柑橘中冷胁迫相关miRNAs的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国拥有丰富的柑橘品种和悠久的栽培历史,是柑橘的原产地和生产大国。柑橘业是我国区域经济发展,新农村建设的支柱产业。冷胁迫是柑橘生长发育和地理分布的重要制约因素,严重影响柑橘的产量和品质。
     MiRNA是一类长约21-22nt的单链非编码RNA,通过切割靶基因或抑制其翻译,能协调许多基因的表达,调节植物的激素分泌和信号转导,增强植物对恶劣环境的适应能力。关于miRNA参与植物适应非生物胁迫的研究已有报道,但是miRNA与冷胁迫的关系研究较少。研究柑橘中冷胁迫相关的miRNA,为发现柑橘中新的miRNA及其基因调控模式,改良柑橘品种,提高柑橘对冷胁迫的耐受性,促进柑橘产业的发展,具有十分重要的意义。主要研究成果如下:1以前期研究发现的柑橘中27个miRNAs为研究对象,通过整合基因芯片数据、对miRNAs前体结构及靶基因功能的预测和启动子区顺式作用元件的分析,筛选出柑橘中5个冷胁迫相关的miRNAs。
     2提取金橘幼嫩叶片中总RNA,用通用引物Oligd(T)进行逆转录合成cDNA,再PCR扩增,克隆到miRNAs 167a、miRNAs 167d和miRNAs171的前体。
     3通过设计特殊的茎环引物进行逆转录,采用Stem-loop RT-PCR的方法和从总RNA中分离出小分子miRNAs,给小分子miRNAs加poly(A)尾,再采用RT-PCR这两种方法均检测到miRNA 156和(?)niRNA166这两种miRNAs成熟体。
     4将金橘在4℃条件下分别冷处理0、0.5h、4h、8h和14天后,提取其叶片中的RNA,用半定量RT-PCR法检测这5个miRNAs的表达变化,发现在冷胁迫下miRNA 167a和miRNA167d的表达模式相似,miRNA156、miRNA 166和miRNA171的表达模式各不相同。
China is a big country of citrus production where citrus originated, possessing abundant kinds of citrus and long history of planting. Citrus industry is key to regional economy development as well as our new country construction. Cold stress is an important environmental factors which limiting citrus plant growth, development, geographical distribution and gravely affect citrus production and quality.
     MicroRNA is an class of single-strand noncoding RNAs with about 21-22 nt length.By cleavaging target mRNA or inhibiting its translation, microRNA can coordinate expression of many genes invoving regulating plant hormone and signal conduction to adapte to adversity. There are some reports about plant adaptions to abiotic stress,but rare is about relationship between miRNA and cold stress. Exploring cold related miRNAs in citrus to find new miRNAs and their patterns of gene regulation is of great significance to development of citrus industry, while it can optimize citrus species, improving their adaption to cold. The main results are as follows:
     1 Focusing on 27 citrus miRNAs in previous study, we screen 5 cold stress related miRNAs by integrating microarray dates, predicting pre-miRNAs structure and analyzing cis-acting element in miRNAs promoter region.
     2 After total RNA extracted from young leaves of kumquat, reverse transcription reactions were performed using universal primer Olig(T), then we clone precursors of miRNA167a、miRNA167d and miRNAs171 by PCR amplification.
     3 Mature sequence of miRNA 156 and miRNA 166 are detected by two means. One is stem loop RT-PCR by designing special stem loop primer, the other is that adding poly(A) to small molecule miRNAs isolated from total RNA
     4 RNA are isolated from different samples kumquat; untreated, treated with cold stress 4°C for 0.5h、4h、8h and 14 days prior to extraction. We study expression difference of 5 miRNAs by semi-quantitative PCR and find that the expression patterns of miRNA167a and miRNA167d are similar, while miRNA156、miRNA166 and miRNA171 are different from each other.
