Tamoxifen通过下调miR-200家族表达促进子宫内膜癌细胞上皮间质转化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TAMOXIFEN(他莫昔芬,TAM)作为雌激素竞争拮抗剂能够与乳腺细胞的雌激素受体结合,对依赖雌激素生长的乳腺癌细胞起到抑制的作用,它已经被应用治疗雌激素受体阳性的乳腺癌患者。但是研究表明,TAM在子宫组织中可以表现出拟雌激素的作用,从而诱发组织中肿瘤的发生。例如,雌激素是诱发子宫内膜癌的一个关键因素,虽然TAM拟雌激素的作用对于绝经期的妇女可以有效的维持骨量,但是却能够提高子宫内膜癌的发病率,诱发子宫内膜发生增生、息肉、癌、肉瘤等多种病理改变。
     MicroRNA (miRNA)是由约22个核苷酸组成的非编码单链RNA,它们能够在转录后水平通过与靶mRNA 3'非编码翻译区碱基形成特异性互补配对,抑制靶基因的翻译或降低mRNA的稳定性,从而沉默或干扰靶基因的表达。近些年来miRNA被发现在胚胎的发生和肿瘤调控等复杂的生理过程中发挥了重要的作用。
     miR 200在调控上皮间质变(EMT)过程发挥了重要的作用,影响肿瘤的发生和转移。miR 200家族能够通过直接抑制靶基因ZEB1和ZEB2来上调E cadherin的表达,从而抑制了EMT的发生。在本研究中,我们探索了miR 200这个EMT过程中发挥重要作用的miRNA分子在TAM作用的子宫内膜癌细胞系中的作用及其相关调控机制。
     首先,我们发现子宫内膜癌细胞系ECC 1在TAM的作用下发生了EMT的转化。ECC 1细胞是一类雌激素依赖的子宫内膜癌细胞系。我们通过实时定量的方法验证,ECC 1在TAM的刺激下,EMT相关的标记分子的mRNA水平发生了明显的变化,出现了向间质细胞转化的趋势。划痕试验和细胞侵袭试验也验证细胞在TAM的作用下,细胞的迁移和侵袭能力有明显的增强。
     为探索miRNAs在TAM诱导子宫内膜癌细胞发生EMT过程中的作用,我们用miRNAs表达谱芯片检测了TAM刺激ECC 1细胞前后有明显差异的miRNAs。发现了4种miRNAs显著的上调,19种miRNAs显著的下调。其中miR 200b分子已被证实在乳腺癌等肿瘤中能够促进EMT,并在这些肿瘤的发生和转移过程中发挥了重要的作用。为阐明TAM诱导子宫内膜癌细胞发生EMT的分子机制,我们把miR 200分子作为后续实验的研究对象,深入研究了miR 200与ECC1发生EMT的关系及miR 200自身的调控机制。
     根据生物信息学软件TargetScan预测ZEB2为miR 200家族的靶基因,我们通过双荧光素酶报告实验证实miR 200b能够结合ZEB2的3' UTR。在ECC 1细胞中过表达miR 200b能够上调E cadherin和下调Snail和N cadherin等EMT重要基因的表达。miR 200b能够明显抑制TAM刺激的ECC 1细胞的侵袭能力。
     我们接下来阐明了TAM刺激ECC 1细胞调控miR 200b 200a 429启动子的相关机制。首先我们克隆出miR 200b 200a 429启动子的荧光素报告载体,利用生物信息学软件TESS对miR 200b 200a 429的启动子序列进行了分析,发现了启动子区域有c Myc, c Myb, sp1等重要转录因子的结合位点。我们进一步用实验表明c Myc能够特异性的结合miR 200b 200a 429的启动子并对其活性有明显的抑制作用。而且我们发现TAM能够上调ECC 1细胞中c Myc的表达。
     综上所述,我们确定了miR 200家族作为一个重要的因子在TAM诱发子宫内膜癌变中可能发挥了重要的作用。TAM通过上调c Myc来抑制miR 200的表达,miR 200表达的下降导致靶基因ZEB2的上调,转录因子ZEB2上调引起E cadherin的下调,使细胞间的粘附作用减弱,促进肿瘤细胞的转移和侵袭。本研究证实了TAM能够促进子宫内膜细胞发生EMT,阐明了miR 200在此过程中的作用机制,揭示了c Myc对miR 200的直接调控作用,明确了TAM c Myc miR 200靶基因这一信号传导通路,为深入理解TAM诱发子宫内膜癌的分子机制提供了新的线索。
TAM as an antagonist to estradiol (E2) in estrogen receptor (ER) positive breast tumors can prevent breast cancer in high risk women. However, it shows partial estrogen like actions in other target tissues. The partial estrogen like actions make beneficial effect on bones in postmenopausal women, but the effect of TAM on uterus is well known to raise the incidences of endometrial cancer. Endometrial carcinoma is the most common gynaecological malignancy in which estradiol has been identified as a classic aetiological factor. Endometrial pathologies associated with TAM use include hyperplasia, polyps, carcinomas and sarcomas.
