猪肌肉生长相关microRNA-1a,133b和206a的表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNAs(miRNAs)是一类长度18-22(nt)非编码的单链小分子RNA,在动物肌肉发育中起重要调控作用。它通过与靶mRNA的非编码区(3UTR)互补结合,导致mRNA降解或阻断mRNA翻译。研究表明miRNA调控大约30%甚至更多的基因表达,这为解释基因表达和某些相关疾病的分子机理开启了新的途径。在猪的生长发育中,miRNAs对肌肉生长发育中起重要调控作用。研究miRNA对猪骨骼肌生长发育的调控,有利于揭示产肉性状分子机制,为猪的遗传改良提供理论基础。
     本研究筛选肌肉特异性microRNAs:miR-1a、miR-133b和miR-206a,运用荧光定量方法对其时空表达进行研究。证实在本地猪种和外来猪种孕期母猪各组织的肌肉中miR-1a、miR-133b和miR-206a表达丰富。绘制了外来猪种和本地猪种猪种生长发育不同时期的背最长肌中miRNA的表达图谱。通过生物信息学方法预测三个肌肉特异性miRNAs的潜在靶基因。
     1.在通城猪不同的组织中,肌肉特异性的mir-1a在肌肉和心脏高丰度表达,在子宫、肾脏、脾脏中低丰度表达;mir-133b在肌肉和心脏都高丰度表达;mir-206a只在肌肉高丰度表达。在长白母猪不同组织中,miR-1a主要在舌肌,背最长肌和腿肌中表达;miR-133b主要是在心肌、舌肌、背最长肌和腿肌中高表达;而miR-206a在舌肌、背最长肌和腿肌中表达丰富。
     2.在不同时期的背最长肌中,通城猪从胚胎期E33到出生后的D120天miR-1a都有不同程度的表达,出生前低于出生后的表达量。整个发育阶段呈现出四个阶段的差异表达:出生前的胚胎期70天之前表达为低丰度且较为均一,胚胎期E70至E100,出生前E105至出生后的D30时期,出生后D40至D120时期呈上升趋势。长白猪的miR-1则出现了较为明显的两个波段性的表达(E33-E80E90-D30)。
     3.通城和长白猪的miR-133b出生前胚胎期的骨骼肌中表达丰度都较低,出生后两猪种背最长肌中mir-133b的表达量持续高丰度。出生前的高表达时期通城猪出现在E85天,长白出现在E80天,两猪种都在一个较为相近的时间段。
     4通城和长白猪整个发育期的背最长肌中都检测出miR-206a的表达,在出生前胚胎期E33都有较高表达,尤其是长白猪的表达量很高。两个猪种的低丰度表达时期分别出现在了E40和E65,而通城猪的高表达时期在出生前的E100,长白出现在了出生后的D9,两猪种都在D100天的时候出现了一个高丰度的表达时期。
     通过PicTar和TargetScan预测发现miR-1调控肌动蛋白结合蛋白1C(CORO1C)间隙连接蛋白(connexin 43) (GJA1), PFTAIRE蛋白激酶1 (PFTK1); miR-133b调控脂肪瘤高迁移率蛋白IC融合蛋白(LHFP); miR-206a调控端锚聚合酶(TNKS2)。
     以上结果表明,肌肉特异性miR-1a、miR-133b、miR-206a对本地猪种(通城猪)和外来猪种(长白猪)的肌肉发育都有着一定的调控作用。
MicroRNA is a kind of 18-22nt non-coding single RNA, which plays an important role in regulation of muscle development in animal. Mature microRNA leads to degradation or blocking translation of mRNA through bind to 3 UTR (Untranslated Regions). MicroRNAs regulate expression more than 30% of gene. MiRNA opens a new way for gene expression and molecular mechanism of certain disease.MiRNAs conduct regulation of muscle growth evolution conservative network in swine.It contribute to reveal the molecular mechanism of meat traits and provide the theory basis of genetic improvement of pig through researching on miRNA regulation of skeletal muscle growth.
