前列腺癌患者血清中相关miRNA的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌(Pca)为最常见的恶性肿瘤之一,也是迄今为止男性癌症中的第二大杀手,特别是在70以上人群中,居泌尿系统肿瘤的第三位,严重危害着男性的身体健康和生活质量。至今其发病原因尚不明确,但显然与家族遗传性有一定关系,并且在欧洲的发病率高于亚洲,提示与生活方式特别是饮食关系密切。但随着生活方式的西化和饮食结构的改变,亚洲国家的前列腺癌的发病率也在迅猛的增长。同时我国已逐步进入老龄化社会,老龄人口达2亿,前列腺癌的患者人群必将逐年增加。PSA检测和直肠指检时常用的前列腺癌早期筛查方法,但存在着诸多的盲区。建立一个或一系列稳定性好、特异性高的前列腺癌诊断指标,以达到病程监测的目的是很多研究者们研究的目标。
     miRNA是动植物细胞内自然产生的一类非编码小RNA。近年来发现,miRNA可在多数肿瘤中特异性地表达,如结肠癌、胰腺癌、慢性淋巴细胞白血病、肺癌、神经母细胞瘤、食管癌、前列腺癌等。而且,miRNA可释放于血液中,具有很好稳定性和特异性,可作为潜在的新型肿瘤标志物。因此,血液中与前列腺癌相关的miRNA,可能对于其早期诊断和病程监测具有重要的意义。
     在本研究中,我们首先根据文献选择了miR-141、miR-16、miR-103、miR-574、miR-34b、miR-485等6种前列腺癌相关miRNA,以荧光定量PCR方法检测它们在前列腺癌、前列腺增生患者和正常人血清中的含量,分析其与前列腺癌的相关性。结果显示,miRNA-103和miRNA-34b在前列腺癌患者、前列腺增生患者和PSA增高人群血清中的含量普遍较正常人增高,其中miR-34b升高最为显著,但在前列腺癌和前列腺增生患者中没有显著差异,只与PSA升高相关。说明miRNA-34b是一个与PSA相当的前列腺癌检测指标。
     继而,我们用miRNA基因芯片检测了前列腺增生和Gleason6、7、8、9期的前列腺癌患者及正常人的血清。结果显示,前列腺癌血清miRNA表达谱明显与肿瘤恶性程度相关,其中156个miRNA表达差异;miR-16和miR-141在前列腺增生患者与前列腺癌各期患者血清中均有降低;miR-34在前列腺增生患者与前列腺癌各期患者血清中表达增强;miR-200c、miR-583和miR-29a等特异性升高于Gleason8期前列腺癌患者。定量PCR检测进一步显示,miR-7a和miR-7f在前列腺癌和前列腺增生患者血清中普遍降低,并且其在前列腺癌患者血清中的表达水平低于正常人和前列腺增生患者。
     最后,我们合成了let-7fmiRNA,以建立检测血清let-7f的荧光定量PCR方法,为进一步应用其进行临床调查和检测奠定了基础。
Prostate cancer (Pca) is the most common malignant tumor, is so far the men's second biggest killer cancer, especially in people over 70, ranking third in the urinary system cancer, serious harm to the health of men And quality of life. Its causes are still unclear, but apparently associated with the familial history, i.e hereditary. And there is higher incidence in Europe than in Asia. That means it particularly associated with diet and lifestyle tips closely. However, with the westernization of lifestyle and dietary changes in the structure of Asian countries, the incidence of prostate cancer growth is also rapid. Meanwhile, China has gradually entered the aging society. There has been the aging population of 2 million. Prostate cancer patient population will increase year by year. PSA testing and digital rectal examination are the commonly used methods of early screening for prostate cancer, but there are many blind spots. So one objective of the study researchers is to establish one or a series of diagnostic marker of prostate cancer has good stability andhigh specificity, in order to achieve the purpose of monitoring the course of prostate cancer progress.
     miRNA is a class of non-coding small RNA naturally occurring in plant and animal cells. Discovered in recent years, miRNA can be specifically expressed in the majority of tumors, such as colon cancer, pancreatic cancer, chronic lymphocytic leukemia, lung cancer, neuroblastoma, esophageal cancer, prostate cancer, etc. Moreover, miRNA can be released into the blood, with good stability and specificity as potential new tumor markers. Therefore, the serum miRNA associated with prostate cancer may of great significance for its early diagnosis and disease monitoring.
