毛白杨次生维管系统再生过程中microRNA的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材形成是一个复杂的生物学过程,是维管形成层生长和分化出次生维管组织的结果。植物的次生生长是一个高度有序的细胞分化、发育过程,由调控基因参与调控的许多功能基因协同表达保证这一过程的有序进行。microRNA(miRNA)是一类内源性、由非编码基因转录的单链小RNA,是真核生物基因表达中的一类负调控因子,主要在转录后水平上通过介导靶基因mRNA的切割或抑制翻译来调节植物基因的表达。为研究miRNAs在次生维管系统形成过程中的调控作用,本论文以毛白杨为研究对象,利用前期建立的剥皮维管再生实验系统为基础,通过μParaflo? microRNA微阵列芯片分析了毛白杨维管再生过程中miRNAs的差异表达谱。
     对毛白杨维管再生过程中第0、6、8、10、12、14、16、18、20和22天前后两次连续样品间miRNAs表达的差异分析,得到了差异表达的99个miRNA,其中大部分来自于miRNA159、miRNA164、miRNA166、miRNA319、miRNA396、miRNA168和miRNA399七个家族。聚类分析表明,在维管再生过程中表达模式发生明显变化的72个miRNA,大部分都是以上七个miRNA家族的成员,说明这七个miRNA家族在维管再生过程中起到重要的调控功能。它们所调控的靶基因多为转录因子家族的成员,可能参与调控毛白杨形成层发生、发育和分化以及木质部的发育。杨树剥皮后再生过程的第12、14、16、18、22天miRNA的表达变化较大,因此,这几个时期可能是次生维管形成的关键发育转换时期。定量PCR法验证了部分miRNA的表达。
     根据miRNA的靶基因家族与其在ATH1芯片中的表达情况,选择在次生维管再生后期特异表达且在木质部表达量高的MYB转录因子家族为研究对象。选取该家族中6个基因的7个拟南芥T-DNA插入突变系,在8小时短日照的条件下次生诱导培养,成功筛选到与野生型茎基部次生木质部产生很大变化的突变体,命名为CWT。CWT纯合突变植株的茎基部维管束间部位次生木质部的细胞数量减少、细胞壁明显增厚,该部位各层细胞的次生壁都有程度均一的增厚,周皮和髓位置的细胞壁没有加厚,不同于野生型植株在该位置向心方向的细胞壁增厚程度逐渐减小。将得到的纯合突变T2代种子继续种植,T3代具有稳定的遗传突变性状,因没有得到杂合体,突变产生的性状也没有发生分离。
     本研究通过miRNA芯片分析得到了可能参与调控次生维管形成过程的7个miRNA家族成员,初步确定了它们参与次生维管形成的关键发育时期。通过对miRNA159靶基因MYB转录因子家族中部分基因的拟南芥突变体的表型研究,证实MYB基因对维管次生生长有相关作用。为进一步分析miRNA和其靶基因的表达和功能,揭示两者的相互调控关系奠定基础,并为材性改良的基因工程育种提供理论依据。
Wood formation is a complex progress composing many biological events,occurs as a result of growth and differentiation of the vascular cambium. This secondary growth is a highly ordered developmental progress,which coordinates functional genes and different regulators. MicroRNAs (miRNAs), a group of small non-coding RNAs, are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. To investigate miRNAs involved in secondary vascular system (SVS) development, aμParaflo? MicroRNA microarray was used to analyze miRNAs expression profiles during regeneration of SVS in Chinese white poplar (Populus tomentosa).
     By comparing the expressional profiles of adjacent regeneration stages, 99 differentially expressed miRNAs were identified, most of them belong to the superfamilies of miRNA159, miRNA164, miRNA166, miRNA319, miRNA396, miRNA168 and miRNA399. Cluster analysis showed that the expression pattern of 76 miRNAs changed dramatically during SVS formation. Those miRNAs also belong to the seven miRNAs superfamilies mentioned above. Previous data proved that the targets of these miRNAs are transcriptional factors play important roles in wood formation. Thus, we can suggest that some members of these miRNA families might be the negative regulators of the SVS in poplar. And those expressed differentially on 12th, 14th, 16th and 22nd day of the regeneration might involve in the stage switches during SVS regeneration. The expression pattern of several miRNAs was confirmed by real time quantitive PCR.