     This study carried out expression analyis of miR-la miR-133b and miR-206a associated with muscle development based on multipe tissue and developmental muscle using fluorescence relative quantitative methods. It is proved that miR-1a、miR-133b、miR-206a are mainly high-expressed in muscles of obesity-type and lean-type pigs and less in other tissues.It also depicted profiles of longissimus dorsi muscle in different growth time of lean-type and obesity-type pigs and forecasted potential target genes of these miRNAs through bioinformatics approaches.
     1.Muscle-specific mir-la were abundant in longissimus dorsi muscle and heart, low abundance expression in the uterus, kidney, spleen; mir-133b was highly expressed in heart and longissimus dorsi muscle; Mir-206a only expressed in muscle in Tongcheng pig.MiR-1a and MiR-206a mainly expressed in tongue, longissimus dorsi muscle and crureus, MiR-133b mainly expressed in heart, tongue, longissimus dorsi muscle and crureus in Landrace.
     2. MiR-1a has different expression level of longissimus dorsi muscle from embryos E33 to D120 after birth of Tongcheng pig and the expression of it is higher in the postnatal than prenatal. It appeared four stages of different expression in the whole development:MiR-la was low abundance before embryo E70 and it is ascended in E70-E100, E105-D30, D40-D120 in Tongcheng pig.MiR-la has a relatively obvious two wave bands of expression:E33-E80 and E90-D30 in Landrace.
     3.MiR-133b are low abundance in embryo and high abundance in postnatal skeletal muscle of Tongcheng and Landrace.The highest expression stage emerged in a quite close time that E85 in Tongcheng pig and E80 in Landrace.
     4. MiR-206a was detected in longissimus dorsi muscle in the whole developmental phase of Tongcheng and Landrace. It expressed highly in prenatal E33, especially in Landrace. MiR-206a was lowest abundance in E40 of Tongcheng pig and E65 of Landrace while highest in E100 of Tongcheng and D9 of Landrace.MiR-206a was expressed high in postnatal D100 in two breeds.
     It procasted that miR-1 regulate CORO1C,GJA1 and PFTK1;miR-133b regulate LHFP;miR-206a regulate TNKS2 through PicTar and TargetScan.
     The results show that miR-1a、miR-133b、miR-206a have obvious regulation roles in muscle development of obesity-type local pig and lean-type foreign pigs.
引文
[1]John B, Enright A J, Aravin A, et al. Human microRNA targets [J]. PLoS Biol, 2004,2(11):1863-1879.
    [2]Shao Yao Ying, Donald C, Shi-Lung Lin et al. The MicroRNA Overview of the RNA Gene That Modulates Gene Functions. MicroRNA Protocol [M]. Totowa, New Hersey:Human press,2006,1-17.
    [3]杨文明,张荃.动物MicroRNAs的研究进展[J].山东科学,2008,21(3):26-31.
    [4]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymeraseⅡ [J]. EMBO J,23:4051-5060.
    [5]Van Rooij E, Olson E N. MicroRNAs:powerful new regulators of heart disease and provocative therapeutic targets [J]. Clin Invest,2007,117:2369-2376.
    [6]Lee Y, Ahn C, Han J. The nuclear RNaseⅢ Drosha initiates microRNA processing [J].Nature,2003,425:415-419.
    [7]Gregory R I, Yan K, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNA [J]. Nature,2004.432:235-240.
    [8]Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors [J]. Science.2003.303:95-98.
    [9]Bartel DP.MicroRNAs:genomics. biogenesis, mechanism, and function [J]. Cell, 2004,116:281-297.
    [10]Khvorova A, Reynolds A, and Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias [J].Cell,2003,115:209-216.
    [11]Schwarz D S, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex[J].Cell,2003,115:199-208.
