microRNA及自噬对心肌重构的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:心力衰竭是多种心血管疾病的终末期表现,是指在静脉回流正常的状态下,由于心脏的舒张和/或收缩功能发生障碍,导致心脏排血量不能满足组织器官代谢需要的一种综合症。尽管有很多心力衰竭的治疗药物和治疗方法治疗心力衰竭,但是该病的5年生存率仍然很低。各种心血管疾病首先引起的心肌代偿性肥厚,在长期的致病因素作用下,心脏功能逐渐失代偿,并逐渐发展为心力衰竭。在心力衰竭发病的过程受到多种编码及非编码基因的调控,但是至今很多基因及其调控作用机制尚不清楚。MicroRNA(miRNA)是一类细胞内有调控作用的小分子RNA,通常由21-23个核苷酸组成。近期研究表明,在多种心血管疾病中miRNA均参与心脏功能和心肌重塑的调控。我们研究组前期体外研究结果表明miR-221是一种促肥厚因子。在原代培养的新生大鼠心肌细胞中过表达miR-221诱导心肌肥厚。然而,miR-221是否能在体内条件下调控心肌重塑,以及miR-221调控心肌重塑的机制尚不清楚。因此,本研究通过构建miR-221心肌特异转基因小鼠,探讨miR-221在心肌重塑中的作用及机制,旨在为阐明心力衰竭的调控机制以及提供新的治疗靶点提供实验依据。
     方法与结果:为探讨miR-221在体内条件下是否调控心脏功能及心肌重塑,本研究成功构建了心肌特异miR-221转基因小鼠模型。4周龄miR-221转基因小鼠与同窝阴性组小鼠相比心脏体积显著增加,心脏/体重比值增大。实时定量PCR结果表明,4周龄的miR-221转基因小鼠与同窝阴性对照小鼠相比,心脏胚胎基因ANP及BNP的表达显著上调。Masson三色染色显示,miR-221转基因小鼠心肌纤维化程度增加。同时,TUNEL染色结果显示,miR-221转基因小鼠心肌细胞凋亡数目增加。M型超声心动图显示,miR-221转基因小鼠表现为左室后壁增厚、左室内径增大、射血分数降低及短轴缩短率降低。上述结果表明,心肌特异过表达miR-221诱导心室肌重构、心功能衰竭。
     为进一步研究miR-221诱导心力衰竭的分子机制,我们采用电子显微镜观察miR-221转基因小鼠心肌细胞超微结构的变化。结果显示,miR-221转基因小鼠心肌细胞内出现大量聚集的空泡状结构、受损线粒体数目增多。Westenn印迹检测结果证实,在miR-221转基因小鼠心肌组织以及miR-221过表达原代新生大鼠心肌细胞内自噬标记蛋白LC3脂化型LC3-Ⅱ水平均被下调,而p62蛋白则呈相反变化。将编码EGFP-LC3融合基因的质粒pEGFP-LC3与miR-221类似物共转染H9c2,采用激光共聚焦显微镜观察自噬体形成。镜下可观察到过表达miR-221的心肌细胞自噬体数目显著减少。上述结果共同表明,miR-221显著抑制心肌细胞自噬。
     mTOR是自噬调控的关键分子。我们发现,4周龄的miR-221转基因小鼠的心肌组织内mTOR通路被激活。同样,在miR-221过表达的新生大鼠心肌细胞内,mTOR呈现相同趋势。为进一步验证mTOR通路的激活与miR-221诱导的心肌肥厚及自噬抑制有关,我们使用mTOR通路的特异性抑制剂雷帕霉素处理新生大鼠心肌细胞。结果表明,使用雷帕霉素(20nM)预处理的心肌细胞可以显著阻断miR-221诱导的心肌肥厚及自噬抑制。因此提示,mTOR信号通路在miR-221诱导的心力衰竭及自噬抑制中起到关键性的调控作用。
     p27是miR-221的已知靶点,在miR-221转基因小鼠心肌组织内,我们观察到p27的表达被显著下调。采用siRNA靶向性干扰p27基因表达。与过表达miR-221类似,敲低p27后同样引发心肌细胞自噬抑制和mTOR通路的激活。p27可与细胞周期依赖性激酶2(cyclin dependent kinase2,CDK2)特异性结合并抑制其功能。采用CDK2的选择性抑制剂SU9516显著抑制miR-221诱导的自噬抑制和心肌肥厚。表明CDK2在miR-221诱导的心肌肥厚及自噬抑制中有关键的调控作用。
     结论:综上所述,miR-221可通过调控p27/CDK2/mTOR通路介导的自噬抑制诱发心力衰竭。我们的研究结果表明,miR-221是心肌细胞内自噬调控的关键因子,miR-221可能是心力衰竭治疗的潜在靶点。
     目的:各种心血管疾病如高血压、主动脉畸形等可以导致心脏的继发性肥厚。而肥厚型心肌病(Hypertrophic cardiomyopathy,HCM)是一种以左心室渐进性增厚为主要特点的原发性心肌病。其主要病理变化为左心室肥厚、心肌细胞排列紊乱和心肌间质纤维化。部分HCM患者有猝死和发展为心力衰竭的危险。因此,HCM对人类健康产生巨大威胁。HCM多是由于编码心肌细胞内肌小节蛋白的基因发生突变所引起的一种常染色体显性遗传病。尽管目前已经发现并确认十余种可以直接导致HCM的致病基因。但是,促进HCM患者心肌肥厚的分子机制并不清楚。越来越多的研究证实,微小RNA(microRNA,miRNA)参与并调控多种心血管疾病导致的心肌重塑过程。然而,miRNA在HCM中的作用并清楚。基于在其他心血管疾病中的研究结果,我们推测miRNA在HCM中也起到至关重要的调控作用。因此本研究采用miRNA微阵列筛选HCM中起主要变化的miRNA,并验证其在调控心肌细胞中的作用机制,旨在为揭示HCM发生发展过程的分子机制及治疗靶点提供实验依据。
     方法与结果:为了筛选出HCM患者心肌组织中起主要调控作用的miRNA,我们随机选取了7例HCM患者和5例健康供体组织。提取总RNA后采用miRNA微阵列筛选差异表达基因。结果显示,有3个miRNA在HCM患者心肌组织中表达上调(≥2fold, P<0.01),10个miRNA在HCM患者心肌组织中表达下调(≤0.5fold,P<0.01)。其中,miR-451是下降程度最多的miRNA之一。之后,我们随机选取了16例HCM患者心肌组织和8例健康供体心肌组织,使用实时定量PCR的方法验证miR-451的表达水平。与miRNA微阵列结果一致,miR-451的表达在HCM患者心肌组织中下调4倍以上(P<0.01)。
     为了验证miR-451对心肌肥厚的调控作用,我们用miR-451类似物或抑制物转染体外培养的原代新生大鼠心肌细胞。结果发现,过表达miR-451可以降低心肌细胞表面积,而用miR-451抑制物敲低内源性miR-451则导致心肌细胞表面积增大。双荧光素酶报告系统结果显示,TSC1是miR-451的直接靶点。在体外培养的原代新生大鼠心肌细胞及HeLa细胞中过表达miR-451可以显著抑制TSC1的表达水平。此外,在HCM心肌组织中TSC1处于高表达状态,这与HCM心肌组织中miR-451的下调相一致。
     因TSC1是一个已知的自噬激活蛋白,我们将编码EGFP-LC3荧光融合蛋白的质粒与miR-451类似物及其对照或miR-451抑制物及其对照共转染入HeLa细胞。在激光共聚焦显微镜下可见过表达miR-451组HeLa细胞自噬体数目减少,而抑制miR-451组自噬体数目增多。同时,Western印迹结果显示,转染了miR-451类似物的原代新生大鼠心肌细胞自噬标志蛋白LC3脂化型LC3-Ⅱ水平降低。相反,敲低内源性miR-451的原代新生大鼠心肌细胞自噬标志蛋白LC3脂化型LC3-Ⅱ水平升高。电镜下可见,HCM患者心肌细胞内自噬体数目增多。Western印迹结果显示,自噬标志蛋白LC3-Ⅱ、Beclin-1表达水平增高,而自噬抑制蛋白Bcl-2表达下调。这些结果提示,miR-451抑制心肌细胞自噬,并参与心肌重塑的调控过程。
     结论:综上所述,我们的研究表明miR-451可以调控心肌肥厚,并可以通过靶向抑制TSC1的表达抑制心肌细胞自噬。HCM患者心肌组织中miR-451显著下调,这可能参与HCM患者心肌重塑的病理过程和自噬调控。因此,miR-451可能是HCM治疗的新靶点。