     To characterize the function of miRNA target genes, 7 Arabidopsis T-DNA mutant lines of MYB were chosen to further analysis according to the previous data on their differentially expression during SVS in poplar. The mutants and wild type(WT) Arabidopsis were cultured under secondary growth inducing condition. An Arabidopsis mutant named CWT had obviously changes in interfascicular regions, where the secondary walls of homozygous cwt mutant were clearly thickened, the cell cavity and quantity of interfascicular fiber reduced relatively. Secondary walls of xylem thickened equally but gradually in WT lines.
     miRNAs profiling during SVS regeneration were performed by liquid miRNAs chip in this study. The results showed that several miRNAs might play important roles in cambium development and xylem differentiation. And mutant analysis of MYB, the target gene of miRNA159, showed the irregular cell wall thickness in certain region, which suggested this miRNA might regulate the formation of secondary wall. Our data might provide new insight into the transcriptional regulatory networks of wood formation, and select candidate genes may be responsible for the traits of wood property. To isolate further and characterize these key genes is needed to understand their biological function in wood formation in a molecular breeding point of view.
引文
[1] Larson P. The vascular cambium. Development and structure. Springer Series in Wood Science,1994,639-705
    [2] Mauseth J.Botany: an introduction to plant biology. Jones & Bartlett Publishers,2003
    [3] Catesson A M, Funada R, Robert B D,et al. Biochemical and cytochemical cell wall changes across the cambial zone. IAWA Journal,1994,15(1):91-101
    [4] Carlsbecker A, Helariutta Y. Phloem and xylem specification: pieces of the puzzle emerge. Current Opinion in Plant Biology,2005,8(5):512-517
    [5] Emery J, Floyd S, Alvarez J,et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology,2003,13(20):1768-1774
    [6] Carland F, Nelson T. Cotyledon vascular pattern2-mediated inositol (1, 4, 5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. The Plant Cell Online,2004,16(5):1263-1275
    [7] McHale N, Koning R. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. The Plant Cell Online,2004,16(7):1730-1740
    [8] Zhong R, Ye Z. Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant and Cell Physiology,2004,45(4):369-385
    [9] Prigge M, Otsuga D, Alonso J,et al. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell Online,2005,17(1):61-76
    [10] Juarez M, Kui J, Thomas J,et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature,2004,428(6978):84-88
    [11] Mallory A, Reinhart B, Jones-Rhoades M,et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5'region. The EMBO Journal,2004,23: 3356-3364
    [12] Kidner C, Martienssen R. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature,2004,428(6978):81-84
    [13] Fukuda H. Signals that control plant vascular cell differentiation. Nature Reviews Molecular Cell Biology,2004,5(5):379-391
    [14] Cano-Delgado A, Yin Y, Yu C,et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development,2004,131(21):5341-5351
    [15] Bonke M, Thitamadee S, M?h?nen A,et al. APL regulates vascular tissue identity in Arabidopsis. Nature,2003,426: 181-186
    [16] Baskin T. Anisotropic expansion of the plant cell wall. Annual review of cell and developmental biology,2005,21: 203-222
    [17] Rayle D, Cleland R. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiology,1992,99(4):1271-1274
    [18] Cosgrove D, Li Z. Role of Expansin in Cell Enlargement of Oat Coleoptiles (Analysis of Developmental Gradients and Photocontrol). Plant Physiology,1993,103(4):1321-1328
