含咪唑杂环的长链烷基双季铵盐的合成及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以2,2-二氯二乙醚和环氧氯丙烷为连接剂,通过对1-羟乙基-2-甲基-5-硝基咪唑的季铵化,首次合成了两种含咪唑杂环的长链烷基双季铵盐化合物:二氯化N-(1-羟乙基-2-甲基-5-硝基咪唑基)-N-(十二烷基二甲基) -3-氧杂-1,5-戊二铵(简称MDOPD)和二氯化N-(1-羟乙基-2-甲基-5-硝基咪唑基)-N-(十二烷基二甲基)-2-羟基-1,3-丙二铵(简称MDHTD),进行了分子结构的红外光谱表征和合成条件的优化; 重点对其缓蚀和抑菌特性进行了深入系统的研究,为油田微生物腐蚀的防治提供理论依据和技术支持。
    利用静态失重、动电位扫描极化曲线、交流阻抗(EIS)、X-射线衍射(XRD)和扫描电子显微镜(SEM)等多种分析测试方法,研究了含咪唑杂环的双季铵盐化合物的缓蚀吸附规律,探讨了其缓蚀作用机制。
    在模拟油田水介质中:含咪唑杂环双季铵盐化合物的较强缓蚀吸附性能与其分子中含有二氮五元杂环、杂环上的季氮原子、长链烷基季氮原子、醚氧基或羟基等多个活性吸附中心有关。热力学和动力学模型的拟合结果显示,含羟基的MDHTD 较含醚氧基的MDOPD 具有更强的吸附缓蚀性能。
    在含硫酸盐还原菌(SRB)的培养基介质中:含咪唑杂环的双季铵盐化合物MDHTD 对碳钢腐蚀过程的阳极反应有显著的抑制作用,且存在浓度极值现象,这与MDHTD 的分子结构和吸附特性有关; MDHTD 的吸附和缓蚀作用不受SRB 生长特性的影响,在普通SRB 菌和和活性更强的碱性变异菌介质中,对碳钢都有显著的保护作用,且优于传统的缓蚀杀菌剂十二烷基二甲基苄基氯化铵(简称“1227”); 对J55和N80 钢的腐蚀都有明显的抑制效果。
    杀菌性能评价实验结果表明:MDHTD 对普通SRB 菌、碱性变异SRB 菌、生物膜中SRB 菌和腐生菌(TGB)的灭菌活性都高于传统杀菌剂1227,能够在较低浓度下杀灭铁细菌(IB)。
    采用原子力显微镜(AFM)、电子探针(EPMA)、X-射线光电子能谱(XPS)和交流阻抗(EIS)等方法系统地研究了MDHTD 对生物膜腐蚀的抑制机理及模型。
    在含SRB 菌介质中,MDHTD 通过在碳钢表面吸附并形成有机保护膜,对不同生长周期SRB 生物膜下碳钢的腐蚀都具有良好的保护效果; 对SRB 代谢过程的抑制使SO_4~(2-)离子中的六价硫被还原并与Fe~(2+)生成多种过渡价态铁硫化合物在碳钢表面沉积的机会极大地降低; 能够使SRB 生物膜与碳钢金属表面的结合力下降,并通过对生物膜的剥离作用和在金属表面活性点的吸附使腐蚀反应的电荷转移电阻升高,能够抑制侵蚀性的Cl-离子等通过多孔生物膜表面渗透而造成的侵蚀。
In this paper, two new germicide-inhibitor of bisquats which were named N-Metronidazole-N-( Dodecane Dimethyl )-3-Oxa -1,5-Pentanedilammonium Dichloride ( MDOPD ) and N-Metronidazole-N-( Dodecane Dimethyl )-2-Hydroxy-1,3-Thirddilammonium Dichloride ( MDHTD ) were successfully synthesized for the first time with metronidazole as matrix and 2,2-Dichloroethyl ether 1-Chloro-2-2(β-chloroethoxy) ethane or α-epichlorohydrin as link agent, respectively. The molecule structures of bisquats were illustrated by IR spectrum and the synthesis conditions were optimized in detail such as solvent, temperature and reaction time.
