肌肉特异性microRNAs在失神经性萎缩骨骼肌中表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨miR-1、miR-133和miR-206等3种肌肉特异性microRNAs在失神经支配所致骨骼肌萎缩过程中的表达变化情况,为进一步研究它们在失神经支配肌肉萎缩中的作用机制及其对法医身源学的意义等奠定基础。
     方法:
     实验动物健康清洁级12周龄C57小鼠,体重20±1g,雄性,由中国人民解放军第三军医大学动物中心提供。
     分组及模型建立C57小鼠共30只,随机分为2组,其中一组为正常对照组不做任何处理(n=6),另外一组为实验组(n=24),该组又分为4个时相点,每个时相点为6只小鼠,采用1%戊巴比妥钠40mg/Kg腹腔注射麻醉后在无菌条件下手术:右后肢背侧部纵向切口,于股二头肌与股外侧肌之间钝性分离,游离坐骨神经,切除距梨状肌下缘2mm以下长约5mm的坐骨神经,近端游离,远侧断端返转180°后缝合于腓肠肌及股二头肌肌膜上,然后逐层缝合,建立小鼠失神经腓肠肌萎缩模型;左后肢游离坐骨神经后不做手术处理。
     腓肠肌相对湿重百分比检测分别于手术后0d(正常对照组)、3d、7d、14d、28d断颈处死小鼠,用眼科剪逐层剪开小鼠双后肢皮肤及皮下组织,小心剥离腓肠肌肌膜,然后完整取下双侧腓肠肌,立即用电子分析天平称量腓肠肌湿重,计算腓肠肌相对湿重及其百分比,绘制湿重百分比变化曲线。
     镜下观察切出用于Northern blot检测的肌肉后,将剩余肌肉经4%的多聚甲醛溶液固定,常规石蜡包埋,选择腓肠肌肌腹部连续切片,制成厚5μm的组织切片,HE染色后,于光镜高倍视野下观察。
     肌纤维横截面积百分比的检测用HPIAS-1000图像分析系统进行测量。每张切片中测量50根肌纤维的横截面积,自动计算均数。用电子计算机计算腓肠肌肌纤维横截面积百分比,绘制横截面积百分比变化曲线。
     Northern blots分析采用RNAiso reagent提取组织总RNA(Takara),具体方法参照说明书进行。以mir-1、133、206和U6等分子的反向互补的寡核苷酸DNA序列为探针(miR-1:5′-TACATACTTCTTTACATTCCA-3′;miR-133:5′-CAGCTGGTTGAAGGGGACCAAA-3′;miR-206 : 5′-CCACACACTTCCTTACATTCCA -3′;U6 : 5′-ATATGGAACGCTTCAATT-3′),采用γ-32P-ATP末端转移法标记探针。取20μg总RNA上样,行15%尿素变性聚丙烯酰胺凝胶电泳进行分离,半干转印恒流400mA转尼龙膜1h。紫外交联1200μJ.1 min,而后80℃烘烤30 min。加入放射性标记探针后于42℃杂交24h,洗膜后,-70℃放射自显影48h。成像结果以Quantity One软件进行灰度扫描,3分子不同时相点的灰度与内参U6进行比对,以失神经支配第0天结果为1,各分子各时相点的量化值以其为失神经支配第0天的倍数表示。
     结果:
     正常小鼠双侧腓肠肌存在差异
     正常C57小鼠双侧腓肠肌湿重及肌纤维横截面积存在明显差异,根据统计学分析,P<0.05,具有统计学意义。
     失神经支配对腓肠肌相对湿重及肌纤维横截面积百分比的影响
     神经离断三天后腓肠肌相对湿重百分比明显下降,其比值随着失神经支配时间的延长,呈逐渐下降的趋势,表明小鼠坐骨神经离断后,随着失神经支配时间的延长,腓肠肌萎缩程度逐渐加重(P<0.001)。同理,腓肠肌肌纤维的CSA百分比也随着失神经支配时间的延长逐渐下降,其下降程度比肌肉相对湿重百分比的下降程度更为显著(P<0.001)。
     失神经支配对腓肠肌形态学影响
     病理切片结果显示:失神经早期肌细胞胞浆开始丧失,直径减小;细胞核表现出代谢活跃的征象,如核变大、核仁清晰、核居中等,此现象可能为失神经支配后肌细胞的代偿性反应。随着失神经支配时间的延长,肌纤维直径及横截面积明显减小,胞浆明显固缩,核内移现象愈来愈普遍,胞核增多,胶原纤维增生明显,炎性细胞大量浸润等。
     失神经支配对肌肉特异性microRNAs表达的影响
     肌肉特异性microRNAs随着失神经支配时间的延长发生一系列改变,与正常对照组相比,miR-206随着失神经支配时间的延长其表达明显上调,第28天其丰度达到正常的5倍以上;miR-1、miR-133随着失神经支配时间的延长其表达先迅速下调,而后逐渐有所回升,但至失神经支配第28天其表达仍明显低于正常水平。
     结论
     1.随着失神经支配时间的延长,肌肉特异性microRNAs的表达发生明显变化,推测肌肉特异性microRNAs可能在失神经介导的骨骼肌萎缩过程中发挥了一定作用,为从microRNAs角度去研究失神经支配所致骨骼肌萎缩的机制提供了新的思路。
     2.随着失神经支配时间的延长,腓肠肌相对湿重及肌纤维横截面积百分比明显下降,表明我们建立的失神经支配腓肠肌萎缩模型是成功的。
     3.正常小鼠双侧腓肠肌湿重及肌纤维横截面积存在明显差异,根据统计学分析,具有统计学意义。
Objective:to explore the expression changes of muscle special microRNAs(miR-1、miR-133、miR-206 et al )in the atrophied skeletal muscle resulted in by the denervation,and to establish the foundation to futher to study their molecular mechanisms on the denervated skeletal muscle and the significance on forensic identity source science
     Method:
