MiRNA-21在激素非依赖前列腺癌细胞中的作用及其分子机制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究在激素非依赖性前列腺癌细胞中E2和AR-miRNA-21通路的内在关联性及其重要意义。分析非依赖前列腺癌中miRNA-21调控的下游分子机制。
     方法
     通过RT-PCR检查有无E2培养下非依赖性细胞系PC3在转染miRNA-21 inhibitor前后miRNA-21及AR的表达情况。通过CCK-8和FCM检测转染前后细胞的增殖能力。通过western blot检测有无E2培养下PC3细胞AR蛋白的表达情况。通过western blot检测在转染miRNA-21 inhibitor前后PTEN、p-Akt和MMP-2的表达情况。
     结果
     RT-PCR检测显示:E2环境培养下转染前miRNA-21的表达明显高于不含E2的培养基中的表达;在无E2的培养基中转染后miRNA-21的表达明显低于转染前的表达;在含有E2的培养基中转染后的miRNA-21的表达明显低于转染前得细胞组。
     Cck-8方法测转染前PC3细胞系在不同环境下和转染miRNA-21 inhibitor前后的增殖能力,显示在含有E2的环境下PC3细胞增殖能力明显增强;无论有没有E2,转染后PC3的增值能力均明显比未转染组弱。
     FCM检测转染miRNA-21抑制剂后,对应与转染前PC3细胞的增殖都明显的减慢。
     RT-PCR检测AR表达发现,转染前后AR的表达变化不具有显著性(P>0.05),但E2能促进AR的表达增加。
     western blot测定PTEN、p-Akt和MMP-2在转染前后的PC3细胞中表达水平。转染后PTEN的表达明显高于转染前;转染后p-Akt和MMP-2的表达明显低于转染前。
     结论
     1. E2通过诱导AR表达在非依赖性前列腺癌的进展中起重要作用。
     2. E2可能通过AR或其他途径诱导miRNA-21的表达。
     3. miRNA-21在前列腺癌的非依赖性进程中起重要作用,转染miRNA-21 inhibitor前列腺癌细胞的增值能力明显降低提示miRNA-21 inhibitor有希望成为非依赖性前列腺癌的一个潜在治疗之路。
     4. MiR-21负面调节PTEN的表达同时上调p-Akt和MMP-2的表达,提示miRNA-21可能通过PTEN-pAkt/MMP-2通路调控前列腺癌的进展。
Objective
     To study the relationship and the significance of E2 with AR-miRNA-21 pathway, Analyze the downstream regulation mechanisms of miRNA-21 in hormone-independence prostate cancer.
     Methods
     Respectively, in the presence of E2 and E2 in the special medium does not contain cultured PC3 and then were transected with miRNA-21 inhibitor. Detect cell proliferation with CCK-8 and FCM, while the expression of gene and protein with RT-PCR and western blot.
     Results
     RT-PCR analysis showed that before transfection the expression of miRNA-21 in E2 environment cultured was significantly higher than in the medium without E2; In the presence of E2 the expression of miRNA-21 after transfection was significantly lower than untransfected cell group.
     Cck-8:in the presence of E2 the PC3 cell proliferation was significantly enhanced ; With or without E2, PC3 after transfection, the capacity of amplification was significantly weaker than the untransfected group.
     FCM: make sure that the miRNA-21 inhibitor is useful to mitotic cycle in PC3.
     AR is not different between before transfection and behind transfection (p>0.05), EGF can increase expression of AR by RT-PCR,but E2 can promote increased expression of AR.
     Western blot show that the expression of PTEN behind transfection is higher than before,but p-Act and MMP-2 behind transfection is lower than before.
     Conclusions
     1. E2 through inducting of AR expression in prostate cancer progression plays an important role.
     2. E2 may induce the expression of miRNA-21 by AR or other means.
     3. miRNA-21 plays an important role in the process of transfection in hormone-independence prostate cancer. Transfected with miRNA-21 inhibitor of prostate cancer cells significantly reduced the amplification capacity and prompted miRNA-21-inhibitor with prostate cancer will be a potential way of biological treatment.