    Weight loss measurement, Potentiodynamic polarization curves, Electrochemical Impedance Spectroscopy (EIS), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to investigate the corrosion inhibiting performance of MDOPD and MDHTD in simulated oilfield water. MDOPD and MDHTD were found to having good water solubility and prominent corrosion inhibiting performance, temperature had little effect on inhibitory efficiency of MDOPD and MDHTD in the studied temperature range at higher inhibitor concentrations. The corrosion mechanism of carbon steel in simulated oilfield water containing MDOPD or MDHTD was analysed with thermodynamic and kinetics models, MDHTD and MDOPD possessed several nitrogen atoms as adsorption centre which had much active energy with metal surface and MDHTD had more effectively protection function.
    The anode reaction of corrosion course was restrained on account of the addition of MDHTD in culture medium inoculated SRB, phenomenon of maximum concentration effect was found while concentration of MDHTD was increased. The anode polarization curves revealed three different segments and temparature had little effect on the adsorption of MDHTD on Q235 steel. Corrosion of Q235 steels in culture medium inoculated SRB was effectively restrained by the sterilization capability of MDHTD against SRB in medium and the adsorption on Q235 steel surface. And that MDHTD had more excellent protective effect than 1227 in culture medium inoculated original SRB or drug-fast SRB.
    The sterilization effect of the bisquats was assessed according to API RP-38 standard. MDHTD exhibited better inhibitive effect on drug-fast SRB and original bacteria not only in culture medium but also in biofilm. Besides, the two bactericides also showed excellent inhibitive performance against IB at low concentration. The inactivation curves indicate
    that MDHTD has more effective antibacterial performance than “1227”due to the functional group in molecule structure of MDHTD. At the same time, MDHTD has effect on the formation and growth of TGB biofilm and some TGB has distinct sensitivity to MDHTD. Sensitivity of SRB biofilms to MDHTD and corrosion inhibiting effect of MDHTD for metal under biofilms were further investigated using Atomic Force Microscopy (AFM)、Electron Probe Micro-Analysis (EPMA) 、X-ray Photoelectron Spectroscopy (XPS) and EIS. Results revealed that MDHTD had better protective effect than “1227”on Q235、J55、N80 steel in culture medium inoculated SRB by forming adsorption film segregating chlorine ion on metal surface and corrosion under various thickness biofilm was also effectively restrained by MDHTD. Metabolite and FeSx by SRB greatly decreased owing to impact of MDHTD. The binding force between metal surface and biofilm was reduced by peeling off effect of MDHTD and charge transfer resistance of corrosion reaction accordingly increased, so corrosion induced by corrosive chlorine ion penetrating the porous biofilm was commendably restrained. AFM、EPMA and EIS were initially used to research the mechanism of MDHTD against TGB in culture medium. Results showed that MDHTD could form integrated and compact adsorption film on Q235 steel in culture medium, it was difficult for metabolite by TGB to deposit on the carbon steel surface and phosphorus was enriched on biofilm surface. Furthermore, corrosion caused by oxygen concentration difference was effectively inhibitted by penetration, peeling off and adsorption effect of MDHTD. In a word, Microbiologically Influenced Corrosion in oilfield system could be restrained by addition o f MDHTD on account of its action on the self-existent activation effect by microbe.