     Experimental animal:male healthy C57 mice weighing 20±1g of clean degree and of 12 weeks old were selected in this study. These mice were provided by the experimental animal center at Third Military Medical University.
     Grouping and model building:30 C57 mice were used and divided randomly into 2 groups:one of which was the normal control group without mice be disposed(n=6);the other group was the control group(n=24)whichwas divided averagely into 4 time points(n=6),mice of the group were operated on sterile condition after they were anesthetized by injecting 1% pentobarbital sodium at the standard of 40 mg/kg drug dose: cutting longitudinally the pars dorsalis of the right hindlimb of mice, Seperating bluntly musles between the biceps femoris and vastus lateralis,exposing the sciatic nerve, cutting approximate 5mm sciatic nerve at the position of the piriformis, lower edge 2mm, exposing freely the proximal end,suturing the distal end after be returned 180°in the sarolemma of both the biceps femoris and the gastrocnemius muscle ,and suturing in turn each layer tissue, which built the model of the atrophying gastrocnemius muscle of mice from the denervation. The sciatic nerve of the left hindlimb of mice wes not cut after being exposed.
     Detecting the percentage Of the relative wet weight of gastrocnemius muscle: Killing separately mice on 0d(the normal control group).3d 7d 14d and 28d after being operated,cuting and seperating in turn the skin and subcutaneous tissue of bilateral hindlimbs by ophthalmmic scissors, peeling carefully the sarolemma of gastrocnemius muscle,cutting and obtaining integral bilateral gastrocnemius muscle,balancing their wet weight immediately by the electronic analytical balance,computing the relative wet weight of muscle and its percentage,and finally drawing the changing curve of percentage of the relative wet weight of muscle.
     Observed by microscope:After the muscle which was used in Northern blot analysis was cut-out,the rest muscle was disposed by the following processes: fixed with 4% formaldehydum polymerisatum, paraffin-embedded, and making sections of 5μm thickness by selecting the serial Section of muscle belly of gastrocnemius muscle. The sections were dyed with HE and observed by microscope.
     Detecting the percentage of CSA of muscle fibers: We measured CSA of 50 muscle fibers in each section and automatically computered their average with HPIAS-1000 image analysis system.After the percentage of CSA was computered with the computer, the changing curve of percentage of .it was drawn.
