基于生物信息学方法预测玉米抗纹枯病相关miRNA及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是广泛存在于真核生物细胞内的一大类内源性的、18-25 bp的小分子非编码RNA(non-coding RNA,ncRNA),在多细胞生物的基因表达调节和控制中扮演着十分重要的角色,并参与植物对外界环境压力胁迫的应答和病害防御。纹枯病真菌性病害是西南玉米主产区生产上的主要病害之一。研究miRNA在玉米纹枯病抗性中的角色与机制对于培育抗纹枯病玉米品种具有重要的理论与实践研究意义。本研究通过拟南芥、水稻等植物中发现的miRNA与玉米EST和GSS数据库进行比对搜索,分析玉米中可能存在的同源miRNA,并利用miRU软件在线预测靶基因。对纹枯病抗性自交系R15和感病自交系掖478在人工接种的条件下,采用半定量RT-PCR和实时荧光定量PCR(QPCR)方法,对获选miRNA进行抗纹枯病组织特异性表达验证,探讨了发掘与鉴定玉米抗真菌病害调控相关miRNA策略与方法,获得了6个抗病相关的候选miRNA。主要研究结果如下:
     1.从miRBase数据库下载拟南芥、水稻等植物中已发现的miRNA,利用生物信息学手段共获得了31条物种间保守的玉米同源miRNA序列,并利用miRU预测其靶基因。
     2.通过半定量RT-PCR的方法检测31条miRNA与miR168的前体在病菌胁迫下R15(耐)和掖478(感)中的表达情况,其中10条miRNA的前体在R15和掖478中均能获得RT—PCR阳性条带,并通过PCR产物的回收、克隆及测序证明序列的真实性;其中5条miRNA前体序列在两材料间的组织表达存在一定的差异,分别为miR168-1、miR168-2、miR165、miR173和miR845,推测5条miRNA可能与玉米纹枯病胁迫表达调控有关。
     3.通过改进的加尾-引物延伸实时荧光定量PCR法,对在前体水平上在两材料中有明显差异表达的miRNA(miR165、miR168b、miR168b~*、miR173)以及现已发现的与玉米抗病相关的miRNA(miR171和miR319),设计并合成相关引物进行成熟miRNA的PCR扩增和表达验证。对上述6条miRNA成熟分子的表达定量结果发现:接菌处理下玉米耐病材料R15和感病材料掖478中miR165、miR168b、miR168b~*和miR173有一定的上调表达趋势,而miR171和miR319则下调表达。并且全部6条miRNA分子在接菌12h后耐感材料间叶鞘组织中的表达量存在显著差异,叶片中虽存有类似差异,但差异较小。
     4.通过植物miRNA靶基因预测软件miRU分析结果表明,miR165、miR173、miR168b、miR168b~*、miR171和miR319等6个耐感材料组织差异表达的miRNA分子的靶基因多与植物的抗逆性有关。具体包括:病原菌毒素相关的多聚半乳糖醛酸酶(PG);植物细胞壁相关的纤维素合成酶、富含羟脯氨酸糖蛋白(HRGP);植物抗病反应信号传导相关的泛素酶、植物激素调控因子载体蛋白、丝氨酸/苏氨酸磷酸酶、丝氨酸/苏氨酸激酶、PP-2C类蛋白磷酸酶等;以及谷胱甘肽-S-转移酶、压迫诱导蛋白和创伤诱导蛋白等抗逆相关蛋白。
     5.综合本研究与本课题前期研究结果,推测miRNA在玉米抗纹枯病过程中可能存在以下调控机制:(1)当玉米受到真菌病原菌入侵时,miR168b~*,miR173可能通过上调表达参与降解病原菌分泌的毒素及酶类,从而抑制病原菌的侵害;(2)miR165,miR168,miR173通过上调表达从而负调控靶基因丝氨酸/苏氨酸磷酸酶,PP-2C类磷酸酶等蛋白磷酸酶下调表达;miR171和miR319则下调表达使丝氨酸/苏氨酸磷酸酶等蛋白激酶得到释放,从而共同打破蛋白激酶/蛋白磷酸酶的平衡,使得蛋白激酶大量表达,导致蛋白磷酸化级联放大,启动与上调防卫基因表达,抑制病原菌的侵害和生长。(3)miR171和miR319还可能通过下调表达,使谷胱甘肽-S-转移酶、压迫诱导蛋白和创伤诱导蛋白等抗逆相关蛋白大量表达,使植物对病原菌入侵进行抗病反应。
microRNAs(miRNAs) is widely present in eukaryotic cells of a large class of endogenous,18-25 bp length of the non-coding small RNA(non-coding RNA,ncRNA).It plays an important role in multicellular organisms to regulate and control gene expression,and work in response to the outside plant environmental stress and disease stress defense.Sheath blight and other fungal diseases of the hazard are one of the major diseases of the main maize growing areas southwest of the production.It is an important study of the meaning of theory and practice for sheath blight of maize resistance varieties to cultivate by researching miRNAs in the role of sheath blight resistance and mechanisms.Downloaded from the miRBase database of Arabidopsis,rice and other plants have been discovered miRNAs,miRNAs were predicted in the maize by bioinformatics homologous blast Methods,their target genes were predicted using miRU online prediction software.In conditions of artificial inoculation of inbred lines R15(R) and Ye 478(S),using semi-quantitative RT-PCR and real-time fluorescence quantitative PCR(QPCR) method,it is analysised the expression of miRNA under the conditions of resistant to sheath blight.Excavation and identification of anti-fungal diseases of maize related to miRNAs regulation and control strategies and methods,access to a number of maize candidate miRNAs.The main findings are as follows:
     1.Downloaded from the miRBase database of Arabidopsis,rice and other plants have been discovered miRNAs,a total of 31 miRNAs were predicted in the maize by bioinformatics homologous blast Methods,their target genes were predicted using miRU online prediction software.