     目的:修饰基因参与调控肥厚型心肌病(HCM)的临床表现。肌肉环指状(MuRF)蛋白是一类肌肉特异性的泛素E3连接酶。这类蛋白参与并调控心脏发育和功能。泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)是细胞内降解蛋白的途径之一。已有研究表明,HCM心脏组织中UPS功能被减弱,从而导致编码肌小节蛋白的突变基因降解减少,加快HCM疾病的进展。由MuRF1、MuRF2和MuRF3组成的环状指E3泛素连接酶亚家族特异性表达于横纹肌中。最近有研究表明,编码MuRF1的基因可以通过破坏心肌细胞蛋白质降解而导致HCM的发生,提示编码MuRF蛋白的基因发生变异可能参与HCM疾病的进展。因此,本研究通过高通量二代测序的方法,分别在HCM患者及健康对照中对MuRF亚家族三个成员,MuRF1, MuRF2和MuRF3的编码外显子进行深度测序,探讨MuRF1、MuRF2和MuRF3基因突变与HCM的关系。
     方法与结果:在本研究中,包含有594个无亲缘关系的HCM患者和307个健康对照。对MuRF亚家族中三个成员MuRF1、MuRF2和MuRF3的全部外显子进行二代测序。通过Sanger毛细管测序法确认筛选出的罕见变异。结果发现,在HCM患者中MuRF1和MuRF2基因罕见变异出现的频率较对照组升高(MuRF113/594[2.2%] versus1/307[0.3%],P=0.04;MuRF222/594[3.7%] versus2/307[0.7%];P=0.007)。携带有MuRF1和MuRF2罕见变异的HCM患者年龄较无变异的HCM患者年龄更小(P=0.04),并且有更高的最大左室壁厚度(P=0.006)。相反,HCM患者和健康对照中MuRF3罕见变异携带率无统计学差异。PolyPhe2SIFT生物信息学分析结果表明,21个MuRF1和MuRF2罕见变异有潜在的致病性。这些变异中有18个存在于22个HCM患者中(3.7%),而仅有3个存在于对照组中(1%,P=0.02)。在34个携带有MuRF1和MuRF2罕见变异的HCM患者中,有19个存在编码肌小节蛋白的基因发生突变(55.9%)。这些结果提示,MuRF1和MuRF2罕见变异与HCM的高外显率和临床表现的严重程度有关。
     结论:我们的研究结果证实MuRF1和MuRF2罕见变异与HCM的临床表现和严重程度有关。MuRF1和MuRF2罕见变异是HCM的修饰基因,UPS失调参与并加快HCM疾病的进展。
BACKGROUND
     Heart failure is the ultimate outcome of various cardiovascular diseases and is a leading cause of morbidity and mortality worldwide. Although drugs and other therapies have been developed for the management of heart failure, its five-year mortality rate remains high. The process of heart failure involves the dysregulation of many coding and non-coding genes; however, not all of these genes have been well characterized. MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that post-transcriptionally regulate the degradation and/or translation of their target genes. A large body of evidence indicates that miRNA-mediated gene regulation plays important roles in the control of cardiac homeostasis and pathological remodeling. We previously found that miR-221is significantly up-regulated in patients with hypertrophic cardiomyopathy and in a mouse model of cardiac hypertrophy and heart failure induced by pressure overload. The in vitro overexpression of miR-221alone is sufficient to increase the size of cardiomyocyte. However, the in vivo roles and molecular mechanisms of miR-221in the regulation of cardiac remodeling remain unclear.
     METHODS AND RESULTS
     To investigate whether miR-221regulates cardiac remodeling in vivo, we generated transgenic mice (Tg-miR-221) with cardiac-specific overexpression of miR-221. Compared with their non-transgenic (NTG) littermates, the hearts of the Tg-miR-221mice were significantly enlarged at4weeks of age. The heart-to-body weight ratios and the expression levels of ANP and BNP were significantly higher in Tg-miR-221mice than in their NTG littermates. Increased interstitial fibrosis and apoptosis were observed in the myocardia from Tg-miR-221mice by histological examination. Cardiac function was evaluated by using high-resolution echocardiography at4and16weeks of age. Compared with their age-matched NTG controls, Tg-miR-221mice exhibited a progressive thickening of the end-diastolic left ventricular posterior wall, an increased internal dimension of the left ventricle and left ventricular mass/body weight ratio, and decreased fractional shortening. Taken together, these results indicated that the overexpression of miR-221interrupted cardiac homeostasis and induced cardiac dysfunction and heart failure in mice.