     Northern blot analysis:Total RNA samples were extracted using RNAiso reagent(Takara). (concrete methods refering to the specification).The used probes were oligonucleotide DNA sequences of reverse complementary of mir-1、133、206 and U6( ( miR-1:5′-TACATACTTCTTTACATTCCA -3′;miR-133: 5′-CAGCTGGTTGAAGGGGACCAAA-3′;miR-206 : 5′-CCACACACTTCCTTACATTCCA -3′;U6 : 5′-ATATGGAACGCTTCAATT-3′)and were labeled by usingγ-32P-ATP endlabeled method. 20μg of total RNA samples were electrophoresed on denaturing 15% polyacrylamide gels and electroblotted for 1h onto Hybond-N+ membranes(Amersham) on the condition of constant-current(400mA). The membranes were UV-crosslinked on the condition of 1200μJ for 1min,baked on the condition of 80℃for 1h, hybridized withγ-32P-ATP endlabeled oligonucleotide DNA probes on the condition of 42℃for 24 h,and autoradiographied on the condition of -70℃for 48 h after being washed.Images were captured on film.and executed gray scale scanning by Quantity One. Grayscales of 3 moleculars in different time points were compareed with that of internal reference(U6) ( the result was expressed using 1 on 0 day of denervation, quantized value of each molecular in each time points was expressed using multiple of the former).
     Result:
     Differences of bilateral gastrocnemius muscle in normal control group:
     There were significant differences in wet weight and CSA of muscle fibers of bilateral gastrocnemius muscle in normal C57 mice.According to statistic analysis, the differences had statistical significance(P﹤0.05).
     Effects of denervation on the percentage of relative wet weight and CSA of muscle fibers of gastrocnemius muscle:
     After the sciatic nerve had been cut for 3 days,the percentage of relative wet weight of gastrocnemius muscle decreased significantly compared with the control group, and the ratio decreased gradually with the time of denervation prolonging,which the atrlphic degree of gastrocnemius muscle of mice aggravated gradually with time of denervation prolonging(P﹤0.001).The same holds ture with effects of CSA of muscle fibers. The percentage of CSA of muscle fibers decreased also gradually with the time of denervation prolonging,and its decreased degree was more significant than that of relative wet weight of gastrocnemius muscle(P﹤0.001).
     Effects of denervation on morphology of gastrocnemius muscle:
     High power microscopic(200) ,pathological sections showed that cytoplasm of myocyte started to lose in the early stage of the denervation,the diameter decreased,and Nucleus showed signs of active metabolism(forexample, volume of Nucleus changed big, clear nucleolus, Nucleus lied in the center of cells,and so on),which could be the compensatory reaction of myocyte of denervation. With the time of denervation prolonging,the diameter and CSA of muscle fibers decreaded significantly, cytoplasm pyknosis obviously, the phenomenon of nuclear ingression was more and more widespread,nucleus increased, collagen fibers hyperplasiaed obviously, inflammatory cells invaded generally,and so on.
     Effects of denervation on expressions of muscle specific microRNAs:
     Compared with the normal control group,expressions of muscle specific microRNAs appeared a series of changes with the time of denervation prolonging. The expression of miR-206 was obviously up-regulated with the time denervation prolonging, and on the twenty-eighth days, its abundance was over 5 times higher than that of normal muscle; however, those of miR-1 and miR-133 decreased firstly and then gradually recovered with the time elapsing,and on the twenty-eighth days,their abundance are still lower than that of normal muscle.
     Conclusion:
     1.With the time denervation prolonging, the expressions of muscle specific microRNAs appeared significant changes,therefore,we speculate that they could play a role to a certain degree during the denervated atrophy of skeletal muscle,which offered new view to explore the mechanisms of skeletal muscle atrophy in the level of microRNAs.
     2.With the time denervation prolonging,the percentage of relative wet weight of gastrocnemius muscle and CSA of muscle fibers degreased significantly,which proved that the mouse model of sciatic nerve resection was successfully established;
     3.There were significant differences in wet weight and CSA of muscle fibers of bilateral gastrocnemius muscle in normal C57 mice.According to statistic analysis, the differences had statistical significance..
引文
[1]徐建广、顾玉东.缺血对失神经支配骨骼肌萎缩影响的研究[J].中华手外科杂志,1999;15(3):175-177.
    [2]徐建广、顾玉东,李继峰等.大鼠失神经支配骨骼肌及运动终板蜕变观察[J].中华显微外科杂志,1999;22(3):215-217.
    [3] Rodrigues AD.Schmalbruch H. Satellite cells and myonuclei in long-term denervated rat muscles[J].Anat Rec.1995;243(4):430-437.
    [4] Carlson BM., Billington L,Faulkner JA.et al.Studies on the regenerative recovery of long-term denervated muscle in rats[J].Restor Neurol Neurosci,1999;10(1):77-84.