    [19] Brett C. Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. International review of cytology,2000,199:161-200
    [20] Kimura S, Laosinchai W, Itoh T,et al. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. The Plant Cell Online,1999,11(11):2075-2086
    [21] Richmond T, Somerville C. Integrative approaches to determining Csl function. Plant Molecular Biology,2001,47(1):131-143
    [22] Arioli T, Peng L, Betzner A,et al. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science,1998,279(5351):717-721
    [23] Fagard M, Desnos T, Desprez T,et al. PROCUSTE1 encodes a cellulose synthase required for normalcell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. The Plant Cell Online,2000,12(12):2409-2424
    [24] Taylor N, Scheible W, Cutler S,et al. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. The Plant Cell Online,1999,11(5):769-780
    [25] Gardiner J, Taylor N, Turner S. Control of cellulose synthase complex localization in developing xylem. The Plant Cell,2003,15(8):1740-1746
    [26] Turner S, Taylor N, Jones L. Mutations of the secondary cell wall. Plant Molecular Biology,2001,47(1):209-219
    [27] Allona I, Quinn M, Shoop E,et al. Analysis of xylem formation in pine by cDNA sequencing. Proceedings of the National Academy of Sciences,1998,95:9693-9698
    [28] Wu L, Joshi C, Chiang V. A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. The Plant Journal,2000,22(6):495-502
    [29] Mellerowicz E, Baucher M, Sundberg B,et al. Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology,2001,47(1):239-274
    [30] Peng L, Kawagoe Y, Hogan P,et al. Sitosterol-beta-glucoside as Primer for Cellulose Synthesis in Plants. Science,2002,295(5552):147-150
    [31] Zheng Z, Yang Z. The Rop GTPase switch turns on polar growth in pollen. Trends in Plant Science,2000,5(7):298-303
    [32] Kubitzki K. Phenylpropanoid metabolism in relation to land plant origin and diversification. Journal of Plant Physiology,1987,131(1-2):17-24
    [33] Murakami Y, Funada R, Sano Y,et al. The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Annals of Botany London. Oct.,1999,84(4):429-435
    [34] Boerjan W, Ralph J, Baucher M. Lignin Biosynthesis. Annu. Rev. Plant Biol.,2003,54: 519-546
    [35] Sederoff R, MacKay J, Ralph J,et al. Unexpected variation in lignin. Current Opinion in Plant Biology,1999,2(2):145-152
    [36] Kawamoto S, Ohnishi T, Kita H,et al. Expression profiling by iAFLP: A PCR-based method for genome-wide gene expression profiling. Genome Research,1999,9(12):1305-1312
    [37] Hu W, Kawaoka A, Tsai C,et al. Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (Populus tremuloides). Proceedings of the National Academy of Sciences of the United States of America,1998,95(9):5407-5413
    [38] Regan S, Bourquin V, Tuominen H,et al. Accurate and high resolution in situ hybridization analysis of gene expression in secondary stem tissues. Plant Journal,1999,19(3):363-369
    [39] Zhong R, Ripperger A, Ye Z H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiology,2000,123(1):59-69
    [40] Tamagnone L, Merida A, Stacey N,et al. Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell,1998,10(11):1801-1816
    [41] Kawaoka A, Kaothien P, Yoshida K,et al. Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. The Plant Journal,2000,22(4):289-301
    [42] Patzlaff A, McInnis S, Courtenay A,et al. Characterisation of a pine MYB that regulates lignification. The Plant Journal,2003,36(6):743-754
    [43] Patzlaff A, Newman L, Dubos C,et al. Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology,2003,53(4):597-608