     2.Through semi-quantitative RT-PCR method to detect the expression of precursor of 31 of miRNAs and the miR168 in R15(resistant disease) and Ye 478(susceptible) under bacteria stress:the 10 miRNA precursors can be obtained RT-PCR-positive bands in Ye 478 and R15,through the recovery of PCR products,cloning and sequencing to prove the authenticity of sequence;the expression of the 5 miRNAs precursor sequences(miR168-1, miR168-2,miR165,miR173 and miR845) is a certain difference between the two tissue materials,it may be related to maize self-expression and regulation under sheath blight bacteria stress.
     3.By improving the tail-primer-extension real-time fluorescence quantitative PCR method,Level of precursor materials in two significant differences in the expression of miRNA molecule(miR165,miR168b,miR168b(~*),miR173),and has been found associated with maize miRNAs resistance elements(miR171 and miR319),Designed and synthesized the relevant primers for PCR of mature miRNAs molecular amplification and expression of authentication.The expression of 6 mature miRNAs and quantitative:In disease resistant maize material R15 and susceptible materials Ye 478,miR165,miR168b,miR168b(~*) and miR173 were an Up-regulated expression,miR171 and miR319 were down-regulated expression.The expression of all 6 miRNAs was a significant difference in 12h tissue sheath treatment between esistant/susceptible materials,although the leaves have a similar difference, but the difference was smaller.
     4.Through the plant miRNA target gene prediction software miRU,it is found that 6 miRNAs' targets are related to the resistance of the plant:Multi-pathogen-associated polygalacturonase enzyme(PG);plant cell wall-related cellulose synthase,hydroxyproline rich glycoprotein(HRGP);plant disease resistance signal transduction related ubiquitin-enzymes,Auxin effiux carrier protein,serine/threonine phosphatase,serine/ threonine kinase,PP-2C-like protein phosphatase;and glutathione-S-transferase,Stress inducible protein and Wound-induced basic protein.
     5.According to a large number of our group research and the results of this study,that miRNAs in maize may control the following resistance mechanisms:(1) When the maize by fungal pathogens invasion,Up-regulated expression of miR168b~*,miR173 may be involved in the degradation of pathogenic bacteria secrete toxins and enzymes to inhibite against pathogens;(2) up-regulated expression of miR165,miR168,miR173 through negative regulation of target gene serine/threonine phosphatase,PP-2C-type phosphatase enzymes reduced the expression of protein phosphatase;miR171 and miR319 were down-regulated expression so that serine/threonine protein kinase phosphatase enzymes to be released, breaking the protein kinase/phosphatase balance,making a large number of protein kinase expression,leading to protein phosphorylation cascade,start with the increase of defense gene expression to inhibit the growth of pathogenic bacteria;(3) Down-regulated expression of miR171 and miR319 may be induce the expression of glutathione-S-transferase,Stress inducible protein and Wound-induced basic protein,so that the whole plant defense against pathogen invasion.