    [5] BbartelDP.MicroRNAs:genomics,biogenesis,mechanism,andfunction. Cell.2004;116:281-297.
    [6] Berezikov E,Guryev V,van de Belt J, Wienholds E,et al.Phylogenctic shadowing and computational identification of human microRNA genes.Cell,2005;120:21-24.
    [7] He L,Thomson JM,Hemann MT,et al.A microRNA polycistron as a potential human 0ncogene[J],Nature,2005,435(7043):823-833.
    [8] Zamore PD,Haley B,Ribo-gnome.the big world of small RNAs[J].science,2005.309(5740):1519-1524.
    [9] Stark A,Brennecke J,Bushati N,et al.Animal microRNAs confer robustness to gene expression and have a significant impact on 3,,UTRevolution[J].Cell,2005,123(6):1133-1146.
    [10] Meltzer PS.Cancer genemics:Small RNAs with big impacts[J].Nature,2005,435(7043):745-746.
    [11] Dostie J,Mourelatos Z,Yang M,et al.Numerous microRNPs in neuronal cells comtaining novel microRNAs [J]. RNA,2003,9(2):180-186.
    [12] Lau N C,Lin L P,Weinstein E G,et al.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J].Science,2001,294(5543):862-864.
    [13] JF Chen, EM Mandel, JM Thomson et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, Feb 2006; 38(2): 228-33.
    [14] Hak Kim, Yong Sun Lee,Umasundari Sivaprasad et al.Muscle-specific microRNA miR-206 promotes muscle differentiation.The Journal of CellBiology,Vol.174,NO.5,August .2006:677-687.
    [15] B Yang, H Lin, J Xiao,et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med, Apr 2007; 13(4): 486-91.
    [16] A Care, D Catalucci, F Felicetti,et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med, May 2007; 13(5): 613-8.
    [17] Lee R C,Ambros V.An extensive class of small RNAs in Caenorhabditis elegans[J].Science,2001,294(5543):862-864.
    [18] Hiroaki Kawasaki&Kazunari Taira.Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells.NATURE,423,2003:305-8562.
    [19] Tomita S,Li PK,Richard D, et al. Autologous transp lantation of bone marrow cells imp roves damaged heart function [J]. Circulation,1999,100 ( Supp l): 247.
    [20] Jackman RW and Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol.2004, 287:C834–C843.
    [21] McCarthy JJ and Esser KA. MicroRNA-1 and microRNA-133a expression are decrased during skeletal muscle hypertrophy. J Appl Physiol, 2007, 102:306-313.
    [22]邵晨听,.吴欣,.刘梅等..Myostatin在小鼠腓肠肌失神经支配萎缩过程中的表达[J]..解剖学杂志,.2006,29(2):146-149.
    [23] JF Chen, EM Mandel, JM Thomson et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, Feb 2006; 38(2): 228-33.
    [24] Prakash K,Rao,Roshan M.Kumar,Mina Farkhondeh,et al.Myogenic factors that regulate expression of muscle-specific microRNAs.PNAS,June 6 2006,Vol.103,no.23:8721-8726.
    [25] Velleca MA, Wallace MC, Merlie JP. A novel synapse-associated noncoding RNA. Mol Cell Biol. 1994 Nov;14(11):7095-104.
    [26] [26]杨川,蔡佩佩,董佳生等.带神经血管肌束植入在晚期面瘫修复中的应用[J].中国修复重建外科杂志.1995:9(2):84-87.
    [27]徐清贵,洪光祥,王发斌等.神经端侧缝合法防治失神经肌肉萎缩的实验研究[J].中华手外科杂志。1999:15(1):42-44.
    [28]张少成,张雪松,刘会仁.侧测吻合法治疗周围神经损伤的临床应用初步报告[J].中华骨科杂志,2002:22(7):398-401.
    [29]姜广良,顾玉东,张丽银.胚胎运动神经元失神经骨骼肌内种植防治肌萎缩的研究[J] .中华实验外科杂志,1998:15(4):364-365.
    [30]王欢,顾玉东,徐建广等.不同方法的感觉神经(元)营养失神经骨骼肌试验研究的疗效比较[J].中华手外科杂志,2000,16(1):49-52.
    [31]庞永发,汪华俏,卢晓林等.胚胎运动神经元移植对失神经肌肉影响的试验研究[J].中华显微外科杂志,2001:24(4):284-286.