     We further analyzed the ultrastructure of the myocardia by using transmission electron microscopy. In cardiomyocytes from Tg-miR-221mice, the mitochondria were disorganized and dispersed, with degraded cristae. In addition, a large amount of vacuoles with low electron densities were found in the cardiomyocytes from Tg-miR-221mice. The lipidated form of microtubule-associated protein1light chain3(LC3-Ⅱ), a marker of autophagy, were dramatically decreased in Tg-miR-221hearts. Consistently, the levels of sequestosome1(p62), an indicator of cytosolic protein clearance, were significantly increased. H9c2cells were forced to overexpress miR-221by the transient transfection of miR-221mimics. An autophagy-reporter plasmid encoding the EGFP-LC3recombinant protein was also co-transfected into H9c2cells, and the formation of autophagosomes was monitored based on the appearance of EGFP-LC3puncta. H9c2cells overexpressing miR-221had significantly lower levels of punctate EGFP-LC3compared with those of the control cells, indicating that autophagy was directly inhibited by miR-221.
     As the mammalian target of rapamycin (mTOR) is a well-known negative regulator of autophagy. We first measured the activity of mTOR by detecting the phosphorylation levels of mTOR and its substrates. At4weeks of age, the mTOR signaling pathway was significantly activated in'transgenic hearts compared with those in the NTG controls. Likewise, overexpression of miR-221in cultured neonatal rat cardiomyocytes resulted in the hyper-activation of mTOR. To assess whether the cardiac remodeling induced by miR-221overexpression is dependent on the inhibition of autophagy, we used rapamycin to inhibit the activity of mTOR and re-activate autophagy in cultured neonatal rat cardiomyocytes through the transfection of miR-221mimics. Rapamycin (20nM) significantly antagonized the hypertrophic effect of miR-221overexpression. Our results indicated that the inhibition of autophagy induced by miR-221overexpression was dependent on mTOR activation and was necessary for miR-221-induced pathogenic cardiac remodeling.
     Previously, we determined that p27was a direct target of miR-221in cardiomyocytes in vitro. Consistently, in the present study, we observed that the in vivo expression levels of p27were significantly down-regulated by the transgenic overexpression of miR-221in mouse heart. To determine whether the suppression of p27was responsible for the inhibition of autophagy induced by miR-221overexpression, we knocked down p27by using two different siRNAs in H9c2cells. As expected, p27knockdown showed similar effects of miR-221overexpression on autophagy and mTOR pathway. P27is a cyclin dependent kinase (CDK) inhibitor that interacts with CDK2to inhibit the cell cycle. We employed SU9516, a selective CDK2inhibitor, to suppress CDK2activity. In neonatal rat cardiomyocytes overexpressing miR-221, SU9516treatment significantly activated autophagy and attenuated cardiac hypertrophy. Thus, our results indicated that CDK2acted as a downstream mediator of p27and was required for the autophagy inhibition and pathological cardiac remodeling induced by miR-221overexpression in cardiomyocytes.
     CONCLUSIONS
     We found that miR-221promoted heart failure through mTOR-mediated autophagy inhibition. A previously unknown signaling pathway, the p27/CDK2/mTOR, governed the regulation of autophagy by miR-221in cardiomyocytes. Our study provides insights into the regulation of cardiomyocyte autophagy by miRNAs and implicates miR-221as a potential therapeutic target for heart failure.
     BACKGROUND
     Hypertrophic cardiomyopathy (HCM) is a common monogenetic disease of myocardium. HCM is characterized by unexplained cardiac hypertrophy, myocyte disarray and interstitial fibrosis, and is an important cause of sudden cardiac death and heart failure. This disease is mostly caused by mutations in genes encoding sarcomere proteins. However, the molecular mechanisms that drive the expression of HCM phenotypes are still poorly understood.
     MicroRNAs (miRs) are endogenous non-coding small RNAs that usually act as repressors of target genes by either inhibiting translation and/or by promoting degradation of the target mRNAs. Previous studies have shown that a number of microRNAs play critical roles in controlling cardiac homeostasis and pathological remodeling, and suggest that microRNAs may serve as potential therapeutic targets for cardiac disease.
     METHODS AND RESULTS
     To identify differently expressed microRNAs between NCM and HCM hearts, a microarray assay was performed on specimens from5NCM donors and7HCM patients. In total,3microRNAs were significantly up-regulated (>2fold, P<0.01), whereas10down-regulated (≤0.5fold, P<0.05) in hearts from HCM patients. Among these differently expressed microRNAs, miR-451ranked as the most down-regulated. To validate the under-expression of miR-451, a qRT-PCR assay was performed with expanded tissue samples (NCM, n=8and HCM, n=16). As expected, the expression of miR-451had decreased more than four fold P<0.01).
     To analyze the effects of miR-451on cardiac hypertrophy, we transfected primary neonatal rat cardiomyocytes with miR-451mimics or miR-451antagomir for48h after which the cell surface areas were analyzed. The surface area of miR-451overexpressed cardiomyocytes was significantly decreased. Conversely, knockdown of miR-451with antagomir increased surface area. The results from dual luciferase assays suggested that TSC1was a direct target of miR-451. Overexpression of miR-451in Primary neonatal rat cardiomyocytes and HeLa cells induced the down-regulation of TSC1expression. As the expression of miR-451was down-regulated in the hearts from HCM patients, we observed that the expression of TSC1was consistently up-regulated in HCM hearts.
     As TSC1positively regulates autophagy, we assessed whether autophagy was regulated by miR-451. An autophagy-reporter plasmid encoding EGFP-LC3recombinant protein was co-transfected with miR-451mimics or antagomir into HeLa cells. The formation of autophagosomes was observed based on the appearance of EGFP-LC3punctae. We found that HeLa cells transfected with miR-451mimics had a significantly lower number of EGFP-LC3punctae compared with those transfected with scrambled microRNAs. Conversely, the suppression of miR-451in HeLa cells resulted in larger amounts of EGFP-LC3punctae.
     We transfected miR-451mimics or miR-451antagomir into primary neonatal rat cardiomyocytes and HeLa cells. We observed that the LC3-Ⅱ in cells with miR-451overexpression was significantly decreased, whereas cells transfected with miR-451antagomir showed increased LC3-Ⅱ.