引文
[1] 严瑞瑄主编. 水处理剂应用手册(第二版). 北京:化学工业出版社,2003:462~571
    [2] Stanley Leanne, Jones Brian L.. Microbe-assisted external corrosion in oil and pipelines. Pipeline World, 2004, 29 (4): 5~10
    [3] Rajasekar A., Maruthamuthu S., Muthukumar N., et al. Bacterial degradation of naphtha and its influence on corrosion. Corrosion Science, 2005, 47 (1): 257~271
    [4] 陆卫平,周德庆. 普通微生物学. 上海:复旦大学出版社,1990:131~140
    [5] Guo Ruihai, Yuan Xiaofeng. Hopf bifurcation for a ecological mathematical model on microbe populations. Applied Mathematics and Mechanics (English Edition), 2000, 21 (7): 767~774
    [6] 张学元,王凤平,杜元龙等. 油气工业中细菌的腐蚀和防护. 石油与天然气化工,1999,28(1):53~55
    [7] 陈希天. 新型杀菌剂双季铵溴盐的合成. 江汉石油学院学报,1993,15 (4):58~60
    [8] 曹业峰. 新一代杀菌剂双癸基二甲基氯化铵的合成. 精细化工,1994,11 (4):9~11
    [9] L. Massi, F. Guittard, S.Geribaldi, et al. Antimicrobial properties of highly fluorinated bis-ammonium salts. Antimicrobial Agents, 2003, 21 (5): 20~26
    [10] Reza Javaherdashti. A review of some characteristics of MIC caused by Sulfate-Reducing Bacteria: Past, Present and Future. Anti-Corrosion Methods and Materials, 1999, 46 (3):173~180
    [11] W. Lee, W. G. Charackalis. Corrosion of mild steel under anaerobic biofilm. Corrosion, 1993, 49 (3): 186~199
    [12] C.G. Peng, J.K. Park. Principal factors affecting microbiologically influenced corrosion of carbon steel. Corrosion, 1994, 50 (9): 669~675
    [13] R.E. Tatnall. Testing for the presence of Sulfate-Reducing Bacteria. Materials Performance, 1988, 27 (8): 71~80
    [14] 魏宝明. 金属腐蚀理论及其应用. 北京:化学工业出版社,1984:35~73
    [15] R.E. 布坎南. 伯杰细菌鉴定手册. 北京:科学出版社(第八版),1984:579~585
    [16] 阿特拉斯R.M.. 石油微生物学. 北京:石油工业出版社(第一版),1991:38~ 92
    [17] Zheng Yi-yun, Zhou Bo-qing, Li Qin. Present status and development of corrosion inhibitors for water treatment. Corrosion Science and Protection Technology, 2004, 16 (3): 101~104
    [18] Iverson W.P.. Research on the mechanisms of anaerobic corrosion. International Biodeterioration and Biodegradation, 2001, 47 (2): 63~70
    [19] W. P. Iverson. Microbe plays a considerable role in corrosion. Corrosion, 1985, 32 (10): 327~330
    [20] Von Wolzogen Kuhr, L.S. Van Vlogt, De Grafiteering. Electrobiochemical process manserobe gronden water. Corrosion, 1984, 40 (6): 147~165
    [21] Booth G.H., Eford L., Wakerley D.S.. Microbiological battery induced by Sulfate-Reducing Bacteria. British Corrosion Journal, 1988, 23 (3): 242~243
    [22] R.G.J. Edynean, J.Benson, C.J. Thomas. Biological influences on hydrogen effects in steel in seawater. Materials Performance, 1998, 37 (4): 40~44
    [23] Liu hongfang, Xu liming, Zheng jiasheng. The role of Fe2+ on the microbiologically induced corrosion of carbon steel. Materials Protection, 1999, 32 (10B): 268~270
    [24] Eashwar M.. Microbiologically influenced corrosion of steel during putrefaction of seawater: evidence for a new mechanism. Corrosion, 1993, 49 (2): 108~113
    [25] Edyvean R.G.. Biological influences on hydrogen effects in steel in seawater. Materials Performance, 1998, 37 (4): 40~44
    [26] Wilhelm Mark S., Kane Russell D.. Selection of materials for sour service in petroleum production. Journal of Petroleum Technology, 1986, 38 (11): 1051~1061
