光纤与微环波导中的光速控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光速控制是近年来光子学领域的一个研究热点,人们先后在冷原子蒸汽、红宝石晶体和半导体量子点等介质中实现了光速控制。由于其在光学延迟线、全光缓存、全光开关等方面的潜在应用,在光纤与微环波导中实现光速控制更具有实际意义。本论文详细研究了在光纤中利用相干布居数振荡、受激布里渊散射和光纤参量放大技术实现光速的控制,另外,还探讨了在微环波导中的光速控制方法。
     相干布居数振荡技术具有结构简单,易于实现的特点,而且利用掺饵光纤可以实现对通信波长1550nm的光速控制。以半经典理论和速率方程理论为基础,理论研究了信号光功率、光纤长度和掺杂浓度对1550nm信号光自延迟效应的影响以及利用980nm泵浦光对信号光群速度的控制。在10m长的掺饵光纤中,实验观察到了最大延迟时间为7.2ms,对应的最小群速度为1.39×103m/s。通过加入980nm泵浦光来调节相干布居数,在泵浦功率为50mW以上时,观察到了慢光向快光的转变,成功实现了利用泵浦光功率来控制信号光的群速度的目的,实验结果与理论预言相一致。
     受激布里渊散射是一种三阶非线性效应,由于其阈值较低,在光纤中较易实现,但是其增益带宽较窄,不利于实际应用。通过采用泵浦增宽和双泵浦激光技术,即可增加其带宽和减小脉冲畸变。另外,本文提出利用光纤参量放大技术在小信号增益情况下实现对信号光群速度的控制。通过改变泵浦光功率或泵浦波长,可实现对ps量级脉冲的光速控制,这种技术有可能应用于传输速率为Gbit/s的光纤通信系统中。
     最后,根据波导耦合方程,本文系统地理论研究了基于单环、双环和串联微环波导的光速控制特性。研究表明,单个微环波导在谐振状态时可以实现慢光和快光,但其透射率较低,如利用双环结构,则可以弥补这一缺陷,在对光速控制的同时,实现高透射;串联微环结构具有光子带隙特征,在带隙中心处,当环间耦合系数较小时,随着环数的增加,群速度逐渐减小;在光子带边处,群延时迅速变大,光速控制效果显著增强,这为实际利用微环波导制作光速控制器件奠定了理论基础。
Group velocity control is of great research interest in the area of photonics during the last several years, and many researchers have realized it in the cold atom, ruby, semiconductor quantum dots and so on. However, the optical fiber and ring resonator optical waveguide have attracted much attention due to their potential applications in the area of optical delay line, optical buffer and optical switching. This dissertation presents a numerical and experimental study on the group velocity control based on the coherent population oscillation, stimulated brillouin scattering and optical parametric amplification in the optical fiber and ring resonator optical waveguide.
     Coherent population oscillation exhibits several merits such as simple configuration, easy implementation and able to control the pulse in the 1550nm telecommunication window. We theoretically studied the influence of signal power, fiber length, doped ion concentration on the self-delay effect of the signal pulse and the group velocity control using an additional 980nm pump laser. We observed a maximum delay of 7.2ms corresponding to the slowest group velocity of 1.39×103m/s in an Er3+ doped fiber of 10m. We then used the 980nm pump to tune the coherent population, and observed the transition process from slow light to fast light when the pump power is over 50mW. We successfully realized the idea of control the group velocity of the signal light by the pump power of another light and the experimental result consistent with the theory prediction very well.
     Stimulated brillouin scattering is a third-order nonlinear effect, and it is easy to be generated in optical fiber because of the low threshold. However, this technique is not suitable for practical application due to the low gain bandwidth. By broadening the pump spectrum or using the two pump laser techniques, the bandwidth can be greatly increased and the pulse distortion can be alleviated as well. Additionally, we proposed a new technique to control the group velocity based on the fiber optical parametric amplification in the small signal regime. We can tune the group velocity of a pulse with picosecond width only by tuning the pump power or wavelength which may find its application in the optical communication system with transmission data-rate of Gbit/s.