     In this study, according to the literature we first selected 6 kinds of miRNAs including miR-141, miR-16, miR-103, miR-574, miR-34b, miR-485, as potential markers of prostate cancer. Then we used the fluorescent quantitative PCR to quantify them in prostate cancer, benign prostatic hyperplasia patients and normal human serumt, analyzing its correlation with prostate epecific antigen (PSA). The results showed that, miRNA-103 and miRNA-34b elevated in prostate cancer, benign prostatic hyperplasia patients and anyother patients with high serum PSA levels. In which miR-34b increased apparently, but no significant differences between prostate cancer and benign prostatic hyperplasia patients. That suggest that miRNA-34b is an equivalent marker for prostate cancer similar as PSA.
     Then, we used miRNA microarray screened miRNA expression in serum of benign prostate hyperplasia patients and prostate cancer patients with Gleason6, 7,8,9 comparing to normal serum.The results showed that serum miRNA expression profiles of prostate cancer were significantly associated with tumor malignancy. Of which 156 miRNAs expression difference; miR-16 and miR-141 decreased in both of patients with benign prostatic hyperplasia and prostate cancer; miR-34 increased in benign prostatic hyperplasia and prostate cancer patients; miR-200c, miR-583 and miR-29a specifically up-regulated in Gleason8 of prostate cancer patients. The RT-PCR show that both the miR-7a and miR-7f were down-regulated in prostate cancer patients, also a little bit lower than in benign prostatic hyperplasia patients.
     Finally, we synthesized a Let-7f miRNA to establish fluorescence quantitative PCR method to measure serum Let-7f. It will lay foundation to further investigate let-7f level in the clinical samples.
引文
[1]. DeVere, W.R., et al., MicroRNAs and their potential for translation in prostate cancer. Urol Oncol, 2009. 27(3): p. 307-11.
    [2]. Chan, D.W., et al., Prostate-specific antigen as a marker for prostatic cancer: a monoclonal and a polyclonal immunoassay compared. Clin Chem, 1987. 33(10): p. 1916-20。
    [3].Namiki, M., et al., Prostate Cancer Working Group report. Jpn J Clin Oncol, 2010. 40 Suppl 1: p. i70-75.
    [4]. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006. 12(8): p. 895-904
    [5]. Pulukuri, S.M., et al., Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene, 2007. 26(36): p. 5229-37.
    [6]. Oeserling J. Prostate specific antigen: a critical assessment of the most useful tumor maker for adenocarcinoma of the prostate. J Urol, 1991,145: 907923.
    [7]. Marchal C,Redondo M,Padilla M,et a1.Expression of prostate specific membrane antigen(PSMA)in prostatic adenocarcinoma and prostatic intraepithelial neoplasia [J].Histol Histopathol,2004.19(3):715—800.
    [8]. Liu, T., et al., Detection of prostate-specific membrane antigen on HUVECs in response to breast tumor-conditioned medium. Int J Oncol, 2011. 38(5): p. 1349-55.
    [9]. Jung K, Elgeti U, Lein M, et al . Ratio of free or complexed prostate specific antigen (PSA)to total PSA:which ratio improves differentiation betweenbenign prostatic hyperplasia and prostate cancer?Clin Chem,2000,46(1):55-62.
    [10].梁光萍,罗向东,杨宗城.人端粒酶蛋白催化亚单位基因转染对人胚胎成纤维细胞增殖的影响.中华烧伤杂志2005年2月第21卷第1期
    [11].王大光,杨晓枫,佟大伟,肖飞.前列腺特异膜抗原对前列腺疾病的临床诊断意义.《癌症进展》2010年3月第8卷第2期.
    [12]. James V.Tricoli,Mason Schoenfeldt and Barbara A.Conley.Detection of Prostate Cancer and Predicting Progression Current and Future Diagnostic Markers[J].Clinical Cancer Research,2004,10:3943—3953.
    [13]. Marchal C,Redondo M,Padilla M,et a1.Expression of prostate specific membrane antigen(PSMA)in prostatic adenocarcinoma and prostatic intraepithelial neoplasia [J].Histol Histopathol,2004.19(3) 715—800.