    [27] Damiel H., Pope E. Morris. Some experiences with microbiologically influenced corrosion of pipelines. Materials Performance, 1995, 34 (5): 23~28
    [28] 中华人民共和国石油天然气行业标准. SY/T 5329-94,碎屑岩油藏注水水质推荐指标及分析方法. 1995-01:7~9
    [29] J.E.G. Gonzalez, F.J.H. Santana, J.C. Mirza-Rosca. Effect of bacterial biofilm on 316 ss corrosion in natural seawater by EIS. Corrosion Science, 1998, 40 (12): 2141~2154
    [30] Ching-Gang Peng, Jae K. Park. Electrochemical mechanisms of corrosion influenced by Sulfate-Reducing Bacteria in aquatic systems. Water Research, 1994, 28 (8): 1681~1692
    [31] De Romero M.F.; Duque Z., De Rincon O.T., et al. Microbiological corrosion: Hydrogen permeation and Sulfate-Reducing Bacteria. Corrosion, 2002, 58 (5): 429~435
    [32] Iwona B.Beech. The potential use of atom force microscopy for studying corrosion of metals in the presence of bacterial biofilms-an overview. International Biodeterioration & Biodegradation, 1996, 39 (6): 141~149
    [33] T. Rogne, U. Steinsmo. Practical consequences of the biofilm in seawater and of chlorinated on the corrosion behavior of stainless steels. Stainless Steel World, 1997, 9 (2): 35~41
    [34] Arcangeli, J.P. Arvin. Modelling of toluene biodegradation and biofilm growth in a fixed biofilm reactor. Water Science and Technology, 1992, 26 (3-4): 617~626
    [35] G. Bradley, D.T. Pritchard. Surface charge characteristics of Sulfate-Reducing Bacteria and the initiation of biofilm on mild steel surface. Biofouling, 1990, 2 (4): 299~310
    [36] J.W. Costerton. Influence of biofilm on efficacy of biocides on corrosion-causing bacteria. Materials Performance, 1984, 23 (2): 13~17
    [37] Mattila K., Carpen L., Hakkarainen T., et al. Biofilm development during ennoblement of stainless steel in baltic sea water: a microscopic study. International Biodeterioration Biodegradation, 1997, 40 (1): 1~10
    [38] Billman Jim A.. Antibiofoulants: a practical methodology for control of corrosion caused by sulfate-reducing bacteria. Materials Performance, 1997, 36 (11): 43~48
    [39] Horacek G.L.. Field experience with an SRB rapid detection test kit. SPE Drilling Engineering, 1992, 7 (4): 275~278
    [40] M.L. Ludensky, F.J. Himpler, P.G. Sweeny. Control of biofilms with cooling water biocides. Materials Performance, 1998, 37 (8): 50~55
    [41] Flemming H.C., Schaule G... Biofouling (Microbial deterioration of materials -biofilm and biofouling: biofouling). Werkstoffe und Korrosion, 1994, 45 (1): 29~39
    [42] McNeil Michael B., Odom A.L.. Thermodynamic prediction of microbiologically influenced corrosion (MIC) by sulfate-reducing bacteria (SRB). ASTM Special Technical Publication, 1994, N 1232, p 173~179
    [43] Vossoughi M., Alemzadeh I.. Study of microbial problems and their control in the oilfield waters. Water Science and Technology, 1992, 25 (3): 263
    [44] J.W. Costerton. Influence of biofilm on efficacy of biocides on corrosion-causing bacteria. Materials Performance, 1984, 23 (2): 13~17
    [45] Rainha V.L., Fonseca I.T.E.. Kinetic studies on the SRB influenced corrosion of steel: a first approach. Corrosion Science, 1997, 39 (4): 807~820