引文
[1]金龙国,王川,刘进元.植物MicroRNA[J].中国生物化学与分子生物学报,2006,22(8):609-614
    [2]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-844
    [3]Wightman B,Ha I,Ruvkun G.Rostrranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans[J].Cell,1993,75:855-862
    [4]Reinhart BJ,Slack FJ,Basson M,et al.The 21-mucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature,2000,403:901-906
    [5]Pasquinelli AE,Reinhart BJ,Slack F,et al.Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J].Nature,2000,408(6808):8687-8688
    [6]Lagos-Quintana M,Rauhut R,Lendeckel W,et al.Identification of Novel Genes Coding for Small Expressed RNAs.Science[J].2001,294(5543):853-858
    [7]Lau NC,Lim LP,Weinstein EG,et al.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J].Science,2001,294:858-862
    [8]Lai EC.microRNAs:Runts of the genome assert themselves[J].Curr Biol,2003,13:925-936
    [9]Reinhart B J,Weinstein E G,Rhoades M W,Bartel B,Bartel D P.MicroRNAs in plants[J].Genes Dev,2002,16(13):1616-1626
    [10]Llave C,Kasschau K D,Rector M A,Carrlngton J C.Endogenous and silencing-associated small RNAs in plants[J].Plant Cell,2002,14(7):1605-1619
    [11]Park W,Li J J,Song R T,Messing J,Chen X M.CARPEL FACTORY,a Dicer homolog and HEN1,a novel protein,act in microRNA metabolism in Arabidopsis thaliana[J].Curr Biol,2002,12(17):1484-1495
    [12]Palamik J F,Alen E,Wu X L,Sc honuner C,Sc hwab R,et al.Control of leaf morphogenesis by micreRNAs[J].Nature,2003,425(6955):257-263
    [13]Wang J F,Zhou H,Chen Y Q,Luo Q J,Qu L H.Identification of 20 microRNAs from Oryza sativa[J].Nucleic Acids Res,2004,32(5):1688-1695
    [14]Li Y,Li W,Jin YX.Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa[J].Acta Biochim Biophys Sin,2005,37:75-87
    [15]Zhang BH,Pan XP,Wang QL,et al.Identifacation and characterization of new plant microRNAs using EST analysis[J].Cell Res,2005,15:336-360
    [16]马中良,杨怀义,田波.真核生物中的微小RNA及其功能研究进展[J].遗传学报,2003,30(7): 693-696
    [17]龙茹,李玉花,徐启江.动植物miRNA的生物合成、作用机理及其功能[J].生命科学,2007,4(19):127-129
    [18]Provost P,Dishart D,Doucet J,et al.Ribonuclease activity and RNA binding of recombinant human Dicer[J].EMBO J,21(21):5864-5874
    [19]冯起平,李云峰,孟雁等.miRNA的研究进展[J].生命科学,2003,15(4):193-198
    [20]伍林涛,阮颖,彭琦,张源,刘春林.miRNA的研究进展[J].作物研究,2006(5):572-574
    [21]宋宝,宋现让,刘杰,魏玲.miRNAs及其靶基因的识别[J].基础医学与临床,2007,9(27):1063-1064
    [22]Papp I,Mete M.F,Aufsatz W,Daxinger L,Schauer S.E,Ray A,vander Winden,Matzke M and Matzke A.J.Evidence for nuclear processing of plant microRNA and short interfering RNA precursors[J].Plant Physiol,2003,132,1382-1390
    [23]李敏,郝琳林,刘松财,张永亮.siRNA和miRNA的研究进展[J].现代农业科技,2007(22):144-145
    [24]陈双,汤华.Dicer与siRNA和miRNA的作用机制[J].生命的化学,2007,27(4):310-312
    [25]Khvorova A,Reynolds A,and Jayasena S.D.Functional siRNAs and miRNAs exhibit strand bias[J].Cell,2003,115:209-216
    [26]Doench J.G,Peterson C and Sharp P.A.siRNAs can function as miRNAs[J].Genes Dev,2003,17:438-442