     Transmission electron microscopy showed that large quantities of early and late autophagic vacuoles with cytoplasmic remnants and mitochondria had accumulated in the cytosol of cardiomyocytes from HCM hearts. The levels of LC3-Ⅱ were dramatically increased in hearts from HCM patients. The expression of Beclin-1, a required protein in membrane nucleation during the early stage of autophagy, was also significantly up-regulated in HCM hearts, whereas Bcl-2protein, an inhibitor of autophagy, is down-regulated. Taken together, these results indicated that autophagy was increased in HCM hearts.
     CONCLUSIONS
     In summary, our study reveals that miR-451is one of the most down-regulated microRNAs in HCM and regulates cardiac hypertrophy and cardiac autophagy by targeting TSC1. The down-regulation of miR-451may contribute to the development of HCM and may be a potential therapeutic target for the disease.
     BACKGROUND
     Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM), but are still largely unknown. Muscle ring finger (MuRF) proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. MuRF1,2and3comprise a subfamily of the RING-finger E3ubiquitin ligases that are specifically expressed in striated muscles. Recently, mutations in the gene encoding MuRF1were reported to cause HCM by impairing protein degradation in cardiomyocytes, suggesting that genetic variants in genes encoding MuRF proteins might be involved in the pathogenesis of HCM. In present study, we evaluated the association between genetic variants of MuRF genes and HCM phenotype by screening all the three members of MuRF subfamily in a large HCM cohort and matched healthy controls.
     METHODS AND RESULTS
     In this study we screened all the three members of the MuRF family, MuRF1, MuRF2and MuRF3, in594unrelated HCM patients and307healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1and MuRF2in HCM patients was higher than that in control subjects (MuRFl13/594[2.2%] versus1/307[0.3%], P=0.04; MuRF222/594[3.7%] versus2/307[0.7%];P=0.007). Patients with rare variants in MuRF1or MuRF2were younger (P=0.04) and had greater maximum left ventricular wall thickness (P=0.006) than those without such variants. In contrast, rare variants in MuRF1were detected with equal frequency in patients and control individuals. PolyPhen2and SIFT analysis showed21rare variants of MuRFl and MuRF2were potentially pathogenic, including18variants among22(3.7%) HCM patients and3variants among3(1%) control individuals (P=0.02). Mutations in genes encoding sarcomere proteins were present in19(55.9%) of the34HCM patients with rare variants in MuRF1and MuRF2. These data strongly supported that rare variants in MuRF1and MuRF2are associated with higher penetrance and more severe clinical manifestations of HCM.
     CONCLUSIONS
     In conclusion, rare variants in the genes encoding MuRFl and MuRF2act as modifiers that increase the risk of development of HCM and lead to more severe disease phenotypes. Our study is consistent with the hypothesis that impaired ubiquitin-proteasome system contributes to the pathogenesis of HCM.
引文
1. Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction [J]. J Cell Mol Med,2012,16(9):2150-2160.
    2. Ucar A, Gupta S K, Fiedler J, Erikci E, Kardasinski M, Batkai S, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy [J]. Nat Commun,2012,3(1078.
    3. Ge Y, Pan S, Guan D, Yin H, Fan Y, Liu J, et al. MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways [J]. Biochim Biophys Acta, 2013,1832(1):1-10.
    4. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy [J]. Nat Med,2007,13(5):613-618.
    5. Callis T E, Pandya K, Seok H Y, Tang R H, Tatsuguchi M, Huang Z P, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice [J]. J Clin Invest,2009,119(9):2772-2786.
    6. Ono K, Kuwabara Y and Han J. MicroRNAs and cardiovascular diseases [J]. FEBS J, 2011,278(10):1619-1633.
    7. Wang C, Wang S, Zhao P, Wang X, Wang J, Wang Y, et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression [J]. J Cell Biochem,2012, 113(6):2040-2046.
    8. Levine B and Klionsky D J. Development by self-digestion:molecular mechanisms and biological functions of autophagy [J]. Dev Cell,2004,6(4):463-477.
    9. Mizushima N. Autophagy:process and function [J]. Genes Dev,2007,21(22): 2861-2873.
    10. Carloni S, Albertini M C, Galluzzi L, Buonocore G, Proietti F and Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia:Role of protein synthesis and autophagic pathways [J]. Exp Neurol, 2014,
    11. McLelland G L, Soubannier V, Chen C X, McBride H M and Fon E A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control [J]. EMBO J,2014,33(4):282-295.
    12. Zhang Y, Han X, Hu N, Huff A F, Gao F and Ren J. Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy [J]. J Mol Cell Cardiol,2013,
    13. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy [J]. Autophagy,2010,6(5): 600-606.
    14. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress [J]. Nat Med,2007,13(5):619-624.
    15. Zhu H, Tannous P, Johnstone J L, Kong Y, Shelton J M, Richardson J A, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress [J]. J Clin Invest, 2007,117(7):1782-1793.
    16. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy [J]. Circ Res,2007,100(6):914-922.
    17. Shih H, Lee B, Lee R J and Boyle A J. The aging heart and post-infarction left ventricular remodeling [J]. J Am Coll Cardiol,2011,57(1):9-17.
    18. Klionsky D J. Autophagy:from phenomenology to molecular understanding in less than a decade [J]. Nat Rev Mol Cell Biol,2007,8(11):931-937.
    19. Wang Z V, Rothermel B A and Hill J A. Autophagy in hypertensive heart disease [J]. J Biol Chem,2010,285(12):8509-8514.
    20. Klionsky D J, Abdalla F C, Abeliovich H, Abraham R T, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy [J]. Autophagy,2012,8(4):445-544.
    21. Alers S, Loffler A S, Wesselborg S and Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy:cross talk, shortcuts, and feedbacks [J]. Mol Cell Biol,2012, 32(1):2-11.
    22. Tannous P, Zhu H, Johnstone J L, Shelton J M, Rajasekaran N S, Benjamin I J, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy [J]. Proc Natl Acad Sci U S A,2008,105(28):9745-9750.
    23. Schlossarek S, Englmann D R, Sultan K R, Sauer M, Eschenhagen T and Carrier L. Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy [J]. Basic Res Cardiol,2012,107(1):235.
    24. Thomas R L, Roberts D J, Kubli D A, Lee Y, Quinsay M N, Owens J B, et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure [J]. Genes Dev,2013,27(12):1365-1377.