    [14]. Bieche, I., et al., Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res, 2000. 6(2): p. 452-9.
    [15]. Mezzasoma, L., et al., Expression and biological-clinical significance of hTR, hTERT and CKS2 in washing fluids of patients with bladder cancer. BMC Urol, 2010. 10: p. 17.
    [16]. Zhang W,Kapusta LR ,Slingerland JM ,et al . Telomerase activity in prostate cancer,prostatic intraepit helial neoplasia ,and benign prostatic epithelium. Cancer Res,1998,58(4):619-621.
    [17]. Schedich I J,Bennetts B H,Morris B J.Primary structure of a human glandular kallikrein geneEJ].DNA,1987,6:429—437.
    [18]. Liu, T., et al., Detection of prostate-specific membrane antigen on HUVECs in response to breast tumor-conditioned medium. Int J Oncol, 2011. 38(5): p. 1349-55.
    [19]. Jung K, Elgeti U, Lein M, et al . Ratio of free or complexed prostate specific antigen (PSA)to total PSA:which ratio improves differentiation between benign prostatic hyperplasia and prostate cancer?Clin Chem 2000,46(1):55-62.
    [20].王大光,杨晓枫,佟大伟,肖飞.前列腺特异膜抗原对前列腺疾病的临床诊断意义.《癌症进展》2010年3月第8卷第2期
    [21]. James V.Tricoli,Mason Schoenfeldt and Barbara A.Conley.Detection of Prostate Cancer and Predicting Progression Current and Future Diagnostic Markers[J].Clinical Cancer Research,2004,10:3943—3953.
    [22]. Bieche, I., et al., Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res, 2000. 6(2): p. 452-9.
    [23]. Mezzasoma, L., et al., Expression and biological-clinical significance of hTR, hTERT and CKS2 in washing fluids of patients with bladder cancer. BMC Urol, 2010. 10: p. 17.
    [24]. Zhang W,Kapusta LR ,Slingerland JM ,et al . Telomerase activity in prostate cancer,prostatic intraepit helial neoplasia ,and benign prostatic epithelium. Cancer Res,1998,58(4):619-621..
    [25]. Schedich I J,Bennetts B H,Morris B J.Primary structure of a human glandular kallikrein geneEJ].DNA,1987,6:429—437.
    [26]. Yousef, G.M. and E.P. Diamandis, The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev, 2001. 22(2): p. 184-204.
    [27]. Diamandis, E.P. and G.M. Yousef, Human tissue kallikreins: a family of new cancer biomarkers. Clin Chem, 2002. 48(8): p. 1198-205.
    [28]. Vaisanen, V., et al., Development of sensitive immunoassays for free andtotal human glandular kallikrein 2. Clin Chem, 2004. 50(9): p. 1607-17.
    [29]. Bussemakers, M.J., et al., DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res, 1999. 59(23): p. 5975-9.
    [30]. Tinzl, M., et al., DD3PCA3 RNA analysis in urine--a new perspective for detecting prostate cancer. Eur Urol, 2004. 46(2): p. 182-6; discussion 187.
    [31]. Porkka, K.P. and T. Visakorpi, Molecular mechanisms of prostate cancer. Eur Urol, 2004. 45(6): p. 683-91.
    [32]. Alaiya, A.A., et al., Proteomics-based signature for human benign prostate hyperplasia and prostate adenocarcinoma. Int J Oncol, 2011. 38(4): p. 1047-57.
    [33]. Abbott, B.P., et al., An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009. 460(7258): p. 990-4.
    [34]. Lee RC,Feinbanm RL,AmbrosV.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementaritv to lin-14.Cell 1993,75(5):843-854.1
    [35]. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulatesDevelopmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
    [36]. Lee Y,Kim M,Han J,et a1.MicroRNA genes are transcribed by RNA polymeraseⅡ.EMBO J.2004.23:40514060
    [37]. oshua—Tor L.The Argonautes.Cold Spring Harb Symp Quant Biol,2006,71:67-72.
    [38]. Morita S,Horii T,Kimure M,et a1.One Argonaute family member,Eif2e2(Ago2),is essential for development and appears not to be involved in DNA methylation.Genomies,2007,89:687—696.