    [44] Ye Z, Varner J. Induction of cysteine and serine proteases during xylogenesis in Zinnia elegans. Plant Molecular Biology,1996,30(6):1233-1246
    [45] Beers E, Freeman T. Proteinase Activity during Tracheary Element Differentiation in Zinnia Mesophyll Cultures. Plant Physiology,1997,113(3):873-880
    [46] Beers E, Woffenden B, Zhao C. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Molecular Biology,2000,44(3):399-415
    [47] Iliev I, Savidge R. Proteolytic activity in relation to seasonal cambial growth and xylogenesis in Pinusbanksiana. Phytochemistry,1999,50(6):953-960
    [48]王雅清,崔克明.杜仲次生木质部导管分子分化中的程序性死亡.植物学报,1998,40(12):1102-1107
    [49] Fukuda H. Xylogenesis: initiation, progression, and cell death. Annual Review of Plant Biology,1996,47(1):299-325
    [50] Groover A, DeWitt N, Heidel A,et al. Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma,1997,196(3):197-211
    [51] Groover A, Jones A. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiology,1999,119(2):375-384
    [52] Fukuda H, Komamine A. Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiology,1980,65(1):57-60
    [53] Milioni D, Sado P, Stacey N,et al. Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Molecular Biology,2001,47(1):221-238
    [54] Motose H, Fukuda H, Sugiyama M. Involvement of local intercellular communication in the differentiation of zinnia mesophyll cells into tracheary elements. Planta,2001,213(1):121-131
    [55] Demura T, Tashiro G, Horiguchi G,et al. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proceedings of the National Academy of Sciences,2002,99(24):15794-15799
    [56] Nakashima J, Mizuno T, Takabe K,et al. Direct visualization of lignifying secondary wall thickenings in Zinnia elegans cells in culture. Plant and Cell Physiology,1997,38(7):818-827
    [57] Potikha T, Collins C, Johnson D,et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiology,1999,119(3):849-858
    [58]武耀廷,张恒木,刘进元.棉纤维细胞发育过程中纤维素的生物合成.棉花学报,2003,15(003):174-179
    [59] Uggla C, Sundberg B. 3 Sampling of Cambial Region Tissues for High Resolution Analysis. Wood Formation in Trees: Cell and Molecular Biology Techniques,2002,215-228
    [60] Schrader J, Nilsson J, Mellerowicz E,et al. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. The Plant Cell Online,2004,16(9):2278-2292
    [61] Emmert-Buck M, Bonner R, Smith P,et al. Laser capture microdissection. Science,1996,274(5289):998-1001
    [62] Micke P, Ostman A, Lundeberg J,et al. Laser-assisted cell microdissection using the PALM system. Methods in Molecular Biology,2005,293: 151-166
    [63] Westphal G, Burgemeister R, Friedemann G,et al. Noncontact laser catapulting: a basic procedure for functional genomics and proteomics. Methods in enzymology,2002,356: 80-89
    [64] Willenberg H, Walters R, Bornstein S. Use of laser microdissection in complex tissue. Methods in enzymology,2002,356: 216-221
    [65] Fraser A, Marcotte E. A probabilistic view of gene function. Nature Genetics,2004,36(559-564
    [66] Levesque M, Benfey P. Systems biology. Current Biology,2004,14(5):179-180
    [67] Brandt S, Kloska S, Altmann T,et al. Using array hybridization to monitor gene expression at the single cell level. Journal of Experimental Botany,2002,53(379):2315-2323
    [68] Karrer E, Lincoln J, Hogenhout S,et al. In situ isolation of mRNA from individual plant cells: creation of cell-specific cDNA libraries. Proceedings of the National Academy of Sciences,1995,92(9):3814-3818
    [69] Nelson T, Tausta S, Gandotra N,et al. Laser microdissection of plant tissue: what you see is what you get. 2006.