    25. Choi J C, Muchir A, Wu W, Iwata S, Homma S, Morrow J P, et al. Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation [J]. Sci Transl Med,2012,4(144):144ra102.
    26. Zhu H T P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA. Cardiac autophagy is a maladaptive response to hemodynamic stress [J]. J Clin Invest,2007,117(1782-1793.
    27. Jiang H, Martin V, Gomez-Manzano C, Johnson D G, Alonso M, White E, et al. The RB-E2F1 pathway regulates autophagy [J]. Cancer Res,2010,70(20):7882-7893.
    28. Hauck L, Harms C, An J, Rohne J, Gertz K, Dietz R, et al. Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kipl) stability in the heart [J]. Nat Med,2008,14(3):315-324.
    29. Tane S, Ikenishi A, Okayama H, Iwamoto N, Nakayama K I and Takeuchi T. CDK inhibitors, p21(Cip1) and p27(Kipl), participate in cell cycle exit of mammalian cardiomyocytes [J]. Biochem Biophys Res Commun,2014,443(3):1105-1109.
    30. Tamamori-Adachi M, Hayashida K, Nobori K, Omizu C, Yamada K, Sakamoto N, et al. Down-regulation of p27Kipl promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. Evidence for impaired Skp2-dependent degradation of p27 in terminal differentiation [J]. J Biol Chem, 2004,279(48):50429-50436.
    31. Ceylan-Isik A F, Dong M, Zhang Y, Dong F, Turdi S, Nair S, et al. Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction:role of autophagy [J]. Basic Res Cardiol, 2013,108(2):335.
    32. Zhang D, Contu R, Latronico M V, Zhang J, Rizzi R, Catalucci D, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice [J]. J Clin Invest,2010,120(8):2805-2816.
    33. Ramos F J, Chen S C, Garelick M G, Dai D F, Liao C Y, Schreiber K H, et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival [J]. Sci Transl Med,2012, 4(144):144ralO3.
    34. Petiot A, Ogier-Denis E, Blommaart E F, Meijer A J and Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells [J]. J Biol Chem,2000,275(2):992-998.
    35. Memmott R M and Dennis P A. Akt-dependent and-independent mechanisms of mTOR regulation in cancer [J]. Cell Signal,2009,21(5):656-664.
    36. Inoki K, Zhu T and Guan K L. TSC2 mediates cellular energy response to control cell growth and survival [J]. Cell,2003,115(5):577-590.
    37. Gwinn D M, Shackelford D B, Egan D F, Mihaylova M M, Mery A, Vasquez D S, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint [J]. Mol Cell,2008, 30(2):214-226.
    38. Burton P B, Yacoub M H and Barton P J. Cyclin-dependent kinase inhibitor expression in human heart failure. A comparison with fetal development [J]. Eur Heart J, 1999,20(8):604-611.
    39. Li J M and Brooks G. Downregulation of cyclin-dependent kinase inhibitors p21 and p27 in pressure-overload hypertrophy [J]. Am J Physiol,1997,273(3 Pt 2):H1358-1367.
    1. Ommen S R. Hypertrophic cardiomyopathy [J]. Curr Probl Cardiol,2011,36(11): 409-453.
    2. Marston S, Copeland O, Gehmlich K, Schlossarek S and Carrier L. How do MYBPC3 mutations cause hypertrophic cardiomyopathy? [J]. J Muscle Res Cell Motil,2012,33(1):75-80.
    3. Cilvik S N, Wang J I, Lavine K J, Uchida K, Castro A, Gierasch C M, et al. Fibroblast growth factor receptor 1 signaling in adult cardiomyocytes increases contractility and results in a hypertrophic cardiomyopathy [J]. PLoS One,2013,8(12): e82979.
    4. Schlossarek S, Englmann D R, Sultan K R, Sauer M, Eschenhagen T and Carrier L. Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy [J]. Basic Res Cardiol,2012,107(1):235.
    5. Schramm C, Fine D M, Edwards M A, Reeb A N and Krenz M. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling [J]. Am J Physiol Heart Circ Physiol,2012,302(1): H231-243.
    6. Liu X, Ye B, Miller S, Yuan H, Zhang H, Tian L, et al. Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy [J]. Mol Cell Biol,2012,32(21):4493-4504.
    7. Patel R, Nagueh S F, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen H A, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy [J]. Circulation,2001,104(3):317-324.
    8. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J and Otsu K. The role of autophagy in the heart [J]. Cell Death Differ,2009,16(1):31-38.
    9. Lavandero S, Troncoso R, Rothermel B A, Martinet W, Sadoshima J and Hill J A. Cardiovascular autophagy:Concepts, controversies and perspectives [J]. Autophagy, 2013,9(10):
    10. Zhang D, Contu R, Latronico M V, Zhang J, Rizzi R, Catalucci D, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice [J]. J Clin Invest,2010,120(8):2805-2816.
    11. Zhu H, Tannous P, Johnstone J L, Kong Y, Shelton J M, Richardson J A, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress [J]. J Clin Invest, 2007,117(7):1782-1793.
    12. Ucar A, Gupta S K, Fiedler J, Erikci E, Kardasinski M, Batkai S, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy [J]. Nat Commun,2012,3(1078.
    13. Callis T E, Pandya K, Seok H Y, Tang R H, Tatsuguchi M, Huang Z P, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice [J]. J Clin Invest,2009,119(9):2772-2786.
    14. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy [J]. Nat Med,2007,13(5):613-618.
    15. Ge Y, Pan S, Guan D, Yin H, Fan Y, Liu J, et al. MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways [J]. Biochim Biophys Acta,2013,1832(1):1-10.
    16. Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction [J]. J Cell Mol Med,2012,16(9): 2150-2160.
    17. Rao P K, Toyama Y, Chiang H R, Gupta S, Bauer M, Medvid R, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure [J]. Circ Res,2009,105(6):585-594.
    18. Wang C, Wang S, Zhao P, Wang X, Wang J, Wang Y, et al. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression [J]. J Cell Biochem,2012,113(6):2040-2046.
    19. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1 [J]. Cardiovasc Res,2012,94(2):379-390.
    20. Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu W T, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death [J]. J Mol Cell Cardiol,2010, 49(5):841-850.
    21. Malhowski A J, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B, et al. Smooth muscle protein-22-mediated deletion of Tscl results in cardiac hypertrophy that is mTORCl-mediated and reversed by rapamycin [J]. Hum Mol Genet,2011, 20(7):1290-1305.