     MicroRNAs (miRNAs) are small noncoding RNAs ( 22n)that regulate gene expression by repressing target messenger RNAs (mRNAs) via specific base pairing interactions in 3'untranslated regions (3' UTRs). miRNAs repress gene expression by interfering with mRNA stability or protein translation. Recently miRNAs have been identified in regulating complex physiological processes such as embryogenesis and oncogenesis. miR 200 family has been found to play a central role in the regulation of the epithelial to mesenchymal transition (EMT) process during cancer progression and metastasis. The increase of the miR 200 family intracellular levels inhibits EMT by up regulation of E cadherin expression through direct targeting of its ZEB1 and ZEB2 transcriptional repressors. In this study, we tested the hypothesis that miR 200 family , an important miRNA during EMT process ,is regulated by Tamoxifen in ECC 1 endometrial cancer cells.
     We aimed to determine whether ECC 1 cells treated by TAM that have undergone an EMT ,which is an oestrogen responsive endometrial carcinoma cell line . We investigated the effect of Tamoxifen on the expression of this epithelial marker by RT PCR analysis when the ECC 1 cells after treating with TAM. The ECC 1 cells acquired a mesenchymal mRNA expression profile. We used wound healing assay and transwell assay to confirm that TAM induces EMT process in ECC 1 cells.
     We performed miRNAs microarray to investigate miRNAs expression profiles in ECC 1 cells and ECC 1 cells treated with TAM. The study showed significantly increased expression of four miRNAs and down regulation of nineteen miRNAs in ECC 1 cells treated with TAM compared with ECC 1 cells. Interestingly, miR 200b plays an important role in EMT, so we investigated if miR 200 is regulated by TAM in ECC 1 cells .
     The transcription factor ZEB2 has been suggested to be target of miR 200 family, According to TargetScan 4.1 (http://www.targetscan.org). We could show that overexpression of miR 200b led to reduced expression of ZEB2, Snail and N cadherin genes in ECC 1 cells,and increased expression of E cadherin simultaneously. As predicted, miR 200b had the strongest inhibitory effect on ZEB2 expression, as shown by mRNA and protein levels.Overexpression of miR 200b resulted in ~80% reduction in luciferase activity in ECC 1 cells transfected with wild type construct of human ZEB2 3' UTR . Furthermore, we evaluated the role of miR 200 suppression of ZEB2 expression on invasion in ECC 1 cells.Overexpression of miR 200b resulted in a significant derease in the number of invading cells which were treated with TAM.
     We investigated whether TAM regulates miR 200b 200a 429 gene expression through a region encompassing 1574 to +120 bp relative to the putative TSS region previously reported to function as a promoter of miR 200b 200a 429. Using TESS (http://www.cbil.upenn.edu/cgi bin/tess/tess) to analyze the 110/+19 promoter region, we found some important transcription factor binding sites such as c Myc, c Myb and Sp1. Previous study showed that extensive reprogramming of the miRNAs transcriptome by Myc contributes to tumorigenesis.So we supposed that c Myc may play an important role in regulating miR 200b 200a 429 promoter in ECC 1 cells.We found that c Myc inhibited the activity of the promoter in ECC 1 cells, we also observed that TAM can increase expression of c Myc in ECC 1 cells.
     In conclusion, we have identified miR 200 as an important factor that TAM mediates their carcinogenic roles in the uterus, our findings also illustrate the loss of miR 200 in regulating tumor cell EMT process. We have identified miR 200 that are regulated by tamxifen that by increasing c Myc expression in the endometrial cancer cells. Our study showed that TAM can induce EMT in ECC 1 cells, which revealed that c Myc directly regulates miR 200 expression . It is clear that miR200 regulates ZEB1/ZEB2/E Cadherin through TAM c Myc pathway.And our results provide new insights into molecular mechanism of TAM induced endometrial carcinoma.