    [12]Tang. G. siRNA and miRNA:an insight into RISCs [J]. Trends Biochem. Sci. 2005,30:106-114.
    [13]A. E. Williams. Functional aspects of animal microRNAs [J]. Cell Mol. Life Sci, 2008,65:545-562.
    [14]Shi Y. Jin Y.MicroRNA in cell differentiation and development [J].Sci China Life Sci,2009,52(3):205-211.
    [15]Liu J, Carmell M A, Rivas, et al. Argonaute2 is the catalytic engine of mammalian RNAi [J]. Science,2004,305:1437-1441.
    [16]Meister G, Landthaler M, Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs [J]. Mol. Cell,2004,15:185-197.
    [17]Kidner, C. A., Martienssen, R. A. The role of ARGONAUTE1 (AGO1) in meristem formation and identity [J]. Dev. Biol,2005,280,504-517.
    [18]Raymond F Gesteland, Thomas R Cech and John F Atkins [M]. RNA世界.郑晓飞.北京:科学出版社,2007,281.
    [19]Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. Fast and effective prediction of microRNA/target duplexes [J]. RNA,2004,10:1507-1517.
    [20]Zuker, M. and Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information [J].Nucleic Acids Res. 1981,9:133-148.
    [21]Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. [J]. Mol Biol,1999,288:911-940.
    [22]Lim L P, Lau N C, Weinstein E G, et al. The microRNAs of Caenorhabditis elegans. [J]. Genes Dev,2003,17:991-1008.
    [23]Ohler U, Yekta S, Lim LP. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. [J]. RNA,2004, 10(9):1309-1322.
    [24]Legendre M, Lambert A, Gautheret D. Profile-based detection of microRNA precursors in animal genomes [J]. Bioinformatics,2005,21(7):841-845.
    [25]Hofacker I L. Vienna RNA secondary structure server [J]. Nucl Acids Res,2003, 31:3429-2431.
    [26]陈芳,殷勤伟.调控基因表达的miRNA [J]科学通报,2005,13:1289-1299.
    [27]Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output [J]. Nature 2008.455:64-71.
    [28]Selbach M, Schwanhausser B, et al.Widespread changes in protein synthesis induced by microRNAs. [J]. Nature,2008,455:58-63.
    [29]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation.[J]. Science,2007,318:1931-1934.
    [30]Schwartz JC, Younger ST, et al.Antisense transcripts are targets for activating small RNAs. [J]. Nat Struct Mol Biol,2008.15:842-848.
    [31]Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. [J]. Curr Opin Genet Dev,2006,16:525-532.
    [32]Venuti JM, Cserjesi P. Molecular embryology of skeletal myogenesis [J].Curr Top Dev Biol,1996,34:169-206.
    [33]McCarthy J J.MicroRNA-206:the skeletal muscle-specific myomiR [J]. Biochim Biophys Acta,2008,1779:682-691.
    [34]Andrew H Williams, et al. MicroRN A control of muscle development and disease. [J].Cell Biology.2009,21:461-469.
    [35]Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. [J]. Nature,1977,270:725-727.
    [36]Chen JF, Mandel EM, Thomson JM, et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation [J]. Nat Genet 2006,38:228-233.
    [37]Potthoff MJ, Olson EN. MEF2:a central regulator of diverse developmental programs [J]. Development,2007,134:4131-4140.
    [38]Liu N, Williams AH, Kim Y, et al.An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133 [J]. Proc Natl Acad Sci U S A,2007,104:20844-20849.
    [39]Rao PK, Kumar RM, Farkhondeh M, et al.MEF2 factors that regulate expression of muscle-specific microRNAs [J].Proc Natl Acad Sci U S A, 2006,103:8721-8726.
    [40]Ivey KN, Muth A, Arnold J, King FW et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. [J]. Cell Stem Cell,2008,2,:219-229.