    22. Schwartz R A, Fernandez G, Kotulska K and Jozwiak S. Tuberous sclerosis complex:advances in diagnosis, genetics, and management [J]. J Am Acad Dermatol, 2007,57(2):189-202.
    23. Bhaskar P T and Hay N. The two TORCs and Akt [J]. Dev Cell,2007,12(4): 487-502.
    24. Fidzianska A, Bilinska Z T, Walczak E, Witkowski A and Chojnowska L. Autophagy in transition from hypertrophic cardiomyopathy to heart failure [J]. J Electron Microsc (Tokyo),2010,59(2):181-183.
    25. Klionsky D J, Abdalla F C, Abeliovich H, Abraham R T, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy [J]. Autophagy,2012,8(4):445-544.
    26. Bhuiyan M S, Pattison J S, Osinska H, James J, Gulick J, McLendon P M, et al. Enhanced autophagy ameliorates cardiac proteinopathy [J]. J Clin Invest,2013, 123(12):5284-5297.
    27. Choi J C and Worman H J. Reactivation of autophagy ameliorates LMNA cardiomyopathy [J]. Autophagy,2013,9(1):110-111.
    28. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy [J]. Autophagy,2010, 6(5):600-606.
    29. Castets P and Ruegg M A. MTORC1 determines autophagy through ULK1 regulation in skeletal muscle [J]. Autophagy,2013,9(9):1435-1437.
    30. Papadakis M, Hadley G, Xilouri M, Hoyte L C, Nagel S, McMenamin M M, et al. Tsc1(hamartin) confers neuroprotection against ischemia by inducing autophagy [J]. Nat Med,2013,19(3):351-357.
    1. Gersh B J, Maron B J, Bonow R O, Dearani J A, Fifer M A, Link M S, et al.2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines [J]. Circulation,2011,124(24):2761-2796.
    2. Maron B J, Gardin J M, Flack J M, Gidding S S, Kurosaki T T and Bild D E. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults [J]. Circulation,1995,92(4):785-789.
    3. Maron B J and Maron M S. Hypertrophic cardiomyopathy [J]. Lancet,2013, 381(9862):242-255.
    4. Maron B J, Maron M S and Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years:clinical perspectives [J]. J Am Coll Cardiol,2012,60(8):705-715.
    5. Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China:a population-based echocardiographic analysis of 8080 adults [J]. Am J Med,2004,116(1):14-18.
    6. Seidman C E and Seidman J G. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy:a personal history [J]. Circ Res,2011,108(6):743-750.
    7. Maron B J. Hypertrophic cardiomyopathy. a systematic review [J]. JAMA,2002, 287(10):1308-1320.
    8. Page S P, Kounas S, Syrris P, Christiansen M, Frank-Hansen R, Andersen P S, et al. Cardiac myosin binding protein-C mutations in families with hypertrophic cardiomyopathy:disease expression in relation to age, gender, and long term outcome [J]. Circ Cardiovasc Genet,2012,5(2):156-166.
    9. Pagan J, Seto T, Pagano M and Cittadini A. Role of the ubiquitin proteasome system in the heart [J]. Circ Res,2013,112(7):1046-1058.
    10. Calise J and Powell S R. The ubiquitin proteasome system and myocardial ischemia [J]. Am J Physiol Heart Circ Physiol,2013,304(3):H337-349.
    11. Schlossarek S, Englmann D R, Sultan K R, Sauer M, Eschenhagen T and Carrier L. Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy [J]. Basic Res Cardiol,2012,107(1):235.
    12. Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T and Carrier L. Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice [J]. J Muscle Res Cell Motil,2012,33(1):5-15.
    13. Bahrudin U, Morikawa K, Takeuchi A, Kurata Y, Miake J, Mizuta E, et al. Impairment of ubiquitin-proteasome system by E334K cMyBPC modifies channel proteins, leading to electrophysiological dysfunction [J]. J Mol Biol,2011,413(4): 857-878.
    14. Glass D J. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy [J]. Nat Cell Biol,2003,5(2):87-90.
    15. Spencer J A, Eliazer S, Ilaria R L, Jr., Richardson J A and Olson E N. Regulation of microtubule dynamics and myogenic differentiation by MURF, a striated muscle RING-finger protein [J]. J Cell Biol,2000,150(4):771-784.
    16. Witt S H, Granzier H, Witt C C and Labeit S. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly:towards understanding MURF-dependent muscle ubiquitination [J]. J Mol Biol,2005,350(4):713-722.
    17. Kedar V, McDonough H, Arya R, Li H H, Rockman H A and Patterson C. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I [J].Proc Natl Acad Sci U S A,2004,101(52):18135-18140.
    18. Arya R, Kedar V, Hwang J R, McDonough H, Li H H, Taylor J, et al. Muscle ring finger protein-1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy [J]. J Cell Biol,2004,167(6):1147-1159.
    19. Fielitz J, Kim M S, Shelton J M, Latif S, Spencer J A, Glass D J, et al. Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3 [J]. J Clin Invest,2007,117(9):2486-2495.
    20. Fielitz J, van Rooij E, Spencer J A, Shelton J M, Latif S, van der Nagel R, et al. Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction [J]. Proc Natl Acad Sci U S A,2007,104(11):4377-4382.
    21. Willis M S, Ike C, Li L, Wang D Z, Glass D J and Patterson C. Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo [J]. Circ Res,2007, 100(4):456-459.
    22. Li H H, Du J, Fan Y N, Zhang M L, Liu D P, Li L, et al. The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho-c-Jun [J]. Am J Pathol,2011,178(3):1043-1058.
    23. Willis M S, Schisler J C, Li L, Rodriguez J E, Hilliard E G, Charles P C, et al. Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo [J]. Circ Res, 2009,105(1):80-88.
    24. Chen S N, Czernuszewicz G, Tan Y, Lombardi R, Jin J, Willerson J T, et al. Human molecular genetic and functional studies identify TRIM63, encoding Muscle RING Finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy [J]. Circ Res, 2012,111(7):907-919.
    25. Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations [J]. Nat Methods,2010, 7(4):248-249.
    26. Kumar P, Henikoff S and Ng P C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm [J]. Nat Protoc,2009,4(7): 1073-1081.
    27. Desmet F O, Hamroun D, Lalande M, Collod-Beroud G, Claustres M and Beroud C. Human Splicing Finder:an online bioinformatics tool to predict splicing signals [J]. Nucleic Acids Res,2009,37(9):e67.