    [70] Ivashikina N, Deeken R, Ache P,et al. Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant Journal,2003,36(6):931-935
    [71] Nakazono M, Qiu F, Borsuk L,et al. Laser-Capture Microdissection, a Tool for the Global Analysis ofGene Expression in Specific Plant Cell Types: Identification of Genes Expressed Differentially in Epidermal Cells or Vascular Tissues of Maize. The Plant Cell,2003,15(3):583-587
    [72] Murata J, Luca V. Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. The Plant Journal,2005,44(4):581-594
    [73]崔克明,王雅清.木质部细胞分化和脱分化的机理.西北植物学报,2000,20(006):907-921
    [74] Taylor G. Populus: arabidopsis for forestry. Do we need a model tree? . Annals of Botany,2002,90(6):681-689
    [75] Paux E, Tamasloukht M B, Ladouce N,et al. Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Molecular Biology,2004,55: 263-280
    [76] Paux E, Carocha V, Marques C,et al. Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytologist,2005,1: 1-11
    [77]王雅清, Mwance K,崔克明.杜仲次生木质部细胞分化和脱分化过程中ATPase的超微细胞化学定位.植物学报,2000,42(5):455-460
    [78]崔克明,李正理.杜仲剥皮再生对生长的影响.植物学报:英文版,2000,42(011):1115-1121
    [79]崔克明.植物细胞程序死亡的机理及其与发育的关系.植物学通报,2000,17(002):97-107
    [80] Stobbe H, Schmitt U, Eckstein D,et al. Developmental stages and fine structure of surface callus formed after debarking of living lime trees (Tilia sp.). Annals of Botany,2002,89(6):773-782
    [81]王敏杰.毛白杨维管系统再生过程中的基因表达分析.中国林业科学研究院博士论文,2005,1-117
    [82]陈军.多维色谱法分析毛白杨次生维管系统再生过程的蛋白质表达谱.北京:中国林业科学研究院博士学位论文,2006,1-197
    [83] Wang M, Qi X, Zhao S,et al. Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC Genomics,2009,10(1):215
    [84] Du J, Xie H-L, Zhang D-Q,et al. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics,2006,6(3):881-895
    [85] Ye Z. Vascular tissue differentiation and pattern formation in plants. Plant Biology,2002,53: 183-202
    [86] Lev-Yadun S. Induction of sclereid differentation in the pith of Arabidopsis thaliana(L.) Heynh. Journal of Experimental Botany,1994,45(12):1845-1849
    [87] Lev-Yadun S. Fibres and Fibre-sclereids in Wild-typeArabidopsis thaliana. Annals of Botany,1997,80(2):125-129
    [88] Ko J-H, Han K-H. Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occur during secondary growth. Plant Molecular Biology,2004,55: 433-453
    [89] Ko J-H, Han K-H, Park S,et al. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiology,2004,135: 1069-1083
    [90]卢孟柱.次生维管系统发育的分子基础研究.中国农业科技导报,2003,5(002):14-17
    [91] Sterky F, Regan S, Karlsson J,et al. Gene discovery in the wood-forming tissues of poplar: analysis of 5, 692 expressed sequence tags. Proceedings of the National Academy of Sciences of the United States of America,1998,95(22):13330-13335
    [92] Yang J, Kamden D P, Keathley D E,et al. Seasonal changes in gene expression at the sapwood–heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiology,2004,24: 461-474
    [93] Yang S, van Zyl L, No E,et al. Microarray analysis of genes preferentially expressed in differentiating xylem of loblolly pine (Pinus taeda). Plant Science,2004,166(5):1185-1195
    [94] Beers E, Zhao C. Arabidopsis as a model for investigating gene activity and function in vascular tissues. Molecular breeding of woody plants [Prog. Biotech. 18]. Elsevier Science: Amsterdam,2001,43-52
    [95] Moreau C, Aksenov N, Lorenzo M G,et al. A genomic approach to investigate developmental cell deathin woody tissues of Populus trees. Genome Biology,2005,6: R34
    [96] Déjardin A, LepléJ-C, Lesage-Descauses M-C,et al. Expressed Sequence Tags from Poplar Wood Tissues - A Comparative Analysis from Multiple Libraries. Plant Biology,2004,6(1): 55-64
    [97] Lorenz W W, Dean J F. SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiology,2002,22(5):301-310
    [98] Hertzberg M, Sievertzon M, Aspeborg H,et al. cDNA microarray analysis of small plant tissue samples using a cDNA tag target amplication protocol. The Plant Journal,2001,25(5):585-591