     4. miRNA-21 negatively regulate the expression of PTEN also increased p-Akt and the expression of MMP-2, suggesting that miRNA-21 pathway may be through PTEN-pAkt/MMP-2 control the progress of prostate cancer.
引文
1 Jemal A, Siegel R, Ward R, et al. Cancer Statistics, 2009[J]. CA Cancer J Clin. 2009Jul-Aug; 59(4); 225-249.
    2 Gandellini P, Folini M, Zaffaroni N, et al. Towards the definition of prostate cancer-related microRNAs: where are we now [J]? Trends Mol Med. 2009 Sep;15(9): 381-90.
    3 Bartel, DP. MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell.2004 Jan 23; 116(2):281-97.
    4 Bartel, D.P. MicroRNAs: target recognition and regulatory functions [J]. Cell. 2009 Jan 23; 136(2): 215-33.
    5 Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation [J]. Nat Cell Biol. 2009 Mar; 11(3): 228-234.
    6 Lugli G, Torvik VI, Larson J, et al. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain [J]. Neurochem. 2008 Jul; 106(2); 650-661
    7 Kedde M, Strasser MJ, Boldajipour B, et al. RNA-binding protein Dnd1 inhibits microRNA access to target Mrna [J]. Cell.2007 Dec 28; 131(7), 1273-1286
    8 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell. 2005 Jan 14; 120(1): 15-20
    9 Medina PP, Slack FJ. microRNAs and cancer: an overview [J]. Cell Cycle. 2008 Aug 15; 7(16): 2485-2492
    10 Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells [J]. Cancer Res. 2005 Jul 15; 65(14): 6029-33.
    11 Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets [J]. ProcNatl Acad Sci USA. 2006 Feb 14; 103(7): 2257-61.
    12 Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis [J]. Cell Res. 2008 Mar; 18(3):350-9.
    13 Kasahara K, Taguchi T, Yamasaki I, et al. Detection of genetic alterations in advancedprostate cancer by comparative genomic hybridization [J]. Cancer Genet Cytogenet. 2002 Aug; 137(1):59-63.
    14 Li T, Li D, Sha J, et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells [J]. Biochem Biophys Res Commun. 2009 Jun 5; 383(3):280-5.
    15 Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer [J]. Gastroenterology. 2007 Aug; 133(2): 647-658.
    16 Rosivatz E. Inhibiting PTEN [J]. Biochem Soc Trans. 2007 Apr; 35(Pt2): 257-259.
    17 Roy S, Khanna S, Hussain SR,et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue [J].Cardiovasc Res. 2009 Apr 1; 82(1):21-9.
    18 Furukawa K, Kumon Y, Harada H, et al. PTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules [J]. Int J Oncol 2006 Jul; 29(1):73-81.
    19 Suzuki H, Akakura K, Komiya A. et al. CAG polymorphic repeat lengt hs in androgen receptor gene among Japanese prostate cancer patients: potential predictor of prognosis after endocrine t herapy [J]. Prostate. 2002 May 15; 51(3): 219-224
    20 Han G, Buchanan G, Ittmann M, et al. Mutation of the androgen receptor causes oncogenic transformation of the prostate [J]. PNAS ,2005 Jan 25;,102 (4) :1151-1156
    21 Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of t he androgen receptor gene and progression of human prostate cancer [J]. Nat Genet ,1995 Apr; 9(4) :401-406
    22 Mangelsdorf DJ, Thummel C, Beato M, et al. The nuclear receptor superfamily: the second decade [J]. Cell 1995 Dec 15; 83(6): 835-9.
    23 Yuan X, Balk SP.Mechanisms mediating androgen receptor reactivation after castration [J]. Urol Oncol 2009 Jan-Feb; 27(1): 36-41.
    24 Koivisto P. Aneuploidy and rapid cell proliferation in recurrent prostate cancers with androgen receptor gene amplification [J]. Prostate Cancer Prostatic Dis ,1997 Sep;1 (1): 21-25
    25 Bohl CE, Wenqing G, Duane DM, et al. Structural Basis for Antagonism and Resistance of Bicalutamide in Prostate Cancer [J]. Proc. Natl. Acad. Sci. USA 2005 Apr 26; 102(17), 6201-6206.
