中红外传输空心Bragg光纤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bragg光纤是一种具有一维光子晶体包层的新型光子带隙导引光纤,它在结构特征、导光机制和传输特性上与传统光纤完全不同,可以极大的拓展光导纤维的应用领域,具有重要的应用前景。
     本论文工作结合国家973项目“微结构光纤基本理论和基本特性的探索与研究”和北京市自然科学基金项目“基于全向布拉格反射的新型空心光子带隙光纤”,研究中红外传输空心Bragg光纤的结构设计和工艺实现,并对Bragg光纤器件化应用进行了理论探索。
     论文综合比较了现有Bragg光纤制备工艺和材料系选择的特点,选取半导体玻璃(硒化砷)和有机聚合物(聚醚酰亚胺)作为基本材料系,预制棒熔拉法作为基本工艺方法进行中红外传输空心Bragg光纤样品制备研究。结合工艺路线给出了3~5微米波段和10.6微米波段两种中红外传输空心Bragg光纤及其预制棒的结构参数设计,并分析了关键工艺参数—硒化砷蒸镀层厚和光纤拉丝比—对导波特性的影响。
     建立了半导体玻璃-有机聚合物Bragg光纤的光纤拉丝工艺平台,并对此类光纤的拉丝工艺进行了实验研究,制备出国内首根Bragg光纤样品。傅立叶红外光谱测量表明Bragg光纤样品呈现明显的带隙导光特性,实验验证了Bragg光纤制备工艺平台和工艺路线的可行性。
     提出并理论验证了一种基于Bragg光纤双锥的新型三维限制光学微腔。理论证实了利用Bragg光纤导波模式带隙内截止的特性,Bragg光纤双锥可以实现光纤反射镜的功能。利用FDTD方法对两个Bragg光纤双锥构成的F-P腔结构进行了理论研究,证实该结构可以形成三维限制光学微腔,腔模理论Q值高达106。
Bragg fiber is a novel Photonic-Bandgap fiber with one dimensional photonic crystal (1-D PC) cladding. Comparing to traditional optical fibers, its structure characteristics, light-guiding mechanism and transmission properties are quite different, leading to a wide expansion of optical fibers’applications.
     This paper devotes to the design and fabrication of hollow-core Bragg fibers for mid-infrared transmission, and theoretically explores the applications of Bragg-fiber-based devices, with the support of the 973 National Basic Research Program of China“Research on basic principles and characteristics of micro-structure fibers”and the program of Beijing Natural Science Foundation“Hollow bandgap-guiding fibers based on omni-direction Bragg reflections”.
     By comprehensively evaluating the characteristics of current fabrication technologies of Bragg fibers, the material pair of PEI and As2Se3 and fabrication technique of preform drawing are chosen to realize hollow-core Bragg fibers for mid-infrared transmission. Based on the fabrication process, the structure parameters of two kinds of mid-infrared transmitting Bragg fibers and their preforms are theoretically designed, aiming at 3~5μm and 10.6μm, respectively. The influences of light-guiding characteristics by the key fabrication parameters are analyzed, including the evaporation thickness of As2Se3 film and the preform-fiber drawing ratio.
     The fiber drawing platform for semiconductor-polymer based Bragg fibers is established. Corresponding fiber drawing technique is experimentally studied and the very first Bragg fiber sample in China is successfully fabricated. The FTIR measurement of the fiber sample shows apparent photonic-bandgap guiding effects, which demonstrates the feasibility of fiber fabrication platform and technique.
     A novel 3-D micro-cavity based on double Bragg fiber dual-tapers is proposed. The principle and characteristics of the Bragg fiber dual-taper are analyzed numerically. It shows that thanks to the abnormal in-band cutoff characteristics of the Bragg fiber, the dual-taper can be looked as a fiber mirror in the band between the cutoff frequencies of the tapered and untapered regions. Then, an F-P micro-cavity with two Bragg fiber dual-tapers as the mirrors is investigated by the FDTD method. Its 3-D light confinement is demonstrated and a cavity mode Q factor up to 106 is theoretically realized.
引文
[1] Temelkuran, B., et al., Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 2002. 420(6916): p. 650-653.
    [2] Pal, B., S. Dasgupta, and M. Shenoy, Bragg fiber design for transparent metro networks. Optics Express, 2005. 13(2): p. 621-626.
    [3] Charlton, C., et al., Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Applied Physics Letters, 2005. 86: p. 194102.
    [4] Bayindir, M., et al., Integrated fibres for self-monitored optical transport. Nature Materials, 2005. 4(11): p. 820-825.
    [5] Bayindir, M., et al., Metal–insulator–semiconductor optoelectronic fibres. Nature, 2004. 431(7010): p. 826-829.
    [6] Yeht, P., A. Yariv, and E. Marom, Theory of Bragg fiber. Opt. Commun, 1973. 7: p. 1.
    [7] Fink, Y., et al., A dielectric omnidirectional reflector. Science, 1998. 282(5394): p. 1679.
    [8] Fink, Y., et al., Guiding optical light in air using an all-dielectric structure. Journal of Lightwave Technology, 1999. 17(11): p. 2039.
    [9] Ibanescu, M., et al., Analysis of mode structure in hollow dielectric waveguide fibers. Physical Review E, 2003. 67(4): p. 2480.
    [10] Devaiah, A., et al., Surgical utility of a new carbon dioxide laser fiber: Functional and histological study. The Laryngoscope, 2005. 115(8).
