures. Opt. and Quantum Electronics, 2007, 3: 75~78
    [39] K. R. Hiremath. Modling of circular integrated optical microresonators by 2-D frequency domain Coupled Mode Theory. Opt. Comm., 2006, 257(5): 277-297
    [40] Liu Ye, Chang Tiejun, C. E. Alan. Coupled Mode Theory for modeling microring resonators. IEEE J. Optical Engineering, 2005, 44(8): 95~98
    [41] J. H. Lee, T. Nagashima, T. Hasegawa, et al. Wide-band tunable wavelength conversion of 10-Gb/s Nonreturn-to-Zero signal using Cross-Phase-Modulation- Induced polarization rotation in 1-m Bismuth Oxide-based nonlinear optical fiber. IEEE J. Photon. Technol. Lett., 2006, 18(1): 298~330
    [42] T. Kawanishi, T. Sakamoto, T. Miyazaki. High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers. IEEE J. Optics Express, 2006, 14(10): 4469~4478
    [43] H. K. Kim. Reduction of cross-gain modulation in the semiconductor optical amplifier by using wavelength modulated signal. IEEE J. Photon. Technol. Lett., 2000, 12(10): 1412~1414
    [44] T. Kawanishi. LiNbO3 high-speed optical FSK modulator. Electron. Lett., 2004, 40(11): 691~692
    [45] N. Deng. A novel wavelength modulated transmitter and its application in WDM passive optical networks. In: Proc. OFC 2004, Los Angeles, CA, 2004. MF79(1): 1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700