引文
黄匕匕,李货等.苹果M icroRNA的茎环RT2PCR检测及离体试管苗与田间苗表达差异[J].华北农学报,2010,25(1):104-109.
    李贺,张志宏等.草莓microRNA的RT-PCR鉴定[J].中国农业科学,2009,42(4):1465-1472.
    罗新义,冯昌军,李红等.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报[J].草业学报,2004,26(4):79-82.
    刘永鑫,韩英鹏等.一种适合大豆MicroRNA鉴定的RT—PCR方法[J].大豆科学,2009,28(4):601-604.
    王关林,方宏筠.植物基因工程(第二版),北京,科学出版社,2002,776-777.
    王金祥,严小龙,潘瑞炽.不定根形成与植物激素的关系.植物生理学通讯,2005,41(2):133-142.
    王莹,龙亮华.豌豆中抗寒相关性miRNAs功能特异性验证及其克隆的研究[J].辽宁师范大学学报,2010,33(2):232-236.
    周德保.植物激素与细胞骨架的排向.植物生理学通讯,2005,41(2):224-228.
    朱素琴.膜脂与植物抗寒性关系研究进展.湘潭师范学报(自然科学版),2004,24(4):49-54.
    Achard, p et al.,.Integration of plant responses to environmentally activated phytohormonal signals. Science,2006,311:91-94.
    Achard, P., Herr, A., Baulcombe, D.C. and Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development,2004,131:3357-3365.
    Adai A,Johnson C,Mlotshwa S.Computational prediction of miRNAs in Arabidopsis thaliana.Genome Res,2005,15:78-91.
    Agarwal, M., et al., A R2R3 type MYB transcription factor is involved in the cold regulation of
    CBF genes and in acquired freezing tolerance. J. Biol. Chem.,2006,281:37636.
    Allen, E., Xie, Z., Gustafson, A.M.& Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121:207-221.
    Alonso-Blanco C,Gomez-Mena C,Llorente F et al.,.Genetic and molecular analysis of natural
    variation indicate CBF2 as a candidate gene for underlying a freeing tolerance quantitative trait locus in Arabidopsis.Plant Physiology,2005,139:1304-1312.
    Kim, V.N. Small RNAs:classification, biogenesis, and function. Mol. Cells,2005,19:1-15.
    Axtell MJ, Bartel DP.Antiquity of microRNAs and their targets in land plants.PlantCelll 2005,7(6):1658-1673.
    Bagga S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell,2005,122:553-563.
    Bao N,Lye K W,Barton M K.MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome.Dev Cell,2004,7:653-662.
    Bartel B,Bartel D P.MicroRNAs:At the root of plant development?Plant Physiology,2003,132:709-717.
    Bartel DP. MieroRNAs:genomics, biogenesis, mechanism, and function.Cell, 2004,116(2):281-297.
    Benedict, C.. Geisler, M., Trygg, J., Huner, N., Hurry, V.Consensus by democracy.
    Usingmeta-analyses of microarray and genomic data tomodel the cold acclimation signaling pathway in Arabidopsis. Plant Physiol.,2006,141:1219.
    Bieniawska Z et al.,.Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive
    Variation in the Cold-Responsive Transcriptome. Plant Physiology,2008.147:263-279.
    Bohn M,Luthje S,Sperling p,Heinz C,Dorffing K.Plasma member lipid alterations induced by cold
    acclimation and abscisic acid trearment of winter wheat seedlings differing in frost resistance.J Plant Physiol.2006:Feb 23.
    Brodersen P, Sakvarelidze-Aehard L, Bruun-Rasmussen M, et al. Widespreadt ranslational inhibition by plant miRNAs and siRNAs.Science,2008,320:1185-1190.
    Changnian Song et al. Identification and characterization of 27 conserved microRNAs in citrus[J].
    Planta,2009,230:671-685.