    28. Yang J, Zhao Y, Hao P, Meng X, Dong M, Wang Y, et al. Impact of angiotensin I converting enzyme insertion/deletion polymorphisms on dilated cardiomyopathy and hypertrophic cardiomyopathy risk [J]. PLoS One,2013,8(5):e63309.
    29. Kolder I C, Michels M, Christiaans I, Ten Cate F J, Majoor-Krakauer D, Danser A H, et al. The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy [J]. Eur J Hum Genet, 2012,20(10):1071-1077.
    30. Friedrich F W, Bausero P, Sun Y, Treszl A, Kramer E, Juhr D, et al. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy [J]. Eur Heart J,2009,30(13):1648-1655.
    31. Predmore J M, Wang P, Davis F, Bartolone S, Westfall M V, Dyke D B, et al. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies [J]. Circulation,2010,121(8):997-1004.
    32. Vignier N, Schlossarek S, Fraysse B, Mearini G, Kramer E, Pointu H, et al. Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice [J]. Circ Res,2009, 105(3):239-248.
    33. Bahrudin U, Morisaki H, Morisaki T, Ninomiya H, Higaki K, Nanba E, et al. Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy [J]. J Mol Biol,2008,384(4):896-907.
    34. Willis M S, Wadosky K M, Rodriguez J E, Schisler J C, Lockyer P, Hilliard E G, et al. Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo [J]. Cell Biochem Funct,2014,32(1):39-50.
    35. Witt C C, Witt S H, Lerche S, Labeit D, Back W and Labeit S. Cooperative control of striated muscle mass and metabolism by MuRFl and MuRF2 [J]. EMBO J,2008,27(2): 350-360.
    36. Ploski R, Pollak A, Muller S, Franaszczyk M, Michalak E, Kosinska J, et al. Does p.Q247X in TRIM63 cause human hypertrophic cardiomyopathy? [J]. Circ Res,2014, 114(2):e2-5.
    1. Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y and Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders [J]. Lancet,2009,373(9682):2223-2233.
    2. Go A S, Mozaffarian D, Roger V L, Benjamin E J, Berry J D, Borden W B, et al. Heart disease and stroke statistics-2013 update:a report from the American Heart Association [J]. Circulation,2013,127(1):e6-e245.
    3. Lopaschuk G D and Jaswal J S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation [J]. J Cardiovasc Pharmacol,2010,56(2):130-140.
    4. Frey N and Olson E N. Cardiac hypertrophy:the good, the bad, and the ugly [J]. Annu Rev Physiol,2003,65(45-79.
    5. Dhalla N S, Dent M R, Tappia P S, Sethi R, Barta J and Goyal R K. Subcellular remodeling as a viable target for the treatment of congestive heart failure [J]. J Cardiovasc Pharmacol Ther,2006,11(1):31-45.
    6. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion:roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy [J]. Circ Res,2007,100(6):914-922.
    7. Zhu H, Tannous P, Johnstone J L, Kong Y, Shelton J M, Richardson J A, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress [J]. J Clin Invest,2007, 117(7):1782-1793.
    8. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress [J]. NatMed,2007,13(5):619-624.
    9. Rothermel B A and Hill J A. Myocyte autophagy in heart disease:friend or foe? [J]. Autophagy,2007,3(6):632-634.
    10. Tannous P, Zhu H, Nemchenko A, Berry J M, Johnstone J L, Shelton J M, et al. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy [J]. Circulation,2008,117(24):3070-3078.
    11. Tannous P, Zhu H, Johnstone J L, Shelton J M, Rajasekaran N S, Benjamin I J, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy [J]. Proc Natl Acad Sci U S A,2008,105(28):9745-9750.
    12. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure [J]. Nature, 2012,485(7397):251-255.
    13. Klionsky D J. Autophagy:from phenomenology to molecular understanding in less than a decade [J]. Nat Rev Mol Cell Biol,2007,8(11):931-937.
    14. Mizushima N, Levine B, Cuervo A M and Klionsky D J. Autophagy fights disease through cellular self-digestion [J]. Nature,2008,451(7182):1069-1075.
    15. Kroemer G and Levine B. Autophagic cell death:the story of a misnomer [J]. Nat Rev Mol Cell Biol,2008,9(12):1004-1010.
    16. Maiuri M C, Zalckvar E, Kimchi A and Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis [J]. Nat Rev Mol Cell Biol,2007,8(9): 741-752.
    17. He C and Klionsky D J. Regulation mechanisms and signaling pathways of autophagy [J]. Annu Rev Genet,2009,43(67-93.
    18. Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y. Dynamics and diversity in autophagy mechanisms:lessons from yeast [J]. Nat Rev Mol Cell Biol,2009,10(7): 458-467.
    19. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M and Ohsumi Y. Tor-mediated induction of autophagy via an Apgl protein kinase complex [J]. J Cell Biol, 2000,150(6):1507-1513.
    20. Kim J, Kundu M, Viollet B and Guan K L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulkl [J]. Nat Cell Biol,2011,13(2):132-141.
    21. Egan D F, Shackelford D B, Mihaylova M M, Gelino S, Kohnz R A, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy [J]. Science,2011,331(6016):456-461.
    22. Maiuri M C, Le Toumelin G, Criollo A, Rain J C, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1 [J]. EMBO J,2007,26(10):2527-2539.
    23. Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy [J]. Cell,2005,122(6): 927-939.
    24. Moscat J and Diaz-Meco M T. p62 at the crossroads of autophagy, apoptosis, and cancer [J]. Cell,2009,137(6):1001-1004.
    25. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death [J]. J Cell Biol,2005,171(4):603-614.
    26. Simonsen A, Birkeland H C, Gillooly D J, Mizushima N, Kuma A, Yoshimori T, et al. Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes [J]. J Cell Sci,2004,117(Pt 18):4239-4251.
    27. Chen Y and Klionsky D J. The regulation of autophagy-unanswered questions [J]. J Cell Sci,2011,124(Pt 2):161-170.
    28. Laplante M and Sabatini D M. mTOR signaling in growth control and disease [J]. Cell,2012,149(2):274-293.
    29. Dunlop E A and Tee A R. Mammalian target of rapamycin complex 1:signalling inputs, substrates and feedback mechanisms [J]. Cell Signal,2009,21(6):827-835.