    [46] D.A. Moreno, J.R. Ibars, I.B. Beech, et al. Biofilm formation on mild steel coupons by pseudomonas and desulfovibrio. Biofouling, 1993, 7 (2): 129~139
    [47] Schmid T., Panne U., Adams J., et al. Investigation of biocide efficacy by photoacoustic biofilm monitoring. Water Research, 2004, 38 (5): 1189~1196
    [48] White Christopher, Dennis John S., Gadd Geoffrey M.. A mathematical process model for cadmium precipitation by sulfate-reducing bacterial biofilms. Biodegradation, 2003, 14 (2): 139~151
    [49] Webster Barbara J., Newman Roger C. Producing rapid sulfate-reducing bacteria (SRB)-influenced corrosion in the laboratory. ASTM Special Technical Publication, 1994, N 1232, p 28~41
    [50] M.J. Robinson, P.J. Kilgallon. Embrittlement of cathodically protected high-strength, low-alloy steels exposed to Sulfate-Reducing Bacteria. Corrosion, 1994, 50 (8): 626~635
    [51] T. Hemmingsen, H.Vangdal, T.Valand. Formation of ferrous sulfide film on steel under anaerobic conditions. Corrosion, 1992, 48 (6): 475~481
    [52] J.A. Hardy, J. Bown. The corrosion of mild steel by biogenic sulfide film exposed to air. Corrosion, 1984, 40 (12) : 650~654
    [53] Brenda J. Little, Patricia A. Wanger, Kevin R. Hart, et al. Spatial relationships between bacteria and localized corrosion. Corrosion, 1996, 52 (5): 278~282
    [54] Tribollet B. Electrochemical sensors for biofilm and biocorrosion. Materials and Corrosion, 2003, 54 (7): 527~534
    [55] F. Sarioglu, R. Javaherdashti, N. Aksoz. Corrosion of a drilling pipe steel in an environment containing Sulphate-Reducing Bacteria. International Journal of Pressure Vessels and Piping, 1997, 73 (2): 127~131
    [56] H. Tributsch, J.A. Rojas-Chapana, G.C. Bartels, et al. Role of transient iron sulfate films in microbial corrosion of steel. Corrosion, 1998, 54 (3): 216~227
    [57] Nail C. An analysis of biofilm layers associated with microbially induced corrosion using FT-IR spectroscopy, new techniques for characterizing corrosion and stress corrosion; Minerals, Metals and Materials Society/AIME 1996: 275~291(ISBN)
    [58] Schmid T., Panne U., Haisch C., et al. Biofilm monitoring by photoacoustic spectroscopy. Water Science and Technology, 2003, 47 (5): 25~29
    [59] G.J. Licina, G. Nekoksa, R.L. Howard. An electrochemical method for on-line monitoring of biofilm activity in cooling water using the biogeorge probe. Microbiologically Influenced Corrosion Testing [Proc.Conf.], 1992, (November 16~17)
    [60] Chen Chin-Yu, Swei Woan-Jiun. Modular method and device for the evaluation of the ability of biocide to penetrate biofilm. Biotechnology Advances, 1997, 15 (3-4): 748
    [61] S. Mohanan, S. Maruthamuthu, A. Mani, et al. Corrosion control by freshwater biofilm formation. Anti-Corrosion Methods and Materials, 1996, 43 (5): 23~27
    [62] Stewart Philip S., Hamilton Martin A., Goldstein Brian R., et al. Modeling biocide action against biofilms. Biotechnology and Bioengineering, 1996, 49 (4): 445~455
    [63] Tammy W., Gaffney Christopher L.. Field performance of a new biocide for biofouling control in water treatment applications. Materials Performance, 1998, 37 (6): 50~55