    [27]袁爱平,张福耀,毛雪,候爱斌,李润植.miRNAs与植物生长发育的调控[J].植物生理学通讯,2004,40(4):516-518
    [28]马彩云.微小RNA及其生物学功能[J].赤峰学院学报(自然科学版),2007(12):14-16
    [29]金晓玲,巩菊芳,张冬林,张日清.植物miRNA的功能及器官发生[J].湖南农业大学学报(自然科学版),2007,33(6):672-674
    [30]刘运华,刘灶长,罗利军.植物miRNA及其在植物发育进程和环境胁迫响应中的潜在功能[J].植物生理学通讯,2007,43(5):987-991
    [31]徐涛,张富春.植物miRNA抗胁迫机理研究进展[J].生物技术通报,2008,5:5-8
    [32]张云峰,季勤,杨清,邢宇俊.植物miRNA在植物生长发育中的作用研究[J].安徽农业科学,2007,35(31):9834-9836
    [33]Wang JW,Wang LJ,Mao YB,Cai WJ,Xue HW,Chen XY.Control of root cap formation by microRNA—targeted auxin response factors in Arabidopsis[J].Plant Cell,2005,17:2204-2216
    [34]Guo HS,Xie Q,Fei JF,Chua NH.MicroRNA directs mRNA cleavage of the transcription factor NACI to down regulate auxin signals for Arabidopsis lateral root development[J].Plant Cell,2006,17:1376-1386
    [35]Palatnik JF,Allen E,Wu X,Schommer C,Schwab R,Carrington JC,Weigel D.Control of leaf morphogenesis by miRNAs[J].Nature,2003,425:257-263
    [36]Chen X.MicroRNA biogenesis and function in plants[J].FEBS Lett,2005,579:5923-5931
    [37]Kim J,Jung JH,Reyes JL,Kim YS,Kim SY,Chung KS,Kim JA.Lee M,Lee Y,Kim VN et al.microRNA directed cleavage of ATH BI5 mRNA regulates vascular development in Arabidopsis inflorescence stems[J].Plant J,2005,42:84-94
    [38]Schmid M,Uhlenhaut NH,Godard F,Demar M,Bressan R,W eigelD,Lohmann JU.Dissection of floral induction pathways using global expression analysis[J].Development,2002,130:6001-6012
    [39]Schwab R,Palatnik JF,Riester M,Schommer C,Schmid M,Weigel D.Specific effects of microRNAs on the plant transcriptome[J].Dev Cell,2005,8:517-527
    [40]Aida M,Ishida T,Fukaki H,Fujisawa H,Tasaka M.Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J].Plant Cell,1997,9:841-857
    [41]Lauter N.Kampani A,Carlson S,Goebel M,Moose SP.microRNA172 down-regulates glossy15to promote vege-tative phase change in maize[J].Proc Natl A cad Sci USA,2005,102:9412-9417
    [42]Aukerman MJ,Sakai H.Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J].Plant Cell,2003,15:2730-2741
    [43]刘征,李润植.转录后基因沉默与植物抗病毒防卫机制[J].植物生理学通讯,2001,37(3):274-279
    [44]Sunkar R,Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J].Plant Cell,2004,16:2001-2019
    [45]Lu S,Sun YH,Shi R,Clark C,Li L,Chiang VL.Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J].Plant Cell,2002,17,2186-2203
    [46]Jones-Rhoades MW,Bartel DP.Computational identification of plant microRNAs and their targets,including a stress-induced miRNA[J].Mol Cell,2004,14:787-799
    [47]Kasschau KD,Xie Z,Allen E,Llave C,Chapman EJ,Krizan KA,Carrington JC.P1/HC-Pro,a viral suppressor of RNA silencing,interferes with Arabidopsis development and miRNA function[J].Dev Cell,2003,4:205-217
    [48]Ambros V,Lee R C,Lavanway A,et al.MicroRNAs and other tiny endogenous RNAs in C.elegans[J].Curr Biol,2003,13(10):807-818
    [49]Calin G A,Sevignani C,Dumitru C D,et al.Human microRNA genes are frequently located at fragile sites and genomic resions involved in cancers[J].Proc Natl Acad Sci USA,2004,101(9):2999-3004