    [39]. Zhang W, Dolan EE. The emerging role of microRNAs in drugresponses.Curr Opin Mol Ther. 2010;12(6):695-702.
    [40]. Huang, Q., et al., The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 2008. 10(2): p. 202-10.
    [41]. Rederstorff M, Hüttenhofer A. Small non-coding RNAs in disease development and host-pathogen interactions. Curr Opin Mol Ther. 2010;12(6):684-94.
    [42].严忠海,龙健儿国际遗传学杂志2007年lO月15日第3O卷第。
    [43]. Kumamoto, K., et al., Nutlin-3a activates p53 to both down-regulateinhibitor of growth 2 and up-regulate miR-34a, miR-34b, and miR-34c expression, and induce senescence. Cancer Res, 2008. 68(9): p. 3193-203.
    [44].Burk U,Schube~ J,Wellner U,et a1.A reciprocal repression between ZEB1 and membersof the miR-200 family promotes EMT and invasion in cancer ceils.EMBO Rep,2008,9:582-589
    [45]. Foss, K.M., et al., miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol, 2011. 6(3): p. 482-8.。
    [46]. Tavazoie, S.F., et al., Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008. 451(7175): p. 147-52.
    [47]. Chen, Y., et al., MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila), 2011. 4(1): p. 76-86.
    [48]. Shi, X.B., et al., An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A, 2007. 104(50): p. 19983-8.
    [49]. Schafer A,Jung M,Mollenkopf HJ,et a1.Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma.Int J Cancer,2009,12:
    [50]. Chen, Y., et al., MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res。
    [51]. Ambs, S., et al., Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res, 2008. 68(15): p. 6162-70.。
    [52]. Josson, S., et al., Radiation modulation of microRNA in prostate cancer cell lines. Prostate, 2008. 68(15): p. 1599-606.
    [53]. Masri, S., et al., The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat.2010,Epub。
    [54]. Gandellini, P., M. Folini, and N. Zaffaroni, Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol Med, 2009. 15(9): p. 381-90.。
    [55]. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH,Ferrando AA et al. 2005 MicroRNA expression profilesclassify human cancers. Nature 435 834–838.
    [56]. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL,Tammela TL & Visakorpi T 2007 MicroRNA expression profiling in prostate cancer. Cancer Research 67 6130–6135.
    [57]. Saramaki OR, Porkka KP, Vessella RL & Visakorpi T 2006 Genetic aberrations in prostate cancer by microarrayanalysis. International Journal of Cancer 119 1322–1329.
    [58]. Ozen, M., et al., Widespread deregulation of microRNA expression in human prostate cancer. Oncogene, 2008. 27(12): p. 1788-93.
    [59]. Sun R, Fu X, Li Y, Xie Y & Mao Y 2009a Global gene expression analysis reveals reduced abundance of putativemicroRNA targets in human prostate tumours. BMCGenomics 10 93.
    [60]. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61.
    [61]. Ambs, S., et al., Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res, 2008. 68(15): p. 6162-70.
    [62]. Cimmino, A., et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13944-9.
    [63]. Bonci, D., et al., The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med, 2008. 14(11): p. 1271-7.
    [64]. McDonnell, T.J., et al., Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res, 1992. 52(24): p. 6940-4.
    [65]. Colombel, M., et al., Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am J Pathol, 1993. 143(2): p. 390-400.
    [66]. Linsley, P.S., et al., Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol, 2007. 27(6): p. 2240-52.
    [67]. Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z & Zheng X 2008 miR-16 family induces cell cycle arrest by regulatingmultiple cell cycle genes. Nucleic Acids Research 36 5391–5404.
    [68]. Almeida M, Han L, Bellido T, Manolagas SC & Kousteni S 2005 Wnt proteins prevent apoptosis of both uncommittedosteoblast progenitors and differentiated osteoblasts bybeta-catenin-dependent and -independent signalingcascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. Journal of Biological Chemistry 28041342–41351.
    [69]. Yun MS, Kim SE, Jeon SH, Lee JS & Choi KY 2005 Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. Journal of Cell Science 118 313–322.
    [70]. Karaa, Z.S., et al., The VEGF IRESes are differentially susceptible to translation inhibition by miR-16. RNA, 2009. 15(2): p. 249-54
    [71]. Varambally, S., et al., Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 2008. 322(5908): p. 1695-9.