    [32]徐向阳,顾玉东.氨哮素对成年大鼠失神经支配肌肉的作用[J].中华手外科杂志,1996:12(增刊):42-45.
    [33]姜广良,顾玉东,张丽银等。氨哮素防治失神经骨骼肌萎缩的临床研究[J].中华手外科杂志,1998:14(3):164-166.
    [34]吴朝晖,田涛,金惠铭等.氨哮素延缓臂丛神经损伤后骨骼肌萎缩的机理研究[J].中华手外科杂志,2000:16(4):198-200.
    [35]王栓科,洪光祥,王同光等.细胞外ATP防治失神经肌肉萎缩的试验研究[J].中华手外科杂志,2002:18(1):43-45.
    [36] Day CS,Riano F,Tomaimo MM. Growth factor may decrease muscle atrophy secondary to denervation[J].J Reconstr Microsurg,2001:17(1):51-57.
    [37]马金忠,罗永湘,关晓明等.NGF对运动终板变性与再生的研究[J].中华显微外科杂志,1998:21(2):118-120.
    [38] [38]周桌妍,杨默,霍泰辉.成体干细胞的研究进展[J].中华儿科杂志.,2005,43(1): 20-23
    [39] Anderson D J.Stem cells and pattern form ation in the nervous system :the possible vs.the actual [J].Neuron,2001,30: 19—35.
    [40] Samson R D.Pare D.Activity—dependent synaptic plasticity in the central nucleus of the amygdala [J].Neurosci,2005,25: 1847—1855.
    [41] Eisenberg L M ,Eisenberg C A.An in vitro analysis of myocardial potential indicates that phenotypic plasticity is aninnate property of early embryonic tissue [J].Stem Cells Dev,2004,13: 614—624.
    [42] Lazerges C,Daussin PA,Coulet B,et al. Muscle Nerve,2004:29(2):218-226.
    [43] L lave C,Kasschau K D,Rector M A,et al.Endogenous and silencing associatedsmall RNAs in plants[J].Plant Cell,2002,14(7):1605-1619.
    [44] Reinhart B J,Weinstein E G,Rhoades M W,et al.MicroRNAs in plants[J].Genes& Development,2002,1616-1626.
    [45] Lewis B P,Burge C B,Bartel D P,et al.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA target.Cell.2005;120;15-20.
    [46] Dostie J,Mourelatos Z,Yang M,et al.Numerous microRNPs in neuronal cells comtaining novel microRNAs[J]. RNA,2003,9(2):180-186.
    [47] Lau N C,Lin L P,Weinstein E G,et al.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J].Science,2001,294(5543):862-864.
    [48] Hak Kyun Kim,Yong Sun Lee,Umasundari Sivaprasad,et al.Muscle-specific microRNA miR-206 promotes muscle differentiation [J].The Journal of Cell Biology,Vol.174,NO.5,August 28,2006:677-687.
    [49] McCarthy JJ, Esser KA and Andrade FH. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol, 2007, 293(1):C451-C457.
    [50] Yuasa K, Hagiwara Y, Ando M, et al. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct, 2008, 33(2):163-169.
    [1] Stark A,Brennecke J,Bushati N,et al.Animal microRNAs confer robustness to gene expression and have a significant impact on 3,,UTRevolution[J].Cell,2005,123(6):1133-1146.
    [2] Hiroaki Kawasaki&Kazunari Taira.Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells.NATURE,423,2003:305-8562.
    [3] Dostie J,Mourelatos Z,Yang M,et al.Numerous microRNPs in neuronal cells comtaining novel microRNAs[J]. RNA,2003,9(2):180-186.
    [4] Bartel D P.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell.2004;116:281-297.
    [5] Berezikov E,Guryev V,van de Belt J, Wienholds E,et al.Phylogenctic shadowing and computational identification of human microRNA genes.Cell,2005;120:21-24.
    [6] Lau N C,Lin L P,Weinstein E G,et al.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J].Science,2001,294(5543):862-864.
    [7] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843–54.
    [8] Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984, 226:409–16.
    [9] Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 1989, 57:49–57.
    [10] Ambros V, Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev 1987, 1:398–414.
    [11] Ruvkun G, Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 1989;338:313–319.
    [12] Ruvkun G, Ambros V, Coulson A, Waterston R, Sulston J,Horvitz HR. Molecular genetics of the Caenorhabditis elegans heterochronic gene lin-14. Genetics 1989, 121:501–516.