    Chan, S.W., Henderson, I.R. & Jacobsen, S.E. Gardening the genome:DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet.,2005,6:351-360.
    Chen C Z,Li L,Lodish H F.MicroRNAs modulate hematopoietic lineage differentiation.Science,2004,(5654):83-86.
    Chen PY, Manninga H, Slanehev K. Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks
    DS, Gaidatzis D, Sander C, Zavolan M, Tusehl T.The developmental miRNA profiles of zebrafish as determined by small RNA cloning.Genes Dev,2005,19(11):1288-1293.
    Chen, X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004,303,2022-2025.
    Chinusamy V,Ohta M,Kanrar S,Lee BH,Hong X,Agarwal M,Zhu JK.ICEl:a regulator of
    cold-induced transcriptome and freezing tolerance in Arabidopsis.Genes Development,2003,17:1043-1054.
    Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F. and Su.C.L. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell,2006,18:412-421.
    Curtis M D, Grossniklaus U. A gateway cloning vector set for hight-throughput functional anaylsis of genes in planta. Plant Physiology,2003,133(9):462-469.
    Baumberger, N. & Baulcombe, D.C. Arabidopsis ARGONAUTE1 is an RNA Slicer that
    selectively recruits microRNAs and short interfering RNAs. Proc. Natl.Acad.Sci USA,2005,102:11928-11933.
    Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature,2005. (7041):441-5.
    Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF.Roles for Arabidopsis CAMTA
    transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell,2009,21: 972-984.
    Emery, J.F. et al. Radial patterning of Arabidopsis shoots by class Ⅲ HD-ZIP and KANADI genes. Curr. Biol,2003,13:1768-1774.
    Erika Varkonyi-Gasic et al. Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs[J].Plant Methods,2007,3:12.
    Farh, K.K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science,2005,310,1817-1821.
    Finkler A, Ashery-Padan R, Fromm H.CAMTAs:calmodulin-binding transcription activators from plants to human. FEBS Lett,2007,581:3893-3898.
    Fowler SG,Thomashow MF.Arabidopsis transcriptome profiling indicates that multiple regulatory
    pathways are activated during cold acclimation in addition to the CBF cold response pathway.Plant Cell,2002,14:1675-1690.
    Fujii, H., Chiou, T.J., Lin, S.I., Aung, K. and Zhu, J.K.A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol,2005,15:2038-2043.
    Gandikota, M., Birkenbihl., R.P., Hohmann, S., Cardon, G.H.,Saedler, H. and Huijser, p. The
    miRNA 156/157 recognition element in the 30 UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings.Plant J 2007,doi:10.1111/j.1365-313X.2006.02983.x.
    Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol,2004,54:767-781.
    Gilmour S J,Sebolt A M,Salazar M P,et al.Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.Plant Physiol,2000,124:1854-1865.
    Henriksson KN,Trewavas AJ.The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+levels. Plant Cell Environ,2003,26:485-496.
    Himmelbach, A., Yang, Y., Grill, E.,. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol,2003,6:470-479.
    Ibanez-Ventoso C, Vora M and Driseoll M.Sequence relationships among C.elegans, D.melanogaster and human microRNAs highlight the extensive conservation of miroRNAs in biology.PLoS One,2008,3:e2818.
    Ito, Y., et al.,. Functional analysis of rice DREBl/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol.,2006,47:141.
    Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S,Tyagi A K, Khurana J P. F-box proteins in rice. Genome-wide analysis,classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol,2007,143:1467-1483.
    J M.Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature,2005,(433):769-773.
    Jones-Rhoades, M.W. and Bartel, D.P.Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell,2004,14:787-799.
    Jones-Rhoades, M.W., Bartel, D.P.& Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. published online 30 January 2006 (doi:10.1146/annurev.arplant.57.032905.105218).
    Kurihara. Y., Takashi, Y.& Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA,2006,12,206-212.