    [72]. Yu, Y., Yu J, Cao Q, Mehra R, Laxman B, Tomlins SA, Creighton CJ,Dhanasekaran SM, Shen R, Chen G, Morris DS et al. 2007ntegrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer.Cancer Cell 12 419–431.
    [73].Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, Mehra R, Laxman B, Cao X, Kleer CG et al. 2008Repression of E-cadherin by the polycomb group proteinEZH2 in cancer. Oncogene 27 7274–7284.
    [74]. Noonan, E.J., et al., miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene, 2009. 28(14): p. 1714-24.
    [75]. Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, Fritzsche FR, Niesporek S, Denkert C, Dietel M et al. 2008 Histone deacetylases 1, 2and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. British Journal of Cancer 98 604–610.
    [76]. Qian DZ, Wei YF, Wang X, Kato Y, Cheng L & Pili R 2007 Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate 671182–1193.
    [77]. Wedel SA, Sparatore A, Soldato PD, Al-Batran SE, Atmaca A, Juengel E, Hudak L, Jonas D & Blaheta RA 2008 New histone deacetylase inhibitors as potential thera-peutic tools for advanced prostate carcinoma. Journal of Cellular and Molecular Medicine 12 2457–2466.
    [78]. Bommer, G.T., et al., p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol, 2007. 17(15): p. 1298-307.
    [79]. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D et al. 2007 A microRNA component of the p53 tumour suppressor network. Nature 447 1130–1134.
    [80]. Chang TC, Wentzel EA, Kent OA, Ramachandran K,Mullendore M, Lee KH, Feldmann G, Yamakuchi M,Ferlito M, Lowenstein CJ et al. 2007 Transactivation of miR-34a by p53 broadly in?uences gene expression and promotes apoptosis. Molecular Cell 26 745–752. [81].Raver-Shapira, N., et al., Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell, 2007. 26(5): p. 731-43.
    [82].Tazawa, H., et al., Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15472-7.
    [83]. Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T & Ito M 2008 Effects of miR-34a on cell growth andchemoresistance in prostate cancer PC3 cells.Biochemical and Biophysical Research Communications 377 114–119.
    [84]. Yamakuchi, M., M. Ferlito and C.J. Lowenstein, miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A, 2008. 105(36): p. 13421-6.
    [85]. D Lodygin, V Tarasov, A Epanchintsev, and et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008; 7: .2591-1600.
    [86]. Corney DC, Hwang CI, Matoso A,and et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16(4):1119-28.
    [87]. Cardinaud B, Moreilhon C, Marcet B, and et al. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia? Leukemia. 2009;23(11):2174-7.
    [88]. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, Kim JW, Yustein JT, Lee LA & Dang CV 2005 Myc stimulates nuclearlyencoded mitochondrial genes andmitochondrial biogenesis. Molecular and Cellular Biology 25 6225–6234.
    [89]. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T,Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT et al.2009 c-Myc suppression of miR-23a/b enhances mito-chondrial glutaminase expression and glutamine meta-bolism. Nature 458 762–765.
    [90]. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S,Guenther SM, O’Leary JJ & Sheils O 2007 Comparison ofmiRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnology7 36.
    [91]. Lin SL, Chiang A, Chang D & Ying SY 2008 Loss ofmiR-146a function in hormone-refractory prostate cancer.RNA 14 417–424.
    [92]. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T & Narumiya S 1999 An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nature Medicine 5 221–225.
    [93]. Li T, Li D, Sha J, Sun P & Huang Y 2009 MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance andinvasion in prostate cancer cells. Biochemical and BiophysicalResearch Communications 383 280–285.
    [94]. Arbuzova A, Schmitz AA & Vergeres G 2002 Cross-talk unfolded: MARCKS proteins. Biochemical Journal 362 1–12.
    [95]. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J,Linsley PS & Krichevsky AM 2008 MicroRNA 21promotes glioma invasion by targeting matrix metallo-proteinase regulators. Molecular and Cellular Biology 28 5369–5380.
    [96]. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV,Ciafre SA & Farace MG 2007 miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1.Journal of Biological Chemistry 282 23716–23724.
    [97]. Mercatelli, N., et al., The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One, 2008. 3(12): p. e4029.