    [41]Kim HK, Lee YS, Sivaprasad U et al. Muscle specific microRNA miR-206 promotes muscle differentiation [J]. Cell Biol,2006,174:677-687.
    [42]Rosenberg MI, Georges SA, Asawachaicharn A et al.MyoD inhibits Fstll and Utrn expression by inducing transcription of miR-206[J].Cell Biol,2006, 175:77-85.
    [43]Anderson C, Catoe H, Werner R.MIR-206 regulates connexin43 expression during skeletal muscle development [J]. Nucleic Acids Res,2006,34:5863-5871.
    [44]Adams BD, Furneaux H, White BA.The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines [J]. Mol Endocrinol,2007,21:1132-1147.
    [45]Clop A, Marcq F, Takeda H, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep [J].Nat Genet 2006.38:813-818.
    [46]McCarthy JJ, Esser KA.MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy [J].Appl Physiol 2007, 102:306-313.
    [47]McCarthy JJ. Esser KA. and Andrade FH.MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse[J].Am J Physiol Cell Physiol,2007,293:C451-C457.
    [48]Lewis BP, Burge CB, Bartel DP.Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005.120:15-20.
    [49]Sawera M, Gorodkin J, Cirera S et al. Mapping and expression studies of the mirl7-92 cluster on pig chromosome 11[J].Mammalian Genome,2005,16: 594-598.
    [50]Kim H J,Cui X S,Kim E J et al. New porcine microRNA genes found by homology search[J].Genome,2006,49:1283-1286.
    [51]Yeng F, T.H.Huang. S.H.Zhao, et al. Mapping of six miRNAs expressed in porcine skeletal muscle [J].Animal Genetics,2007,39:84-92.
    [52]Jung Kim, Ik Sang Cho, Jae Sang Honget et al.Identification and characterization of new microRNAs from pig [J]. Animal Genetics,2009,19:570-580.
    [53]Huang T H,Zhu M, Zhao S H.Discovery of Porcine microRNAs and Profiling from Skeletal Muscle Tissues during Development[J]. PLoS One,2008,9:e3225.
    [54]Reddy A M, Zheng Y, et al. Cloning, characterization and expression analysis of porcine microRNAs [J]. BMC Genomics,2009,10:65.
    [55]Tara G McDaneld, Timothy PL Smith, et al. MicroRNA transcriptome profiles during swine skeletal muscle development [J]. BMC Genomics,2009,10:77.
    [56]Xie S S, Huang T H.et al. Identification and characterization of microRNAs from porcine skeletal muscle. [J]Animal Genetics,2009,41(2); 179-190.
    [57]Zhou B, Liu HL, Shi FX, Wang J Y.MicroRNA expression profiles of porcine skeletal muscle. [J]Anim Genet,2010,41(5):499-508.
    [58]Liu C G, Calin G A, Meloon B et al. An oligonucleotide microchip for genome—wide microRNA profiling in human and mmouse tissues [J]. Proc Natl Acad Sci USA,2004,101(26):9740-9744.
    [59]Wienholds E, Kloosterman W P, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J].Science,2005,309(5732):310-311.
    [60]Allawi H T, Dahlerg J E, Olsin S, et al. Quantitation of microRNAs using amodifiedinvader assay[J]. RNA,2004,10(7):1153-1161.
    [61]Nelson P T, Baldwin D A, Scearce L M, et al.Microarray-based, high-throughput gene expression profiling of microRNAs [J].Nat Methods, 2004,1(2):155-161.
    [62]Jonstrup SP, Koch J, Kjems J.A microRNA detection system based on padlock probes and rolling circle amplification. [J] RNA,2006,12:1747-1752.
    [63]Chen C, Ridzon DA, Broomer AJ et al., Real-time quantification of microRNAs by stem-loop RT-PCR [J].Nucleic Acids Res,2005,33(20):e179.