    26 Isbarn H, Boccon-Gibod L, Carroll PR, et al. Androgen Deprivation Therapy for the Treatment of Prostate Cancer: Consider Both Benefits and Risks [J]. Eur. Urol. 2009 Jan; 55(1): 62-75.
    27 Ribas J, Ni X, Haffner M. et al. miR-21: An Androgen Receptor Regulated MicroRNA that Promotes Hormone-Dependent and Hormone-Independent Prostate Cancer Growth [J]. Cancer Res 2009 Sep 15;69(18):7165-9
    28 Zhu S, Wu H, Wu F, et al.MicroRNA-21 targets tumor suppressor genes in invasion and metastasis [J]. Cell Res 2008 Mar;18(3):350-9.
    29 Majumder P K, Sellers W R. Akt-regulated pathways in prostate cancer. Oncogene 2005 Nov 14; 24(50): 7465-7474.
    30 Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis [J]. Cancer Metastasis Rev. 2006 Mar; 25(1): 9-34
    31 Page-McCaw A, Ewald A J, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling [J]. Nat. Rev. Mol. Cell Biol. 2007 Mar; 8(3): 221-233
    32 Littlepage L E, Sternlicht M D, Rougier N, et al. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression [J]. Cancer Res. 2010 Mar 15; 70(6), 2224-2234.
    1 Isbarn H, Boccon-Gibod L, Carroll PR, et al. Androgen Deprivation Therapy for the Treatment of Prostate Cancer: Consider Both Benefits and Risks [J]. Eur Urol. 2009 Jan; 55(1): 62-75.
    2 Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer [J]. Cell Cycle. 2010; 9(5):923-9.
    3 Bohl CE, Wenqing G, Duane DM, et al. Structural Basis for Antagonism and Resistance of Bicalutamide in Prostate Cancer [J]. Proc Natt Acad Sci USA. 2005 Apr 26; 102(17): 6201-6206.
    4 McCall P, Gemmell LK, Mukherjee R. Phosphorylation of the androgen receptor is associated with reduced survival in hormone refractory prostate cancer patients [J]. Br J Cancer. 2008 Mar 25; 98(6): 1094-1102.
    5 Wang L, Hsu CL, Chang C. Androgen receptor corepressors: an overview [J]. Prostate. 2005 May 1; 63(2): 117-130.
    6 Peng Y, Li CX, Chen F, et al. Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70 [J]. Am J Pathol. 2008 Jan; 172(1): 225-235.
    7 Benbrahim-Tallaa L, Webber MM, Waalkes MP. Mechanisms of acquired androgen independence during arsenic-induced malignant transformation of human prostate epithelial cells [J]. Environ Health Perspect. 2007 Feb; 115(2), 243-247.
    8 Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogenactivated protein kinase cascade for the treatment of cancer [J]. Oncogene. 2007 May; 26(22): 3291-3310.
    9 Guo C, Sah JF, Beard L, et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers [J]. Genes Chromosomes Cancer. 2008 Nov; 47(11):939-46.
    10 Liu B, Peng XC, Zheng XL,et al.MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo [J]. Lung Cancer. 2009 Nov; 66(2):169-75.
    11 Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes [J]. Nat Immunol. 2008 Apr; 9(4): 405-14.
    12 Pezzolesi MG, Platzer P, Waite KA, et al. Differential expression of PTEN-targeting microRNAs miR-19a and miR-21 in Cowden syndrome [J]. Am J Hum Genet. 2008 May; 82(5):1141-9.
    13 Majumder PK, Sellers WR. Akt-regulated pathways in prostate cancer [J]. Oncogene. 2005 Nov; 24(50): 7465-7474.
    14 Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads [J]. Annu Rev Cell Dev Biol. 2005; 21: 659-693.