引文
1. Mani SA, Guo W, Liao MJ, et al. The epithelial mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4): 704 715.
    2. Huber MA, Kraut N, and Beug H. Molecular requirements for epithelial mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005, 17(5): 548 558.
    3. Acloque H, Adams MS, Fishwick K, et al. Epithelial mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest, 2009, 119(6): 1438 1449.
    4. Zavadil J, Bitzer M, Liang D, et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor beta. Proc Natl Acad Sci U S A, 2001, 98(12): 6686 6691.
    5. Thiery JP and Sleeman JP. Complex networks orchestrate epithelial mesenchymal transitions. Nat Rev Mol Cell Biol, 2006, 7(2): 131 142.
    6. Duband JL, Monier F, Delannet M, et al. Epithelium mesenchyme transition during neural crest development. Acta Anat (Basel), 1995, 154(1): 63 78.
    7. Nawshad A, LaGamba D, and Hay ED. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol, 2004, 49(9): 675 689.
    8. Thiery JP, Acloque H, Huang RY, et al. Epithelial mesenchymal transitions in development and disease. Cell, 2009, 139(5): 871 890.
    9. Guan F, Handa K, and Hakomori SI. Specific glycosphingolipidsmediate epithelial to mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci U S A, 2009, 106(18): 7461 7466.
    10. Perez Pinera P, Alcantara S, Dimitrov T, et al. Pleiotrophin disrupts calcium dependent homophilic cell cell adhesion and initiates an epithelial mesenchymal transition. Proc Natl Acad Sci U S A, 2006, 103(47): 17795 17800.
    11. Schmalhofer O, Brabletz S, and Brabletz T. E cadherin, beta catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev, 2009, 28(1 2): 151 166.
    12. van Es JH, Barker N, and Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev, 2003, 13(1): 28 33.
    13. Kuphal S and Bosserhoff AK. Influence of the cytoplasmic domain of E cadherin on endogenous N cadherin expression in malignant melanoma. Oncogene, 2006, 25(2): 248 259.
    14. Gravdal K, Halvorsen OJ, Haukaas SA, et al. A switch from E cadherin to N cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res, 2007, 13(23): 7003 7011.
    15. Vandewalle C, Van Roy F, and Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci, 2009, 66(5): 773 787.
    16. Peinado H, Olmeda D, and Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? NatRev Cancer, 2007, 7(6): 415 428.
    17. Peinado H, Portillo F, and Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol, 2004, 48(5 6): 365 375.
    18. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004, 117(7): 927 939.
    19. De Wever O, Pauwels P, De Craene B, et al. Molecular and pathological signatures of epithelial mesenchymal transitions at the cancer invasion front. Histochem Cell Biol, 2008, 130(3): 481 494.
    20. Miettinen PJ, Ebner R, Lopez AR, et al. TGF beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol, 1994, 127(6 Pt 2): 2021 2036.
    21. van Roy F and Berx G. The cell cell adhesion molecule E cadherin. Cell Mol Life Sci, 2008, 65(23): 3756 3788.
    22. Xu Z, Shen MX, Ma DZ, et al. TGF beta1 promoted epithelial to mesenchymal transformation and cell adhesion contribute to TGF beta1 enhanced cell migration in SMMC 7721 cells. Cell Res, 2003, 13(5): 343 350.
    23. Zhang YE. Non Smad pathways in TGF beta signaling. Cell Res, 2009, 19(1): 128 139.
    24. Reya T and Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035): 843 850.
    25. DiMeo TA, Anderson K, Phadke P, et al. A novel lung metastasis signature links Wnt signaling with cancer cell self renewal andepithelial mesenchymal transition in basal like breast cancer. Cancer Res, 2009, 69(13): 5364 5373.
    26. Munger JS, Huang X, Kawakatsu H, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 1999, 96(3): 319 328.
    27. Akita K, Okuno M, Enya M, et al. Impaired liver regeneration in mice by lipopolysaccharide via TNF alpha/kallikrein mediated activation of latent TGF beta. Gastroenterology, 2002, 123(1): 352 364.
    28. Shi Y and Massague J. Mechanisms of TGF beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685 700.
    29. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta inducible antagonist of TGF beta signalling. Nature, 1997, 389(6651): 631 635.
    30. Valcourt U, Kowanetz M, Niimi H, et al. TGF beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial mesenchymal cell transition. Mol Biol Cell, 2005, 16(4): 1987 2002.