    Kidner,C.A. and Martienssen, R.A.The developmental role of microRNA in plants. Curr. Opin. Plant Biol,2005,8,38-44.
    Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet,2005,37:495-500.
    Lau N C,Lim L P,Weinstein E G,Bartel D P.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science,2001,294:858-862.
    Luo, Y.C., Zhou, H., Li, Y., Chen, J.Y., Yang, J.H., Chen, Y.Q.and Qu, L.H.Rice embryogenic calli
    express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett,2006,580:5111-5116.
    Mukesh Jain,Aashima Nijhawan,Rita Arora,et al.,2007.F-Box proteins in rice,genome-wide
    analysis,classification,tempotal and spatial gene expression during panicle and seed development,and regulation by light and abiotic stress.Plant Physiology,143:1467-1483.
    Lewis, B.P., Burge, C.B.& Bartel, D.P. Conserved seed pairing, often flanked by adenosines. indicates that thousands of human genes are microRNA targets. Cell,2005,120:15-20.
    Li J,Yang Z,Yu B,Liu J,Chen X.Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis.Curr Biol,2005,15:1501-1507.
    Lim L P,Lau N C,Garrett-Engele P,Grimson A,Schelter J M,Castle J,Bartel D P,Linsley P S,Johnson Li Y,Li W,Jin Y X.Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin,2005,37:75-87.
    Lu C,Tej S S, Luo S, et al.Elucidation of the Small RNA Component of the Transcriptome.Science,2005,309(5740):1567-1569.
    Lv, D.-K., et al.,. Profiling of cold-stress-responsive miRNAs in rice by microarrays, Gene,2010, doi:10.1016/j.
    Mallory AC,Bartel DP,Bartel B.MicroRNA directed regulation of Arabidopsis AUXIN
    RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes.Plant Cell,2005,17:1360-1375.
    Mallory A C,Dugas D V,Bartel D P MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic,vegetative,and floral organs.Curr Biol,2004,14:1035-1046.
    Matzke M,Aufsatz W.Kanno T Genetic analysis of RNA-mediated transcriptional gene silencing.Biochim Biophys Acta,2004,1677:129-141.
    Meyers B C, SouretFF, LuC, etal. Sweating the small stuff:microRNA diseovery in Plants.Curr OPin Bioteehnol,2006,17(2):139-146.
    Monroy AF, Dhindsa RS.Low-temperature signal-transduction:induction of cold acclimation-specific genes of alfalfa by calcium at 25℃. Plant Cell,1995,7:321-331.
    Mundy, J., Yamaguchi-Shinozaki, K., Chua, N.H.,. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci,1990,87: 1406-1409.
    Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA,2007.104:21002-21007.
    Palatnik JF, Allen E, Wu X, Sehommer C, Sehwab R, Carrington JC and weigel D.Control of leaf morphogenesis by microRNAs.Nature,2003,425:257-263.
    Park. M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H.& Poethig, R.S. Nuclear processing and
    export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA,2005,102:3691-3696.
    Ping-Hong Meng et al. Analysis of Natural Allelic Variation Controlling Arabidopsis thaliana Seed Germinability in Response to Cold and Dark:Identification of Three Major Quantitative Trait Loci[J]. Molecular Plant,2008,1(1):145-154.
    Reyes, J.L. and Chua, N.H.ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J.2007, doi:10.1111/j.1365-313X.2006.02980.x.
    Qi,Y.,Denli,A.M.& Hannon,G.J.Biochemical specialization within Arabidopsis RNA silencing pathways.Mol.Cell,2005,19:421-428.
    Rajagopalan, R., Vaucheret, H., Trejo, J. and Bartel, D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev,2006,20:3407-3425.
    Robert S Allen,Li J Y,Melissa I Stahle,Aurelie Dubroue,Gubler F,Millar A A.Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family Proc Natl Acad Sci,2007,(104):16371-16376.