    [64] M.J. Franklin, D.E. Nivens, A.A. Vass, et al. Effect of chlorine and chlorine/bromine biocide treatments on the number and activity of biofilm bacteria and on carbon steel corrosion. Corrosion, 1991, 47 (2):128~134
    [65] L.A. Grad, A.B. Theis. Comparative biocidal efficiency vs Sulfate-Reducing Bacteria. Materials Performance, 1993, 32 (6): 59~62
    [66] Huang Hong-Jun, Wan Hong-Jing, Li Zhi-Guang, et al. Application of XPS in mechanism studies of volatile corrosion inhibitor inhibiting metal corrosion. Proceedings of the International Symposium on Test and Measurement, 2003, 5: 3779~3780
    [67] Hui-Long Wang, Hong-Bo Fang, Jia-Shen Zheng. Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound. Materials Chemistry and Physics. 2002, 77 (9): 655~661
    [68] 郑家燊,黄魁元. 缓蚀剂科技发展历程的回顾与展望. 材料保护,2000,33 (5):11~15
    [69] A.A. El-Shafei, M.N.H. Moussa, A.A. El-Far. The corrosion inhibition character of thiosemicarbazide and its derivatives for C-steel in hydrochloric acid solution. Materials Chemistry and Physics, 2001, 76 (6): 175~180
    [70] T. Kawai, H. Nishihara, K. Aramaki. Polarization and impedance studies on the effects of anion and cation inhibitors on corrosion of solution of ferric chloride. Corrosion Science, 1996, 38 (2): 225~237
    [71] 汪的华,卜宪章,甘复兴等. 微分极化曲线对缓蚀剂阳极脱附行为的表征. 腐蚀科学与防护技术,1999,11 (1):32~36
    [72] 甘复兴,汪的华,邹津耘. 界面缓蚀剂的吸附稳定性. 电化学,1999,5 (2):159~161
    [73] 唐子龙,宋师哲. 有机缓蚀剂的量子化学研究. 中国腐蚀与防护学报,1995,15 (3):229~236
    [74] Ma Li, Lu Ren-Qing, Cao Zuo-Gang. The influence of heteropoly compounds on the corrosion behaviour of steel. Journal of Molecular Science, 1999, 15 (3): 183~187
    [75] F. Berthier, J.P. Diard. Method for determining the faradic impedance of an electrode reaction: application to metal corrosion rate measurements. Corrosion, 1995, 51 (2): 108~109
    [76] 查全性. 电极过程动力学(第二版). 北京:科学出版社,1987:71
    [77] 张永君,杨昌柱,彭珂如等. 缓蚀剂与吸附作用. 江西电力,1999,23 (2):44~47
    [78] M.A. Quraishi, W.M. Khan, M. Ajmal, et al. Influence of some thiazole derivatives on the corrosion of mild steel in hydrochloric acid. Anti-Corrosion Methods and Materials, 1996, 43 (2): 5~8
    [79] 高延敏,陈家坚,雷良才等. 有机缓蚀剂分子在金属表面的化学吸附过程和分子设计分析. 中国腐蚀与防护学报,2000,20 (3):142~148
    [80] Reza Javaherdashti. How corrosion affects industry and life. Anti-Corrosion Methods and Materials, 2000, 47 (1): 30~34
    [81] Diana Darling, Ram Rakshpal. Green chemistry applied to corrosion and scale inhibitors. Materials Performance, 1998, 37 (2): 42~45
    [82] 汪的华,卜宪章,邹津耘等. β-苯胺基苯丙酮在铁电极上的吸附动力学研究. 电化学,1998,4 (1):23~27
    [83] Walsh D.. Environmentally acceptable methods control pipeline corrosion at lower cost. Materials Performance, 1997, 36 (2): 71~76
    [84] Henry Von Rege, Wolgang Sand. Evaluation of biocide efficacy by microcalorimetric determination of microbial activity in biofilms. Journal of Microbiological Methods, 1998, 33 (6): 227~235
    [85] Jim A. Billman. Antibiofoulants: A practical methodology for control of corrosion caused by Sulfate-Reducing Bacteria, Materials Performance, 1997, 36 (9): 43~48
    [86] Nasr-El-Din H.A., Rosser H.R., Al-Jawfi M.S.. Formation damage resulting from biocide/corrosion inhibitor squeeze treatments. Proceedings-SPE International Symposium on Formation Damage Control, 2000, 783~801