    31. Derynck R and Zhang YE. Smad dependent and Smad independent pathways in TGF beta family signalling. Nature, 2003, 425(6958): 577 584.
    32. Martin GS. The hunting of the Src. Nat Rev Mol Cell Biol, 2001, 2(6): 467 475.
    33. Thomas SM and Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol, 1997, 13: 513 609.
    34. Zheng X, Resnick RJ, and Shalloway D. Apoptosis of estrogen receptor negative breast cancer and colon cancer cell lines byPTP alpha and src RNAi. Int J Cancer, 2008, 122(9): 1999 2007.
    35. Behrens J, Vakaet L, Friis R, et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E cadherin/beta catenin complex in cells transformed with a temperature sensitive v SRC gene. J Cell Biol, 1993, 120(3): 757 766.
    36. Lilien J and Balsamo J. The regulation of cadherin mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta catenin. Curr Opin Cell Biol, 2005, 17(5): 459 465.
    37. Matthews J and Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv, 2003, 3(5): 281 292.
    38. Tamrazi A, Carlson KE, Daniels JR, et al. Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol Endocrinol, 2002, 16(12): 2706 2719.
    39. Pike AC, Brzozowski AM, Hubbard RE, et al. Structure of the ligand binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J, 1999, 18(17): 4608 4618.
    40. Webb P, Nguyen P, and Kushner PJ. Differential SERM effects on corepressor binding dictate ERalpha activity in vivo. J Biol Chem, 2003, 278(9): 6912 6920.
    41. Lonard DM, Tsai SY, and O'Malley BW. Selective estrogen receptor modulators 4 hydroxytamoxifen and raloxifene impact the stability and function of SRC 1 and SRC 3 coactivator proteins. Mol Cell Biol, 2004, 24(1): 14 24.
    42. Persson I, Weiderpass E, Bergkvist L, et al. Risks of breast and endometrial cancer after estrogen and estrogen progestin replacement.Cancer Causes Control, 1999, 10(4): 253 260.
    43. Chen YJ, Li HY, Huang CH, et al. Oestrogen induced epithelial mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J Pathol, 222(3): 261 270.
    44. Zhang L, Li X, Zhao L, et al. Nongenomic effect of estrogen on the MAPK signaling pathway and calcium influx in endometrial carcinoma cells. J Cell Biochem, 2009, 106(4): 553 562.
    45. Planas Silva MD and Waltz PK. Estrogen promotes reversible epithelial to mesenchymal like transition and collective motility in MCF 7 breast cancer cells. J Steroid Biochem Mol Biol, 2007, 104(1 2): 11 21.
    46. Fisher B, Costantino JP, Redmond CK, et al. Endometrial cancer in tamoxifen treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B 14. J Natl Cancer Inst, 1994, 86(7): 527 537.
    47. Acconcia F, Barnes CJ, and Kumar R. Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells. Endocrinology, 2006, 147(3): 1203 1212.
    48. Maeda M, Shintani Y, Wheelock MJ, et al. Src activation is not necessary for transforming growth factor (TGF) beta mediated epithelial to mesenchymal transitions (EMT) in mammary epithelial cells. PP1 directly inhibits TGF beta receptors I and II. J Biol Chem, 2006, 281(1): 59 68.
    49. Smit MA, Geiger TR, Song JY, et al. A Twist Snail axis critical for TrkB induced epithelial mesenchymal transition like transformation,anoikis resistance, and metastasis. Mol Cell Biol, 2009, 29(13): 3722 3737.
    50. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281 297.
    51. Lee RC, Feinbaum RL, and Ambros V. The C. elegans heterochronic gene lin 4 encodes small RNAs with antisense complementarity to lin 14. Cell, 1993, 75(5): 843 854.
    52. Reinhart BJ, Slack FJ, Basson M, et al. The 21 nucleotide let 7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901 906.
    53. Lee Y, Jeon K, Lee JT, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002, 21(17): 4663 4670.
    54. Barik S. An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res, 2008, 36(16): 5232 5241.
    55. Bohnsack MT, Czaplinski K, and Gorlich D. Exportin 5 is a RanGTP dependent dsRNA binding protein that mediates nuclear export of pre miRNAs. RNA, 2004, 10(2): 185 191.
    56. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 2005, 6(5): 376 385.