    [99] Whetten R, Sun Y H, Zhang Y,et al. Functional genomics and cell wall biosynthesis in loblolly pine. Plant Molecular Biology,2001,47(1):275-291
    [100] Costa P, Pionneau C, Bauw G,et al. Separation and characterization of needle and xylem maritime pine proteins. Electrophoresis,1999,20(4-5):1098-1108
    [101] vander Mijnsbrugge K, Meyermans H, Van M M,et al. Wood formation in poplar: Identification, characterization, and seasonal variation of xylem proteins. Planta,2000,210(4):589-598
    [102] Reinhart B, Slack F, Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403(6772):901-906
    [103] Willmann M, Poethig R. Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology,2007,10(5):503-511
    [104] Jones-Rhoades M, Bartel D, Bartel B. MicroRNAs and Their Regulatory Roles in Plants. Annual Review of Plant Biology,2006,57: 19-53
    [105] Chen X. microRNA biogenesis and function in plants. FEBS Letters,2005,579(26):5923-5931
    [106] Jones-Rhoades M, Bartel D, Bartel B. MicroRNAS and their regulatory roles in plants. Annual Review of Plant Biology,2006,57:19-53
    [107]王磊,范云六.植物微小RNA (microRNA)研究进展.中国农业科技导报,2007,9(3):18-23
    [108] Sunkar R, Zhu J. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. ThePlant Cell,2004,16(8):2001-2019
    [109] Mallory A, Bartel D, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell Online,2005,17(5):1360-1375
    [110] Wang J, Wang L, Mao Y,et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. The Plant Cell Online,2005,17(8):2204-2216
    [111] Guo H, Xie Q, Fei J,et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. The Plant Cell Online,2005,17(5):1376-1386
    [112] Mallory A, Dugas D, Bartel D,et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biology,2004,14(12):1035-1046
    [113] Bao N, Lye K, Barton M. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Developmental Cell,2004,7(5):653-662
    [114] Palatnik J, Allen E, Wu X,et al. Control of leaf morphogenesis by microRNAs. Nature,2003,425:257-263
    [115] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004,303(5666):2022-2025
    [116] Schwab R, Palatnik J, Riester M,et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell,2005,8(4):517-527
    [117] Aukerman M, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell,2003,15(11):2730
    [118] Sunkar R, Kapoor A, Zhu J. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell Online,2006,18(8):2051-2069
    [119] Valoczi A, Hornyik C, Varga N,et al. Sensitive and specific detection of microRNAs by northern blotanalysis using LNA-modified oligonucleotide probes. Nucleic Acids Research,2004,32(22):e175
    [120] Várallyayé, Burgyán J, Havelda Z. Detection of microRNAs by Northern blot analyses using LNA probes. Methods,2007,43(2):140-145
    [121] Schmittgen T D, Lee E J, Jiang J,et al. Real-time PCR quantification of precursor and mature microRNA. Methods,2008,44(1):31-38
    [122] Lao K, Xu N L, Yeung V,et al. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochemical and Biophysical Research Communications,2006,343(1):85-89
    [123] Chen C, Ridzon D, Broomer A,et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research,2005,33(20):e179
    [124] Lu D, Read R, Humphreys D,et al. PCR-based expression analysis and identification of microRNAs. Journal of RNAi and Gene Silencing,2005,1(1):44-49
    [125] Wienholds E, Kloosterman W, Miska E,et al. MicroRNA expression in zebrafish embryonic development. Science,2005,309(5732):310-312
    [126] Kloosterman W, Wienholds E, de Bruijn E,et al. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature methods,2006,3:27-29
    [127] Howell M D, Fahlgren N, Chapman E J,et al. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell,2007,19(3):926-942