    30. Oh W J and Jacinto E. mTOR complex 2 signaling and functions [J]. Cell Cycle, 2011,10(14):2305-2316.
    31. Petiot A, Ogier-Denis E, Blommaart E F, Meijer A J and Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells [J]. J Biol Chem,2000,275(2):992-998.
    32. Zhang D, Contu R, Latronico M V, Zhang J, Rizzi R, Catalucci D, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice [J]. J Clin Invest,2010,120(8):2805-2816.
    33. Meley D, Bauvy C, Houben-Weerts J H, Dubbelhuis P F, Helmond M T, Codogno P, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis [J]. J Biol Chem,2006,281(46):34870-34879.
    34. Inoki K, Zhu T and Guan K L. TSC2 mediates cellular energy response to control cell growth and survival [J]. Cell,2003,115(5):577-590.
    35. Shaw R J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth [J]. Acta Physiol (Oxf),2009,196(1):65-80.
    36. Steinberg G R and Kemp B E. AMPK in Health and Disease [J]. Physiol Rev,2009, 89(3):1025-1078.
    37. Mihaylova M M and Shaw R J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism [J]. Nat Cell Biol,2011,13(9):1016-1023.
    38. Troncoso R, Vicencio J M, Parra V, Nemchenko A, Kawashima Y, Del Campo A, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy [J]. Cardiovasc Res,2012,93(2):320-329.
    39. Criollo A, Maiuri M C, Tasdemir E, Vitale I, Fiebig A A, Andrews D, et al. Regulation of autophagy by the inositol trisphosphate receptor [J]. Cell Death Differ, 2007,14(5):1029-1039.
    40. Cardenas C, Miller R A, Smith I, Bui T, Molgo J, Muller M, et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria [J]. Cell,2010,142(2):270-283.
    41. Enns L C, Pettan-Brewer C and Ladiges W. Protein kinase A is a target for aging and the aging heart [J]. Aging (Albany NY),2010,2(4):238-243.
    42. Lee J Y, Koga H, Kawaguchi Y, Tang W, Wong E, Gao Y S, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy [J]. EMBO J,2010,29(5):969-980.
    43. Cao D J and Hill J A. Titrating autophagy in cardiac plasticity [J]. Autophagy,2011, 7(9):1078-1079.
    44. Cao D J, Wang Z V, Battiprolu P K, Jiang N, Morales C R, Kong Y, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy [J]. Proc Natl Acad Sci U S A,2011,108(10):4123-4128.
    45. Berry J M, Cao D J, Rothermel B A and Hill J A. Histone deacetylase inhibition in the treatment of heart disease [J]. Expert Opin Drug Saf,2008,7(1):53-67.
    46. Zhai P, Sciarretta S, Galeotti J, Volpe M and Sadoshima J. Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion [J]. Circ Res,2011, 109(5):502-511.
    47. Tasdemir E, Chiara Maiuri M, Morselli E, Criollo A, D'Amelio M, Djavaheri-Mergny M, et al. A dual role of p53 in the control of autophagy [J]. Autophagy,2008,4(6): 810-814.
    48. Feng Z, Hu W, de Stanchina E, Teresky A K, Jin S, Lowe S, et al. The regulation of AMPK betal, TSC2, and PTEN expression by p53:stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways [J]. Cancer Res,2007,67(7):3043-3053.
    49. Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison P R, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis [J]. Cell,2006,126(1): 121-134.
    50. Maiuri M C, Galluzzi L, Morselli E, Kepp O, Malik S A and Kroemer G. Autophagy regulation by p53 [J]. Curr Opin Cell Biol,2010,22(2):181-185.
    51. Tasdemir E, Maiuri M C, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53 [J]. Nat Cell Biol,2008,10(6):676-687.
    52. Imai S. The NAD World:a new systemic regulatory network for metabolism and aging--Sirtl, systemic NAD biosynthesis, and their importance [J]. Cell Biochem Biophys,2009,53(2):65-74.
    53. Hsu C P, Hariharan N, Alcendor R R, Oka S and Sadoshima J. Nicotinamide phosphoribosyltransferase regulates cell survival through autophagy in cardiomyocytes [J]. Autophagy,2009,5(8):1229-1231.
    54. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho R A and Sadoshima J. Deacetylation of FoxO by Sirtl Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes [J]. Circ Res,2010,107(12):1470-1482.
    55. Pillai V B, Sundaresan N R, Kim G, Gupta M, Rajamohan S B, Pillai J B, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway [J]. J Biol Chem,2010,285(5): 3133-3144.
    56. Bartel D P. MicroRNAs:target recognition and regulatory functions [J]. Cell,2009, 136(2):215-233.
    57. Ucar A, Gupta S K, Fiedler J, Erikci E, Kardasinski M, Batkai S, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy [J]. Nat Commun,2012,3(1078.
    58. Xiao J, Zhu X, He B, Zhang Y, Kang B, Wang Z, et al. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II [J]. J Biomed Sci,2011,18(35.
    59. Jian X, Xiao-yan Z, Bin H, Yu-feng Z, Bo K, Zhi-nong W, et al. MiR-204 regulate cardiomyocyte autophagy induced by hypoxia-reoxygenation through LC3-II [J].Int J Cardiol,2011,148(1):110-112.
    60. Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy [J]. Autophagy,2010,6(5): 600-606.
    61. Maron B J, Roberts W C, Arad M, Haas T S, Spirito P, Wright G B, et al. Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy [J]. JAMA,2009, 301(12):1253-1259.
    62. Kanamori H, Takemura G, Maruyama R, Goto K, Tsujimoto A, Ogino A, et al. Functional significance and morphological characterization of starvation-induced autophagy in the adult heart [J]. Am J Pathol,2009,174(5):1705-1714.
    63. Hariharan N, Ikeda Y, Hong C, Alcendor R R, Usui S, Gao S, et al. Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart [J]. PLoS One,2013,8(1):e51632.
    64. Valentim L, Laurence K M, Townsend P A, Carroll C J, Soond S, Scarabelli T M, et al. Urocortin inhibits Beclinl-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury [J]. J Mol Cell Cardiol,2006,40(6):846-852.
    65. Ma X, Liu H, Foyil S R, Godar R J, Weinheimer C J, Hill J A, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury [J]. Circulation,2012,125(25):3170-3181.
    66. Ma X, Liu H, Foyil S R, Godar R J, Weinheimer C J and Diwan A. Autophagy is impaired in cardiac ischemia-reperfusion injury [J]. Autophagy,2012,8(9):1394-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700