    57. Gregory RI, Chendrimada TP, Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123(4): 631 640.
    58. Lewis BP, Shih IH, Jones Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell, 2003, 115(7): 787 798.
    59. Brennecke J, Stark A, Russell RB, et al. Principles of microRNA target recognition. PLoS Biol, 2005, 3(3): e85.
    60. Calin GA, Cimmino A, Fabbri M, et al. MiR 15a and miR 16 1 cluster functions in human leukemia. Proc Natl Acad Sci U S A, 2008, 105(13): 5166 5171.
    61. Tsang WP and Kwok TT. Let 7a microRNA suppresses therapeutics induced cancer cell death by targeting caspase 3. Apoptosis, 2008, 13(10): 1215 1222.
    62. Woltering JM and Durston AJ. MiR 10 represses HoxB1a and HoxB3a in zebrafish. PLoS One, 2008, 3(1): e1396.
    63. Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ specific miRNA cluster. J Biol Chem, 2007, 282(34): 25053 25066.
    64. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA 1 and microRNA 133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006, 38(2): 228 233.
    65. Jing Q, Huang S, Guth S, et al. Involvement of microRNA in AU rich element mediated mRNA instability. Cell, 2005, 120(5): 623 634.
    66. Takahashi Y, Satoh M, Minami Y, et al. Expression of miR 146a/b is associated with the Toll like receptor 4 signal in coronary artery disease: effect of renin angiotensin system blockade and statins on miRNA 146a/b and Toll like receptor 4 levels. Clin Sci (Lond), 119(9): 395 405.
    67. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down regulation of micro RNA genes miR15 and miR16 at 13q14 inchronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2002, 99(24): 15524 15529.
    68. Cimmino A, Calin GA, Fabbri M, et al. miR 15 and miR 16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 2005, 102(39): 13944 13949.
    69. Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A, 2004, 101(26): 9740 9744.
    70. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let 7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004, 64(11): 3753 3756.
    71. A polycistronic microRNA cluster, miR 17 92, is overexpressed in human lung cancers and enhances cell proliferation. 2005, 65(21): 9628 9632.
    72. O'Donnell KA, Wentzel EA, Zeller KI, et al. c Myc regulated microRNAs modulate E2F1 expression. Nature, 2005, 435(7043): 839 843.
    73. Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005, 65(16): 7065 7070.
    74. Wu W, Lin Z, Zhuang Z, et al. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev, 2009, 18(1): 50 55.
    75. Chung TK, Cheung TH, Huen NY, et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrialadenocarcinoma in Hong Kong women. Int J Cancer, 2009, 124(6): 1358 1365.
    76. Myatt SS, Wang J, Monteiro LJ, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res, 70(1): 367 377.
    77. Tsai WC, Hsu PW, Lai TC, et al. MicroRNA 122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 2009, 49(5): 1571 1582.
    78. Gregory PA, Bert AG, Paterson EL, et al. The miR 200 family and miR 205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008, 10(5): 593 601.
    79. Bracken CP, Gregory PA, Kolesnikoff N, et al. A double negative feedback loop between ZEB1 SIP1 and the microRNA 200 family regulates epithelial mesenchymal transition. Cancer Res, 2008, 68(19): 7846 7854.
    80. Lin CH, Jackson AL, Guo J, et al. Myc regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J, 2009, 28(20): 3157 3170.
    81. Park SM, Gaur AB, Lengyel E, et al. The miR 200 family determines the epithelial phenotype of cancer cells by targeting the E cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008, 22(7): 894 907.
    82. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med, 2005, 353(17): 1793 1801.
    83. Xi Y, Nakajima G, Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin fixedparaffin embedded samples. RNA, 2007, 13(10): 1668 1674.
    84. Szafranska AE, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene, 2007, 26(30): 4442 4452.
    85. Hutvagner G and Zamore PD. A microRNA in a multiple turnover RNAi enzyme complex. Science, 2002, 297(5589): 2056 2060.
    86. Hossain A, Kuo MT, and Saunders GF. Mir 17 5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol, 2006, 26(21): 8191 8201.
    87. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature, 2005, 438(7068): 685 689.
    88. Cullen BR. RNAi the natural way. Nat Genet, 2005, 37(11): 1163 1165.
    89. Scott GK, Mattie MD, Berger CE, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res, 2006, 66(3): 1277 1281.
    90. Meng F, Henson R, Lang M, et al. Involvement of human micro RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 2006, 130(7): 2113 2129.
    91. Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA 21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S TRAIL in human gliomas. Cancer Res, 2007, 67(19): 8994 9000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700