    [13] Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G. Negative regulatory sequences in the lin-14 3_-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 1991;5:1813–24.
    [14] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855–62.
    [15] Reinhart BJ, Slack FJ, Basson M, Bettinger JC, Pasquinelli AE,Rougvie AE, et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000;403:901–6.
    [16] Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda M, Maller B, et al. Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA. Nature 2000;408:86–9.
    [17]冯起平,李云峰,孟雁.miRNA的研究进展[J].生命科学,2003,15(4):193-198.
    [18]马中良,杨怀义,田波.真核生物中的微小RNA及其功能研究进展[J].遗传学报,2003,30(7):693-696.
    [19]李成梅,郑继刚,杜桂森.miRNA:一种新的基因表达调节子[J].遗传,2004,26(1):133-136.
    [20] Baulcome D.DNA events:an RNA microcosm[J].science,2002,297:2002-2003.
    [21] Lai EC.MicroRNAs are complementary to 3’UTR sequence motifs that mediate negative posttranscriptional regulation[J].Nature Genetics,2005,30(4):363-364.
    [22] Bartel D P. MicroRNAs:genomics,biogenesis,mechanism,and function.Cell.2004;116:281-297.
    [23] Berezikov E,Guryev V,van de Belt J, Wienholds E,et al.Phylogenctic shadowing and computational identification of human microRNA genes.Cell,2005;120:21-24.
    [24] Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011–6.
    [25] Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95–8.
    [26] BartelDP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell,2004;116:281-297.
    [27] Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001;15:2654–9.
    [28] Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, et al. Dicer is essential for mouse development. Nat Genet 2003;35:215–7.
    [29] Carmell MA, Hannon GJ. RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 2004;11:214–8.
    [30] Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T.Single-stranded antisense siRNAs guide target rna cleavage in RNAi. Cell 2002;110:563–74.
    [31] Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD.Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115:199–208.
    [32] Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003;115:209–16.
    [33] Gregory RI,Chendrimada TP,Cooch N, et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005;123:631–640.
    [34] Ro S,Park C,Young D,et al.Tissue-dependent paired exprssion of miRNAs. Nucleic Acids Res,2007,35(17):5944-5953.
    [35] Chen CZ,Li L,Lodish HF,and Bartel DP.MicroRNAs modulate hematopoietic lineage differentiation.Science,2004,303:83-86
    [36] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003;425:415–9.
    [37] Han JJ, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006;125:887–901.
    [38] Zeng Y,Wagner E J,Cullen B R.Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells[J].MolCell,2002,9(6):1327-1333.
    [39] Zeng Y,Cullen B R.Sequence requirements for microRNA processing and function in human cells[J].RNA,2003,9(1):112-123.
    [40] Bartel DP. MicroRNAs:Genomics,Biogenesis,Mechanism, and Function. Cell 2004;116:281–297.
    [41] Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008;15:272–284.
    [42] Rao PK, Kumar RM, Farkhondeh M, et al.Myogenic factors that regulate expression of muscle-specific microRNAs.PNAS, 2006, 103(23):8721-8726.
    [43] Altuvia Y,Landgraf P,Lithwick G,et al.Clustering and conservation pattems of human microRNAs[J].Nucleic Acids Res,2005,33(8):2697-2706.
    [44] O′Donnell KA,Wentzel EA,Zeller KI, et al.c-Myc-regulated microRNAs modulate E2F1 expression.Nature,2005,435:839-843.
    [45] Sun Y,Koo S,White N,et al.Development of a micro-anay to detect human and mouse microRNAs and characterization of expression in human organs[J].Nuleic Acids res,2004,32(22):e188.
    [46] LagosQuintana M,Rauhut R,Lendeckel W,et al.Identification of novel genes coding for small expressed RNAs[J].Science,2001,294(5543):853-858.
    [47] Reinhart BJ,Weinstein EG,Rhoades MW,et al.MicroRNAs in plant[J].Gene Dev,2002,16(13):1616-1626
    [48] Kurihara Y,Watanabe Y,Arabidopsis.MicroRNA biogenesis through Dicer-like 1 protein function[J].proc Narl Acad SCI USA,2004,101(34):12753-12758.
    [49] Esau C, Davis S, Murray SF, et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.Cell Metab,2006,3(2):87-98.