    [87] Zaikov G.E., Gumargalieva K.Z., Kalinina I.G., et al. Stabilization of polymers from the influence of biological media. Kinetic method of biocide efficiency estimation. Polymer Degradation and Stability, 1995, 48 (2): 243~253
    [88] 汪伟业,于洋. 实用抗菌药物与激素手册. 上海科技教育出版社[第一版],1989:182
    [89] Chen Chris Zhisheng, Cooper Stuart L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials, 2002, 23 (16): 3359~3368
    [90] 刘志恒. 现代微生物学. 北京:科学出版社,2003:427~499
    [91] Mendez-Sanchez, Noemi Cutright, Teresa J., et al. Simultaneous evaluation of composite biodeterioration and changes in the physicochemical and biological water characteristics. International Biodeterioration and Biodegradation, 2003, 52 (3): 187~196
    [92] 刘瑞卿,韦良霞,王富华. 稳定性二氧化氯的生产工艺及在油田回注污水中的应用研究. 油田化学,2004,21(3):227~229
    [93] 包永照. 季铵盐的研究进展. 精细化工,2002,19 (8):14~16
    [94] 江山,王立,俞豪杰等. 新型有机高分子抗菌剂. 高分子通报,2002,20(6):57~62
    [95] V. Branzoi, F. Branzoi, M. Baibarac. The Inhibition of the corrosion of armco iron in HCl solutions in the presence of surfactants of type of N-alkyl quaternary ammonium salts. Materials Chemistry and Physics, 2000, 65 (9): 288~297
    [96] Rosser H.R. Jr., Nasr-El-Din H.A., Al-Shammari N.A., et al. Injection water treatment at the source: Biocide-enhanced corrosion inhibitor squeeze treatments of water supply wells in a Central Arabia oilfield. Proceedings-SPE International Symposium on Oilfield Chemistry, 1999, SPE 50740, p 389~401
    [97] 马家骧. 十六烷基二甲基溴化铵和十六烷基癸基二甲基溴化铵的合成. 南京化工学院学报,1995,17 (2):19~21
    [98] McBain A.J., Gilbert P.. Biocide tolerance and the harbingers of doom. International Biodeterioration and Biodegradation, 2001, 47 (2): 55~61
    [99] 周德庆主编. 微生物学实验手册. 上海科学技术出版社,1983:73
    [100] 李淑琏. 新型工业杀菌剂异噻唑啉酮类化合物的合成研究. 精细化工,1999,16 (4):4~6
    [101] 唐和清. 植物提取液抑制硫酸盐还原菌生长的研究. 油田化学,1990,7 (3):18
    [102] Chapman John S.. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. International Biodeterioration and Biodegradation, 2003, 51 (4): 271~276
    [103] P.D. Gibert, P.A. Attwood, T.D.B. Morgan, et al. Biofilm associated corrosion. Industrial Corrosion, 1989, 7 (9): 13~18
    [104] Hockin, Simon L., Geoffrey M.. Linked redox precipitation of sulfur and selenium under anaerobic conditions by Sulfate-Reducing Bacterial biofilms. Applied and Environmental Microbiology, 2003, 69 (12): 7063~7072
    [105] McLeod, Elise S., MacDonald, et al. Distribution of Shewanella putrefaciens and Desulfovibrio vulgaris in sulphidogenic biofilms of industrial cooling water systems determined by fluorescent in situ hybridization. Water SA, 2002, 28 (2): 123~128
    [106] Liu H., Xu L., Zeng J.. Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel. British Corrosion Journal, 2000, 35 (2): 131~135
    [107] McCormack P., Jones P., Hetheridge M.J., et al. Analysis of oilfield produced waters and production chemicals by electrospray ionisation multi-stage mass spectrometry (ESI-MSn). Water Research, 2001, 35 (15): 3567~3578
    [108] 陈艳丽,宋永生. 双长链双季铵盐化合物的发展概况. 济南大学学报,1995,5 (4):62~68
    [109] Liu Hongfang, Xu Liming, Zheng Jiaxin, et al. New bactericide for biocide resistant Sulfate Reducing Bacteria. Materials Performance, 2000, 39 (4): 52~55