    [64]Mestdagh P, Feys T, Chen C, et al.High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA [J].Nucleic Acids Res,2008,36(21):e143.
    [65]Recommendations for analyzing miRNA expression data from ABI 《TaqMan(?) MicroRNA Assays》
    [66]Sheng-Song Xie, Xin-Yun Li, Shu-Hong Zhao et al.Discovery of Porcine microRNAs in Multiple Tissues by a Solexa Deep Sequencing Approach. [J]PLoS One,2011,6(1):e16235.
    [67]Curry, E., Ellis, S.E., Pratt, S.L. Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction. [J]Mol Reprod & Dev,2009,76(3):218-219.
    [68]Jian-hai Chen, Wen-juan Wei, Shu-Hong Zhao et al.Expressioin Analysis of miRNAs in Porcine Fetal Skeletal Muscle on Days 65 and 90 of Gestation. [J] Anim. Sci,21 (7):954-960.
    [69]M. Nielsen, J. H. Hansen, J B. Thomsen. et al.MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing[J]. Animal Genetics, 41:159-168.
    [70]Cho IS, Kim J, Lee YS et al.Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue[J].Mol Biol Rep,2010, 37(7):3567-3574.
    [71]Beuvink I, Kolb FA, Weiler J et al.A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs [J].Nucleic Acids Res,2007,35(7):e52.
    [72]李虹仪,张永亮,束刚等.猪miRNA的研究进展[J].中国畜牧兽医,2010,1:80-83.
    [73]Wigmore P M, Stickland N C.Muscle development in large and small pig fetuses. [J] Anat,1983,137 (2):235-245.
    [74]Zhao, S.H. D.Nettleton. C. Fitzsimmons, et al. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. [J]. Anim Sci,81:2179-2188
    [75]Lefaucheur L, Edom F, Ecolan P, Butler-Browne GS.Pattern of muscle fiber type formation in the pig[J]. Dev Dyn.1995.203:27-41.
    [76]Palacios D, Puri PL.The epigenetic network regulating muscle development and regeneration [J]. Cell Physiol,2006,207(1):1-11.
    [77]Townley-Tilson WH, Callis TE, Wang D.MicroRNAs 1,133, and 206:critical factors of skeletal and cardiac muscle development, function, and disease [J],Biochem Cell Biol,2010,42(8):1252-1255.
    [78]Smith, T.P.L., McDaneld, T.G., Wiedmann, R.T.The role of microRNAs in muscle development [J].Animal Science (Suppl.1),2007,637.
    [79]Margaret S Ebert, et al. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J].Nature Methods.2007,4:721-726.
    [80]Carlos M Loya, et al. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms [J]. Nature Methods,2009,6:897-903.
    [81]K arginov FV, C onaco C, Xuan Z, et al. A biochemical approach to identifying microRNA targets [J]. Proc Natl Acad Sci,2007,104(49):19291-19296.
    [82]Hendrickson DG, H ogan DJ, Herschlag D, et al. Systematic identification of mRNAs recruited to arg onaute 2 by specific microRNAs and corresponding changes in transcript abundance [J].PLOS ONE,2008,3(5):e2126.
    [83]Vinther J, Hedegaard MM, G ardner PP, et al. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture[J].Nucleic Acids Res,2006,34(16):e107.
    [84]Selbach M, Schwanh. usser B, Rajewsky N, et al. Widespread changes in protein synthesis induced by microRNAs [J]. Nature.2008,455:58-63.
    [85]Fabbri M, G arzon R, Cimmino A, et al. MicroRNA-29 family revertsAberrant methylation in lung cancer by targeting DNA methyltrans ferases3A and 3B [J]. Proc Natl Acad Sci,2007,104(40):15805-15810.
    [86]张海峰,吴炳礼,方国强等.建立在芯片与生物信息学预测基础上的miRNA靶基因鉴定研究进展[J].癌变突变畸变,2009,21(2):153-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700