     Finally, we studied the group velocity control based on the single ring resonator, two ring resonators, and coupled ring resonators optical waveguide based on the waveguide coupled-mode equation. The numerical results shown that although the single ring resonator can realize slow and fast light when it is tuned on resonance, the amplitude transmission is too low to be used in practical but it can be made up by the two resonators which can also control the group velocity very well with high transmission. The coupled ring resonators exhibit photonic band gap characteristic and the larger the number of the rings, the more group delay we can achieve when the coupling coefficients is rather small in the center of the pass band. The group velocity control can be greatly enhanced on the edge of the band gap. All the above mentioned theory laid a solid foundation for the fabrication of ring resonator to control the group velocity.
引文
1 M.M. Kash, V.A.Sautenkov, et al. Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas. Physical Review Letter, 1999, 82(26):5229~5232
    2 L.J.Wang, A.Kuzmich, A. Dogarlu. Gain-assisted superluminal light propagation. Nature.2000, 406:277~279.
    3 K .Kim, H.S.Moon, C.Lee, et al. Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line. Physical Review A , 2003, 68:013801
    4 E.E. Mikhailov, V.A.Sautenkov, I.Novikova, G.R.Welch. Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas. Physical Review A 69, 063808, 2004
    5 I.Novikova, D. F. Phillips, R. L. Walsworth. Slow Light with Integrated Gain and Large Pulse Delay. Physical Review Letter, 2007, 99(17):173604
    6 M.S.Bigelow, N.N.Lepeshkin, R.W.Boyd. Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature. Physical Review Letter, 2003, 90(11):13903
    7 E. Baldit, K. Bencheikh, et al. Ultraslow Light Propagation in an Inhomogeneously Broadened Rare-Earth Ion-Doped Crystal. Physical Review Letter, 2005, 95(14):143601
    8 Y.Okawachi, M S. Bigelow, J E. Sharping, et al. Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber. Physical Review Letter, 2005, 94(15):153902
    9 J.Q.Liang, M. Katsuragawa, F.L.Kien, K.Hakuta. Slow light produced by stimulated Raman scattering in solid hydrogen. Physical Review A, 2004, 65: 031801
    10 Altug H, Vuckovic J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays. Applied Physics Letters, 2005, 86(11):111102
    11盛广沪,俞进,廖兴展.超慢光速的研究进展.江西科学, 2006, 24(5):323~326
    12 R.W.Boyd, D.J.Gauthier.“Slow and fast light”, in Progress in Optics, Vol.43, Chap.6, pag:497-530, Ed.E.Wolf, Elsevier, Amsterdam,2002.
    13 M.D.Stenner, D.J.Gauthier, M.A.Neifeld. The speed of information in a fast-light optical medium. Nature, 425:695~698
    14 A.Kasapi, M.Jain, G.Y.Yin, S.E.Harris. Electromagnetically induced transparency: propagation dynamics. Physical Review Letter, 1995, 74(13):2447~2450
    15 O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede. Steep dispersion and group velocity below c/3000 in coherent population trapping. Physical Review A, 1996,53(1): 27~29
    16 V.Hau, S.E.Harris, Z.Dutton, C.H.Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 1999(397):594~598.
    17 D. Budker, D. F. Kimball, S.M. Rochester, V.V. Yashchuk. Nonlinear Magneto- optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation. Physical Review Letter, 1999, 83(9):1767~1770
    18 Kocharovskaya Olga, Y.Rostovtsev, M.O.Scully. Stopping Light via Hot Atoms. Physical Review Letter, 2001, 86(4):628~631
    19 Phillips D F, A. Fleischhauer, et al. Storage of light in atomic vapor. Physical Review Letter, 2001, 86(5):783~786
    20 M.S.Bigelow, N.N.Lepeshkin, R.W.Boyd. Superluminal and slow light propagation in a room temperature solid. Science 2003, 301:200-202.
    21 C. J. Chang-Hasnain, S.L.Chuang, Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices, Journal of lightwave technology. 2006, 24(12):4642~4654