    [11] Dupuis, A., et al., Guiding in the visible with" colorful" solid-core Bragg fibers. Optics letters, 2007. 32(19): p. 2882-2884.
    [12] Skorobogatiy, M., A. Dupuis, and N. Guo. Design and fabrication of ferroelectric all-polymer hollow Bragg fibers for THz guidance. 2007.
    [13] Katagiri, T., Y. Matsuura, and M. Miyagi, All-solid single-mode bragg fibers for compact fiber devices. Journal of Lightwave Technology, 2006. 24(11): p. 4314-4318.
    [14] Lin, C., et al., Defect Bragg Fiber With Low Loss for Broadband and Zero Dispersion Slow Light. Journal of Lightwave Technology, 2007. 25(12): p. 3776-3783.
    [15] Ibanescu, M., et al., Microcavity confinement based on an anomalous zero group-velocity waveguide mode. Optics letters, 2005. 30(5): p. 552-554.
    [16] Vienne, G., et al., Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports. Optics Express, 2004. 12(15): p. 3500-3508.
    [17] Hart, S., et al., External reflection from omnidirectional dielectric mirror fibers. 2002. p.510-513.
    [18] Kuriki, K., et al., Hollow multilayer photonic bandgap fibers for NIR applications. Optics Express, 2004. 12(8): p. 1510-1517.
    [19] Gao, Y., et al., Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication. Journal of Materials Research, 2006. 21(9): p. 2246-2254.
    [20] Pone, E., et al., Drawing of the hollow all-polymer Bragg fibers. Opt. Express, 2006. 14(13): p. 5838–5852.
    [21] Katagiri, T., Y. Matsuura, and M. Miyagi. Single-mode operation in silica-core Bragg fibers. 2005.
    [22] Katagiri, T., Y. Matsuura, and M. Miyagi, Photonic bandgap fiber with a silica core and multilayer dielectric cladding. Optics letters, 2004. 29(6): p. 557-559.
    [23] Croitoru, N., et al., Broad band and low loss mid-IR flexible hollow waveguides. Optics Express, 2004. 12(7): p. 1341-1352.
    [24] Gibson, D. and J. Harrington, Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure. Journal of Applied Physics, 2004. 95: p. 3895.
    [25] Baba, T. and D. Sano, Low-threshold lasing and Purcell effect in microdisk lasers at room temperature. IEEE Journal of Selected Topics in Quantum Electronics, 2003. 9(5): p. 1340-1346.
    [26] Nozaki, K., S. Kita, and T. Baba, Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Optics Express, 2007. 15(12): p. 7506-7514.
    [27] Little, B. and J. Foresi, G. Steinmeyer, ER Thoen, ST Chu, HA Haus, EP Ippen, LC Kimerling, and W. Greene," Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,". IEEE Photon. Technol. Lett, 1998: p. 10,549-551.
    [28] Van, V., et al., All-optical nonlinear switching in GaAs-AlGaAs microring resonators. IEEE Photonics Technology Letters, 2002. 14(1): p. 74-76.
    [29] Baba, T., Photonic crystals and microdisk cavities based on GaInAsP-InP system. IEEE Journal of Selected Topics in Quantum Electronics, 1997. 3(3): p. 808-830.
    [30] Solja?i?, M., et al., Optical bistability and cutoff solitons in photonic bandgap fibers. Optics Express, 2004. 12(8): p. 1518-1527.
    [31] Ibanescu, M., et al., An all-dielectric coaxial waveguide. 2000. p. 415-419.
    [32] Xu, Y., et al., Asymptotic matrix theory of Bragg fibers. Journal of Lightwave Technology, 2002. 20(3): p. 428.
    [33] PCFDTD from http://oedcad.uqc.cn
    [34] Jackson, R., Novel sensors and sensing. 2004: Inst of Physics Pub Inc.
    [35] Kakarantzas, G., et al., Miniature all-fiber devices based on CO_2 laser microstructuring of tapered fibers. Optics letters, 2001. 26(15): p. 1137-1139.
    [36] Brambilla, G., V. Finazzi, and D. Richardson, Ultra-low-loss optical fiber nanotapers. Optics Express, 2004. 12(10): p. 2258-2263.
    [37] Ma, L., T. Katagiri, and Y. Matsuura. Silica nanotaper optics with Bragg-fiber structure. 2006.
    [38] Xu, G., et al., Fibers and Cables-Loss Characteristics of Single-HE11-Mode Bragg Fiber. IEEE Journal of Lightwave Technology, 2007. 25(1): p. 359-366.
    [39] Xu, Y., R. Lee, and A. Yariv, Asymptotic analysis of Bragg fibers. Optics letters, 2000. 25(24): p. 1756-1758.
    [40] Zhi, W., et al., Compact supercell method based on opposite parity for Bragg fibers. Optics Express, 2003. 11(26): p. 3542-3549.
    [41] Argyros, A., et al., Analysis of ring-structured Bragg fibres for single TE mode guidance. Optics Express, 2004. 12(12): p. 2688-2698.
    [42] Johnson, S., et al., Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express, 2001. 9(13): p. 748-779.
    [43] Skorobogatiy, M., et al., Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates. Optics Express, 2002. 10(21): p. 1227-1243.
    [44] Ouyang, G., Y. Xu, and A. Yariv, Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics. Optics Express, 2001. 9(13): p. 733-747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700