    [50]徐卫,李建勇,陆凤翔.液相杂交检测B细胞淋巴瘤细胞系miR-28的表达[J].中国实验血液学杂志,2006,14(2):289-292
    [51]马卓娅,李欣,汤华,刘民.生物芯片检测细胞中microRNA的表达[J].生物技术通讯,2007,18(6):955-957
    [52]Krichevsky A M,King K S,Donahue C P,et al.A microRNA array reveals extensive regulation of microRNAs during brain development[J].RNA,2003,9(10):1274-1281
    [53]Thomson J M,Parker J,Perou C M,et al.A custom microarray platform for analysis of microRNA gene expression[J].Nat Methods,2004,1(1):47-53
    [54]潘振伟,吕延杰,初文峰.缺血性心律失常相关微小RNA在大鼠心脏的表达变化[J].哈尔滨医科大学学报,2007,41(2):95-97
    [55]马卓娅,汤华,李欣,刘民,吴海东,王晶.MicroRNA在6种肿瘤细胞中的表达差异[J].中国肿瘤生物治疗杂志,2007,14(3):254-256
    [56]Kloosterman W P,Wienholds E,Bruijn E,et al.In situ detection of mi RNAs in animal embryos using LNA-modified oligonucleotide probes[J].Nat Methods,2006,3(1):27-29
    [57]Fazi F,Rosa A,Fatica A,et al.A minicircuitry comprised of micreRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis[J].Cell,2005,123:819-831
    [58]Wang JF,Zhou H,Chen YQ,et al.Identification of 20 microRNAs from O.ryza sativa[J].Nucl Acids Res,2004,32(5):1688-1688
    [59]Sub MR,Lee Y,Kim JY,et al.Human embryonic stem cells express a unique set of microRNAs[J].Dev Biol,2004,270:488-488
    [60]Chen CF,Ridzon DA,Broomer AJ,et al.Real-time quantification of microRNAs by stemloop RT-PCR[J].Nucleic Acids Res,2005,33(20):179-180
    [61]张旗,何湘君,潘秀英.RNA加尾和引物延伸RT—PCR法实时定量检测microRNA[J].北京大学报(医学版)[J].2007,39(1):87-90
    [62]Grad Y,Aach J,Hayes G D,et al.Computational and experimental identification of C.elegans mieroRNAs[J].Cell,2003,11(5):1253-1263
    [63]Wang X,Zhang J,Li F,et al.MicroRNA identification:based on sequence and structure alignment[J].Bioinformatics,2005,21(8):3610-3614
    [64]Legendre M,Lambert A,Gautheret D.Profile-based detection of mieroRNA precursors in animal genomes[J].Bioinformaties,2005,21(7):841-845
    [65]郭强,项安玲等.利用EST及生物信息学方法挖掘马铃薯中miRNA及其靶基因[J].科学通报,2007,7,52(14):1657-1664
    [66]谢福亮.油菜microRNA和靶基因的预测与鉴定[D].中国优秀硕士学位论文全文数据库,2008,3:22-40
    [67]Altucia Y,Landgraf P,Lithwick G,et al.Clustering and cancer:a microRNA update[J].Hum.Mol .Genet,2005,14(2):180-180
    [68]Xie X,Lu J,Kulbokas E J,et al.Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparision of several mammals[J].Nature,2005,343(7031):338-345
    [69]张冬宁.生物信息学方法研究MicroRNA[D].上海大学硕士学位论文,2006,5:31-40
    [70]Lewis B P,Shih I H,Jones-Rhoades M W,et al.Prediction of mammalian microRNA targets[J].Cell,2003,115:787-789
    [71]A.Enright,B.John,U.Gaul,T.Tuschl,C.Sander,and D.Marks.Micro RNA targets in Drosophila[J].Genome Biology,2003,5(1):R1-3
    [72]Kiriakidou M,Nelson P T,Kouranov A,et al.A combined computational experimental approach predicts human microRNA targets[J].Genes Dev,2004,18:1165-1178
    [73]Zhang Y.miRU:all automated plant miRNA target prediction server[J].Nucleic Acids Res,2005,33:701-704.