    15 Mestdagh P, Bostrom AK, Impens F, et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-βpathway in neuroblastoma [J]. Mol Cell. 2010 Dec 10; 40(5):762-73.
    16 Valeri N, Gasparini P, Braconi C, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2) [J]. Proc Natl Acad Sci U S A. 2010 Dec 7; 107(49):21098-103.
    17 Yamashita M, Fatyol K, Jin CY, et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta [J]. Mol Cell 2008 Sep; 31(6): 918-924.
    18 Sharifi N, Lechleider RJ, Farrar WL. Transforming growth factor-beta receptor III downregulation in prostate cancer: is inhibin B a tumor suppressor in prostate [J]? J Mol Endocrinol. 2007 Nov; 39(5): 329-332.
    19 Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression [J]. Diabetes. 2011 Jan; 60(1):280-287.
    20 Louafi F, Martinez-Nunez RT, Sanchez-Elsner T, et al. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}. J Biol Chem. 2010 Dec 31; 285(53):41328-36.
    21 Danielpour D. Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate [J]. Eur J Cancer. 2005 Apr; 41(6): 846-857.
    22 Juarez P, Guise T A. TGF-beta Pathway as a Therapeutic Target in Bone Metastases [J]. Curr Pharm Des. 2010; 16(11):1301-1312.
    23 Stanczyk J, Ospelt C, Karouzakis E, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation [J]. Arthritis Rheum. 2011 Feb; 63(2):373-81.
    24 Huang H, Murphy T, Shu P, et al. Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to that resembling malignant cells [J]. Mol Cancer. 2005 Jan; 4(1): 2.
    25 Tam L, McGlynn L, Traynor P, et al. Expression levels of the JAK/STAT pathway in the transition from hormone-sensitive to hormone-refractory prostate cancer [J]. Br J Cancer. 2007 Aug 6; 97(3): 378-383.
    26 Wang G, Wang Y, Feng W,et al. Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells. BMC Genomics [J]. 2008 Sep; 9 Suppl 2:S22.
    27 Hicklin D J, Ellis L M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis [J]. J Clin Oncol. 2005 Feb; 23(5): 1011-1027.
    28 Long J, Wang Y, Wang W,et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions [J]. J Biol Chem.2010 Jul 23; 285(30):23457-65.
    29 Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity [J]. Cancer Res.2010 Jun 1; 70(11):4528-38.
    30 Trisciuoglio D, Iervolino A, Zupi G, et al. Involvement of PI3K and MAPK signaling in bcl-2-induced vascular endothelial growth factor expression in melanoma cells [J]. Mol Biol Cell. 2005 Sep; 16(9): 4153-4162.
    31 Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis [J]. Cancer Metastasis Rev. 2006 Mar; 25(1): 9-34
    32 Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling [J]. Nat Rev Mol Cell Biol. 2007 Mar; 8(3): 221-233.
    33 Littlepage LE, Sternlicht MD, Rougier N, et al. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression [J]. Cancer Res. 2010 Mar; 70(6): 2224-2234.
    34 Stanczyk J, Ospelt C, Karouzakis, et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation [J]. Arthritis Rheum. 2011 Feb; 63(2):373-81.
    35 Ucar A,Vafaizadeh V, Jarry H, et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development [J]. Nat Genet. 2010 Dec; 42(12):1101-8.
    36 Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells [J]. PLoS One. 2009 Aug 28; 4(8):e6816.
    37 Wang HQ, Yang B, Xu CL,et al. Differential phosphoprotein levels and pathway analysis identify the transition mechanism of LNCaP cells into androgen-independent cells [J]. Prostate. 2010; 70(5):508-17.
    38 Sarveswaran S, Liroff J, Zhou Z,et al. Selenite triggers rapid transcriptional activation of p53, and p53-mediated apoptosis in prostate cancer cells: Implication for the treatment of early-stage prostate cancer [J].Int J Oncol. 2010; 36(6):1419-28.
    39 Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of microRNA processing by p53 [J]. Nature.2009; 460(7254):529-33.
    40 Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex [J]. PLoS One.2010; 5(5):e10615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700