    [50] Jopling CL, Yi M, Lancaster AM, et al. Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA. Science,2005, 309:1577-1581.
    [51] Greer Card DA,Hebbar PB,Li L, et al. Oct4/Sox2-Regulated miR-302 Targets Cyclin D1 in Human Embryonic Stem Cells. MCB,2008,28(20):6426-6438.
    [52] Hutvagner G and Zamore PD.A microRNA in a multipleturnover RNAi enzymecomplex. Science,2002,297:2056-2060.
    [53] Chen CZ and Lodish HF. MicroRNAs as regulators of mammalian hematopoiesis. Seminars Immunology,2005,17:155-165.
    [54] Pillai RS,Bhattacharyya SN,Artus CG,et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science,2005,309:1573-1576.
    [55] Humphreys DT,Westman BJ,Martin DIK,et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. PNAS,2005,102:16961-16966.
    [56] Petersen CP,Bordeleau ME,Pelletier J,et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell,2006,21(4):533-542.
    [57] Kong YW,Cannell IG,de Moor CH, et al. The mechanism of microRNA-mediated translation repression if determined by the promoter of the target gene. PNAS,2008,105(26):8866-8871.
    [58] Krauss RS, Cole F,Gaio U,et al. Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J Cell Sci,2005,118:2355-2362
    [59] Velleca,M.A,Wallace,M.C.&Merlie,J.P.(1994) Mol.Cell.Biol.14,7095-7104.
    [60] Prakash K,Rao,Roshan M.Kumar,Mina Farkhondeh,et al.Myogenic factors that regulate expression of muscle-specific microRNAs.PNAS,June 6 2006,Vol.103,no.23:8721-8726.
    [61] O’Rourke JR, Georges SA, Seay HR, et al. Essential role for Dicer during skeletal muscle development. Dev. Biol.,2007,311:359-368
    [62] Zhao Y,Samal E and Srivastava D. Serum response facror regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005,436:214-220.
    [63] Chen JF,Mandel EM,Thomson JM,et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics,2006,38:228-233.
    [64] Liu N,Williams AH,Kim Y,et al.An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133.PNAS,2007,104:20844-20849.
    [65] Rosenberg MI,Georges SA,Asawachaicharn A,et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. JCB,2006,175(1):77-85.
    [66] Velleca M.A,Wallace M.C.and Merlie J.P. A novel synapse-associated noncoding RNA. Mol.Cell.Biol,1994,14:7095-7104.
    [67] McCarthy JJ and Esser KA. MicroRNA-1 and microRNA-133a expression are decrased during skeletal muscle hypertrophy. J Appl Physiol,2007,102:306-313.
    [68] McCarthy JJ ,Esser KA and Andrade FH. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol,2007,293(1):C451-C457.
    [69] Kwon C, Han Z, Olson EN,et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling.PNAS,2005,102(52):18986-18991.
    [70] Simon DJ, Madison JM, Conery AL.et al. The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell,2008,133:903-915.
    [71] Kim HK, Lee YS. Sivaprasad U,et al. Muscle-specific microRNA miR-206 promotes muscle differentiation.JCB,2006,174(5):677-687.
    [72] Anderson C, Catoe H and Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development.Nucleic Acids Research,2006,34(20):5863-5871.
    [73] Yuasa K,Hagiwara Y,Ando M,et al. MicroRNA-206 is highly expressed in newly formed muscle fibers:implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct, 2008, 33(2):163-169.
    [74] Ivey KN, Muth A, Arnold J,et al.MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell,2008,2(3):219-229.
    [75] Boutz PL, Chawla G, Stoilov P,et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev,2007,21:71-84.
    [76]赵文勇,王涛,王军平等.肌肉特异性microRNAs在失神经肌肉萎缩中表达变化的研究.第三军医大学学报,2008,30(21):2034-2036.
    [77] Lim LP, Lau NC, Garrett-Engele P,et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature2005,433:769-773.
    [78] Nakajima N, Takahashi T, Kitamura R,et al.MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation.BBRC,2006,350:1006-1012.
    [79] Walden TB, Timmons JA, Keller P,et al. Distinct expression of muscle-specific MicroRNAs (myomirs) in brown adipocytes.J Cell Physiol,2008,
    [80] Li ZY, Hassan MQ, Volinia S,et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. PNAS, 2008,105:13906-13911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700