    [74]叶茂,陈跃磊,明镇寰.miRNA(microRNA)家族的研究进展[J].生物化学与生物物理进展,2003,30(3):370-374
    [75]Lee Y,Jeon K,Lee J T,et al.MicroRNA maturation:stepwise processing and subcellular localization[J].Drug Discovery Today,2005,10(8):595-601
    [76]Schwarz DS,Hulvagner G,Du T,et al.Asymmetry in the assembly of the RNAi enzyme complex[J].Cell,2003,115:209
    [77]Khvorova A,Reynolds A,Jayasena SD.Funcional siRNAs and miRNAL exhibit strand bias[J].Cell,2003,115:209
    [78]Yang LI,Wei LI,and You-Xin JIN.Computational Identification of Novel Family Members of MicroRNA Genes in Arabidopsis thaliana and Oryza sativa[J].Acta Biochimica et Biophysica Sinica,2005,37(2):75-87
    [79]Zhixin Xie,Edwards Allen,Noah Fahlgren.Expression of Arabidopsis MIRNA Genes[J].Plant Physiology.2005,138:2145-2154
    [80]Herve Vaucheret,Allison C.Mallory and David P.Barte.AGO1 Homeostasis Entails Coexpression of MIR168 and AGO1 and Preferential Stabilization of miR168 by AGO1[J].Molecular Cell.2006,22:129-136
    [81]陈捷,唐朝荣,高增贵等.玉米纹枯病病菌侵染过程研究[J].沈阳农业大学学报,2000,31(5):503-506
    [82]胡晓丽,李德全.植物蛋白磷酸酶2C(PP2C)及其在信号转导中的作用[J].植物生理学通讯,2007,43(3):407-410
    [83]胡学博,宋凤鸣,郑重高等.植物中蛋白磷酸酶2C的结构与功能[J].细胞生物学杂志,2005,27:29-34
    [84]Schweighofer A,Hirt H,Meskiene I(2004).Plant PP2C phosphatases:emerging functions in stress signaling[J].Trends Plant Sci.2004,9:236-243
    [85]陶家风等.立枯丝核菌侵染玉米的研究[J].植物病理学报,1995,25(3):253-257
    [86]唐朝荣等.辽宁省玉米纹枯病病原学研究[J].植物病理学报,2000,30(4):319-326
    [87]Esquerre-Tugaye M.T,et al.Cell Surfaces in Plant-Microorganism Interactions:Ⅱ.Evidence for the Accumulation of Hydroxyproline-rich Glycoproteins in the Cell Wall of Diseased Plants as a Defense Mechanism[J].Plant Physiol,1979,64:320-326
    [88]Ruiz,Avila L.et al.Accumulation of cell wall hydroxyproline-rich glycoprotein mRNA is an early event in maize embryo cell differentiation[J].Proc.natl.Acad.Sci.USA,1992,89:2414-2418
    [89]冯洁等.枯萎菌诱导棉花细胞壁富含轻脯氨酸糖蛋白积累与枯萎病抗性间的关系[J].植物病理学报,1995,25(2):133-138
    [90]张志明.立枯丝核菌AG1-IA诱导玉米差异表达基因的研究[D].四川农业大学博士论文.2006,65-66
    [91]马永毅.立枯丝核菌AG1-IA诱导玉米基因差异表达分析及防卫酶活性检测[D].四川农业大学硕士论文.2007,43-46
    [92]Levine A,Tenhaken R,Dixon R,et al.H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J].Cell,1994,79:583-593
    [93]Zhang S,Du H,Klessing DF.Activation of the tobacco SIP kinase by Both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytopathora SPP[J].plant Cell,1998,10:435-450
    [94]Song WY,Wang GL,Chen LL,et al.A receptor knase-link protein encoded by the ricedisease resistance gene,Xa21[J].Science,270:1804-1806
    [95]杨民和,郑重.蛋白质可逆磷酸化在植物一病原菌互作中的作用[J].植物生理学讯,2001,37(2):173-176
    [96]胡廷章,周大祥,罗凯.植物谷胱甘肽转移酶的结构与功能及其基因表达[J].植物生理学通讯,2007,43(1):195-198
    [97]郭玉莲,陶波,郑铁军等.植物谷胱甘肽S—转移酶(GSTs)及除草剂解毒剂的诱导作用[J].东北农业大学学报,2008,39(7):136-139
    [98]Dudler R,Mauch A,et al.A pathogen-induced wheat gene encodes a protein homologous to glutathione-S-transferases[J].Mol Plant Microbe Interact,1991,4:14-18
    [99]郭启芳,邹琦,王玮.植物泛素/26S蛋白酶体通路的生理功能和分子生物学[J].植物生理学讯.2004,40(5):533-535,
    [100]刘春,张占琴.植物中泛素/蛋白酶体介导的蛋白质水解对细胞周期调控的研究[J].安徽农业科学,2008,36(15):6180-6181
    [101]白宝璋.植物抗性与脱落酸的关系[J].吉林农业大学译丛,1990,(1-2):10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700