    Schwab R,Palatnik J F,Riester M,et al..Specific effects of microRNAs on the plant transcriptome.Dev Cell,2005,(8):517-527.
    Stark, A., Brennecke, J., Bushati, N., Russell, R.B.& Cohen, S.M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell,2005, 123:1133-1146.
    Sunkar R,Chinnusamy V,Zhu J H,et al..Small RNAs as big players in plant abiotic stress responses and nutrient deprivation.Trends Plant Sci,2007,12(7):301-309.
    Sunkar R, Zhu JK. Novel and stress-regulated microRNA and other small RNA from Arabidopsis.Plant Cell,2004,16(8):2001-2019.
    Sunkar R and Jagadeeswaran G.In silico ideniification of conserved microRNAs in large number of diverse plant species.BMC Plant Biol,2008,8:37-42.
    Sunkar R and Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell,2004,16:2001-2019.
    Song CN et al.,. Identification and characterization of 27 conserved microRNAs in citrus. Planta,2009,230:671-685.
    Tang G,Reinhart BJ,Bartel DP,et al.A biochemical framework for RNA silencing in plants.Genes Dev,2003,17(1):49-63.
    Thomashow M F.Gilmour S J,Stockingger C J et al.Role of the Arabidopsis CBF transcriptional activator in cold acclimation.Physiol Plant,2001,112:171-175.
    Valencia-Sanchez M.A., Liu, J., Hannon, G.J.& Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev.,2006,20:515-524.
    Vaucheret, H., Mallory, A.C.& Bartel, D.P. AGO1 homeostasis entails coexpression of miR168 and AGOl and preferential stabilization of miR168 by AGOl. Mol. Cell,2006,22:129-136.
    Vaucheret H, Vazquez F,Crete P,et al.The action of ARGONAUTEl in the miRNA pathway and its
    regulation by the miRNA pathway are crucial for plant development.Genes Dev,2004,(18):1187-1197.
    Vazquez F,Gasciolli V,Crete P,Vaucheret H.The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development,but not posttranscriptional transgene silencing.Curr.Biol.2004,(14):346-351.
    Verdel, A.& Moazed, D. RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett,2005,579:5872-5878.
    Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J,2005,41:195-211.
    Wen JQ, Oono K, Imai R. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAPl, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol,2002,129:1880-1891.
    Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc.Natl.Acad.Sci.USA,2006,103,:4034-4039.
    Wu,M., Tian, Q., Reed, J.,. ArabidopsismicroRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development,2006,133:4211-4215.
    Xie Z,Allen E,Fahlgren N.Calamar A,Givan S A,Carrington J C.Expression of Arabidopsis MIRNA genes.Plant Physiol,2005.(138):2145-2154.
    Xin Z, and Browse J.Cold comfort farm:the acclimation of plants to freezing temperatures.Plant Cell Environ.,2000.23:893-902.
    Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science,2005,307:932-935.
    Zarka DG, Vogel JT,Cook D.Thomashow MF.Cold induction of Arabidopsis CBF genes involves
    multiple ICE(Inducer of CBF Expression)promoter elements and a cold-regulatory circuit that is desensitized by low temperature.Plant Physiology,2003,133:910-918.
    Zhang BH,Pan XP,Wang QL,Cobb GP,Anderson TA.Identification and characteriaztion of new plant microRNAs using EST analysis.Cell Research,2005,15:336-360.
    Zhang JY,Xu YY,Huan Q,Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 2009,10:449.
    Zhou X,Wang G,Zhang W.UV-B responsive microRNA genes in Arabidopsis thaliana.Mol Syst Biol,2007,3:103.
    Zimmermann P,Hirsch-Hoffmann M,Hennig L,et al..GENEVESTIGATOR:Arabidopsis Microarray Database and Analysis Toolbox.Plant Physiol,2004,136:2621-2632.
    Zilberman D,Cao X,Jacobsen S E.ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone ethylation.Science,2003,299:716-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700