    [98]. Sun T, Wang Q, Balk S, Brown M, Lee GS & Kantoff P 2009b The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Research 69 3356–3363.
    [99]. Ambs, S., et al., Genomic profiling of microRNA and messenger RNAreveals deregulated microRNA expression in prostate cancer. Cancer Res, 2008. 68(15): p. 6162-70.
    [100]. Lee, Y.S., et al., Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem, 2005. 280(17): p.
    [101]. Johnson, S.M., et al., RAS is regulated by the let-7 microRNA family. Cell, 2005. 120(5): p. 635-47.
    [102]. Boyerinas, B., et al., The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer, 2010. 17(1): p. F19-36.
    [103]. Dong, Q., et al., MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One, 2010. 5(4): p. e10147.
    [104]. Wang, M., et al., Role of ribosomal protein RPS2 in controlling let-7a expression in human prostate cancer. Mol Cancer Res, 2011. 9(1): p. 36-50.
    [105]. Porkka, K.P., et al., MicroRNA expression profiling in prostate cancer. Cancer Res, 2007. 67(13): p. 6130-5.
    [106]. Vrba, L., et al., Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One, 2010. 5(1): p. e8697.
    [107]. Zhang, Z., et al., FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies. Carcinogenesis, 2009. 30(3): p. 487-93.
    [108]. Cheng, H., et al., Circulating Plasma MiR-141 Is a Novel Biomarker for Metastatic Colon Cancer and Predicts Poor Prognosis. PLoS One, 2011.6(3): p. e17745.
    [109]. Sorensen, K.D. and T.F. Orntoft, Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn, 2010. 10(1): p. 49-64.
    [110]. Mitchell, P.S., et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513-8.
    [111]. Yaman, A.F., et al., Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol, 2011.
    [112].Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK,Pogosova-Agadjanyan EL et al.. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 2008 Jul 29;105(30):10513-8.
    [113]. Xi Chen, Yi Ba, Lijia Ma, and et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research. 2008; 18:997-1006.
    [114]. Patrick S. Mitchell,Rachael K. Parkin,Evan M. Kroh and et al.Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30): 10513–10518.
    [115]. Jan C Brase, Daniela Wuttig, Ruprecht Kuner, Holger Sültmann. Serum microRNAs as non-invasive biomarkers for cancer. Molecular Cancer 2010, 9:306-315.
    [116]. Michael J. Lodes, Marcelo Caraballo, Dominic Suciu, and et al. Detection of Cancer with Serum miRNAs on an Oligonucleotide Microarray. PLoS One. 2009;4(7):e6229.
    [117]. H Hermeking. The miR-34 family in cancer and apoptosis. Cell Death &Differentiation. 2008; 17:193-199.
    [118]. D Lodygin, V Tarasov, A Epanchintsev, and et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008; 7: .2591-1600.
    [119]. Corney DC, Hwang CI, Matoso A,and et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16(4):1119-28. [134]. Cardinaud B, Moreilhon C, Marcet B, and et al. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia? Leukemia. 2009;23(11):2174-7.
    [120].Fumitaka Takeshita, Lubna Patrawala, Mitsuhiko Osaki, Ryou-u Takahashi, Yusuke Yamamoto, Nobuyoshi Kosaka, Masaki Kawamata, Kevin Kelnar, Andreas G. Bader, David Brown and Takahiro Ochiya. Systemic Delivery of Synthetic MicroRNA-16 Inhibits the Growth of Metastatic Prostate Tumors via Downregulation of Multiple Cell-cycle Genes. Molecular Therapy 2010; 18(1) : 181–187.
    [121].Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S and Stampfer MR, et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 2010, 5: e8697.
    [122].Martello G, Rosato A,Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S. A microRNA targeting dicer for metastasis control. Cell. 2010; 141(7): 1195-207.
    [123].Valeria Coppola, Ruggero De Maria and Désirée Bonci. MicroRNAs and prostate cancer. Endocrine-Related Cancer. 2010; 17 (1) F1 -17.
    [124]. Porkka, K.P., et al., MicroRNA expression profiling in prostate cancer. Cancer Res, 2007. 67(13): p. 6130-5.
    [125]. Dong, Q., et al., MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One, 2010. 5(4): p. e10147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700