    [128]马卓娅,李欣,汤华,等.生物芯片检测细胞中microRNA的表达.生物技术通讯,2007,18(6):955-957
    [129] Barakat A, Wall K, Diloretto S,et al. Conservation and divergence of microRNAs in Populus. BMC Genomics,2007,8(481):1471-2164
    [130] Karpinska B, Karlsson M, Srivastava M,et al. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology,2004,56(2):255-270
    [131] Jones-Rhoades M, Bartel D. Computational Identification of Plant MicroRNAs and Their Targets,Including a Stress-Induced miRNA. Molecular Cell,2004,14(6):787-799
    [132] Stewart C, Via L. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques,1993,14(5):748-749
    [133]林月惠,李寒冰.高度木质化材料的冰冻切片技术.植物学通报,2001,18(001):118-120
    [134] Mallory A C, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nature genetics,2006,38(Suppl 1):S31-S36
    [135] Tamagnone L, Merida A, Parr A,et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell,1998,10(2):135-154
    [136] Bonke M, Thitamadee S, Mahonen A P,et al. APL regulates vascular tissue identity in Arabidopsis. Nature,2003,426(6963):181-186
    [137] Zhong R, Richardson E A, Ye Z H. The MYB46 Transcription Factor Is a Direct Target of SND1 and Regulates Secondary Wall Biosynthesis in Arabidopsis. The Plant Cell,2007,19(9):2776-2792
    [138] Cominelli E, Sala T, Calvi D,et al. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. The Plant Journal,2008,53(1):53-64
    [139] Zhao C, Craig J C, Petzold H E,et al. The Xylem and Phloem Transcriptomes from Secondary Tissues of the Arabidopsis Root-Hypocotyl. Plant Physiology,2005,138(2):803-818
    [140] Zhong R, Lee C, Zhou J,et al. A Battery of Transcription Factors Involved in the Regulation of Secondary Cell Wall Biosynthesis in Arabidopsis. Plant Cell,2008,20(10):2763-2782
    [141] Zhou J, Lee C, Zhong R,et al. MYB58 and MYB63 Are Transcriptional Activators of the Lignin Biosynthetic Pathway during Secondary Cell Wall Formation in Arabidopsis. The Plant Cell Online,2009,21(1):248-266
    [142] Kim J, Jung J, Reyes J,et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. The Plant Journal,2005,42(1):84-94
    [143] Raman S, Greb T, Peaucelle A,et al. Interplay of miR164, CUP-SHAPED COTYLEDON genes andLATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. The Plant Journal,2008,55(1):65-76
    [144] Zhong R, Richardson E A, Ye Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta,2007,225(6):1603-1611
    [145] Mitsuda N, Iwase A, Yamamoto H,et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell,2007,19(1):270-280
    [146] Ko J, Yang S, Park A,et al. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. The Plant Journal,2007,50(6):1035-1048
    [147] Zhao C, Avci U, Grant E H,et al. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. The Plant Journal,2008,53(3):425-436
    [148] Fagard M, Boutet S, Morel J,et al. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proceedings of the National Academy of Sciences,2000,97(21):11650-11654
    [149] Vaucheret H, Vazquez F, Crete P,et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development,2004,18(10):1187-1197
    [150] Vazquez F, Vaucheret H, Rajagopalan R,et al. Endogenous trans-Acting siRNAs Regulate the Accumulation of Arabidopsis mRNAs. Molecular Cell,2004,16(1):69-79
    [151] Fujii H, Chiou T, Lin S,et al. A miRNA Involved in Phosphate-Starvation Response in Arabidopsis. Current Biology,2005,15(22):2038-2043
    [152] Chiou T, Aung K, Lin S,et al. Regulation of Phosphate Homeostasis by MicroRNA in Arabidopsis [W]. The Plant Cell Online,2006,18(2):412-421
    [153] Pant B D, Buhtz A, Kehr J,et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal,2008,53(5):731-738
    [154] Goicoechea M, Lacombe E, Legay S,et al. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal,2005,43(4):553-567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700