    22范保华,掌蕴东,袁萍.固体介质中光速减慢现象的研究.物理学报,54(10):4692~4695
    23 K.Y.Song, M.Gonzalez-Herraez, L.Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt.Express, 2005, 13(1):82~88.
    24吴重庆.光速减慢和光缓存技术.物理学与信息科学专题, 2005,34(12):922~926
    25邱绍峰,范戈.光纤延迟线在雷达信号处理中的应用.光学技术. 2003, 29(4):429~433
    26 B. Zhang, L. Zhang, L.-S. Yan, A. E. Willner. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line. Optics Express, 2007, 15(13):8317~8322
    27 I. Fazal, O. Yilmaz, S. Nuccio. Optical data packet synchronization and multiplex using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion. Optics Express, 15(17):10492~1049
    28 Schwartz S E, Tan T Y. Wave interaction in saturable absobers. App1.Phys.Lett. 1967, 10(1):4~6
    29 S.Novak, R.Gieske. Simulink Model for EDFA Dynamics Applied to Gain Modulation. Journal of lightwave technology, 2002, 20(6):986~992
    30 S.Novak, A.Moesle. Analytic Model for Gain Modulation in EDFAs. Journal of lightwave technology, 2002, 20(6):975~985
    31 G.P.Agrawal. Nonlinear Fiber Optics. Third Edition, 2001, 355~358
    32 Zhaoming Zhu, Daniel J. Gauthier. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B, 2005, 22(11):2378~2384
    33 Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner. Broadband SBS Slow Light in an Optical Fiber. Journal of lightwave technology, 2006, 25(1):201~206
    34陈婉,董淑福,赵宇波,刘红军,周俊.光纤参量放大器的最新进展. 2007, 44(10):54~60
    35项鹏,王荣.基于四波混频的全光波长变换技术.光子技术,2004,4: 100~103
    36刘艳,谭中伟,傅永军,宁提纲,简水生.基于高非线性光纤四波混频的全光纤波长变换.半导体光电,2003,24(2):110~116
    37 M.Y.Gao, C. Jiang , W.S.Hu. Optimized design of two-pump fiber optical parametric amplifier and its noise characteristics. Optics Communications. 2006, 258:321~328
    38张瑞宝,刘红军,刘卫华,李永放.双泵浦光纤参量放大器中泵浦与光纤长度选取的研究.陕西师范大学学报,2006,34(1):46~50
    39 R.H.Stolen, J.E.Bjorkholm. Parametric amplification and frequency conversion in optical fiber. IEEE Journal of Quantum Electronics, 1982,18(7):1062~1072
    40 C.J. Kaalund. Critically coupled ring resonators for add-drop filtering. Optics Communications, 2004, 237:357~362
    41 G..Rostami, A.Rostami. All-optical tunable dispersion compensator using ring resonator and electromagnetically induced transparency. Proc of SPIE , 2007, 6593:65931G1~65931G10
    42 A.Schweinsberg, S.Hocde, N.N. Lepeshkin, R.W.Boyd, et al. An environmental sensor based on an integrated optical whispering gallery mode disk resonator. Sensors and Actuators B: Chemical, 2007, 123(12):727~732
    43 M.Waldow, T. Pl?tzing M.Gottheil, et al. 25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Optics Express, 2008, 16(11):7693~7702
    44 Qianfan Xu, Michal Lipson. Carrier-induced optical bistability in silicon ring resonators. Optics Letter, 2006, 31(3):341~343
    45 J.Y.Yang, Q.J.Zhou, F. Zhao, et al. Characteristics of optical bandpass filters employing series-cascaded double-ring resonators. Optics Communications 2003, 228:91~98
    46 H. P. Uranus, L.Zhuang, C. G. H Roeloffzen. Pulse Advancement and Delay in An Integrated Optical Two-Port Ring-Resonator Circuit: Direct Experimental Observations. Optics letter, 2007, 32(17):2620~2622
    47 R. F. Shiozaki, E. A. L. Henn, et al. Tunable eletro-optical modulators based on a split-ring resonator. Review of scientific instruments. 2007, 78(1):016103
    48韩秀友,庞拂飞,蔡海文等.一种离子交换制备的玻璃光波导谐振腔滤波器.光学学报,26(7):1053~1056
    49 G. P. Agrawal. Nonlinear Fiber Optics. Third Edition, 2001, 149~151
    50 D. D. Smith, N.N. Lepeshkin, A. Schweinsberg, et al. Coupled-resonator-induced transparency in a fiber system. Optics Communications 2006, 264:163~168
    51 A. A. Tovar, L. W. Casperson. Generalized Sylvester theorems for periodic applications in matrix optics. J. Opt. Soc. Am. A, 1995, 12 (3): 578~590.
    52李新华.聚合物10环并联微环阵列谐振滤波器的设计.激光与光电子学进展,2006, 43(12):62~67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700