    [110] 许立铭,董泽华. 甲硝羟乙唑的杀菌性能研究. 油田化学,1994,11 (2):17~19
    [111] 陶武荣,董泽华,刘靖等. 甲硝唑改性物的合成及其对SRB 杀菌性能的研究. 工业水处理,2000,20 (8):20~22
    [112] 赵国玺. 表面活性剂物理化学(第二版). 北京:北京大学出版社,1991:43
    [113] 王一尘编译. 阳离子表面活性剂的合成. 北京:轻工业出版社,1984:94~95
    [114] 池田功,崔正刚. 新型Gemini 阳离子表面活性剂的合成和性能(1)-从长链烷基二甲基胺及其盐酸盐和环氧氯丙烷合成双烷基双季铵盐阳离子. 日用化学工业,2001,3:27~30
    [115] 郭稚弧等编著. 缓蚀剂及其应用. 武汉:华中工学院出版社,1987:133
    [116] 郑家燊. 金属电化学和缓蚀剂保护技术. 上海:上海科学技术出版社,1998:120
    [117] 查全性. 电极过程动力学导论. 科学出版社,1976:67~109
    [118] A.A. El-Awady, B.A. Abd-El-Nabey, S.G. Aziz. Kinetic-thermodynamic and adsorption isotherms analyses for the inhibitor of the acid corrosion of steel by cyclic and open-chain amines. J. Electrochem. Soc., 1992, 139 (8): 2149~2154
    [119] 罗明道,姚禄安,吴庆余等. 含二氮五元杂环类化合物的电子结构与缓蚀性能的关系. 中国腐蚀与防护学报,1996,16(3):195~199
    [120] 福井谦一著. 李荣森译. 化学反应与分子轨道. 北京:科学出版社,1985:233
    [121] 屈钧娥,郭兴蓬. 缓蚀剂对原子力显微镜探针刮擦铜镍合金加速溶解的作用. 材料保护,2004,37(12):7~8
    [122] Y.J. Tan, S. Bailey, B. Kinsella. An investigation of the formation and destruction of corrosion inhibitor films using Electrochemical Impedance Spectroscopy (EIS). Corrosion Science, 1996, 38 (9): 1545~1561
    [123] P.R. Roberge, E. Halliop, V.S. Sastri. Corrosion of mild steel using Electrochemical Impedance Spectroscopy data analysis. Corrosion, 1992, 48 (6): 447~454
    [124] 宋诗哲. 腐蚀电化学研究方法. 北京:化学工业出版社,1998:45~68
    [125] M. Lagrenee, B. Mernari, M. Bouanis, et al. Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4h-1,2,4-triazole on mild steel corrosion in acidic media. Corrosion Science, 2002, 44 (6): 573~588
    [126] M.El Azhar, M. Traisnel, B. Mernari, et al. Electrochemical and XPS studies of 2,5 –bis (N-pyridyl) -1,3,4 -thiadiazoles adsorption on mild steel in perchloric acid solution. Applied Surface Science, 2002, 185 (8) : 197~205
    [127] H. Ashassi-Sorkhabi, S.A. Nabavi-Amri. Polarization and impedance methods in corrosion inhibition study of carbon steel by amines in petroleum-water mixtures. Electrochemical Acta., 2002, 47 (11): 2239~2244
    [128] 曹楚南. 腐蚀电化学. 北京:化学工业出版社,1985:42~76
    [129] K.R. Trethewey, P.R. Roberge. Modelling of CO2 corrosion mechanism, modelling aqueous. Corrosion, 1994, 50 (3): 317~335
    [130] B. Mishra, S. Al-Hassan, D.L. Oison, et al. Development of a predictive model for activation controlled corrosion of steel in solutions containing carbon dioxide. Corrosion, 1997, 53 (11): 134~150
    [131] Malik H.. Influence of C16 quaternary amine on surface films and polarization resistance of mild steel in carbon dioxide-saturated 5% sodium chloride. Corrosion, 1995, 51 (4): 321~328
    [132] 顾继东. 微生物对金属的腐蚀和对有机材料的分解. 材料工程,1999,(7):3~7
    [133] 祖若夫,胡宝荣,周德庆编著. 微生物学实验教程. 上海:复旦大学出版社,1993:140
    [134] API RP-38, “Recommended Practice for Biological Analysis of Water Flood Injection Waters”. Washington DC: API, 1995: 20~50
    [135] Chapman John S.. Biocide resistance mechanisms. International Biodeterioration and Biodegradation, 2003, 51 (2): 133~138
    [136] 纪云岭,张爱社,张丽,等. 中原油田注水水质改性技术. 油田化学,2003,20(1):13~16
    [137] 刘宏芳,冯绪文,许立铭,等. 细菌的变异及其腐蚀行为的研究. 材料保护,2000,33(7):5~6
    [138] A. Minhaj, P.A. Saini, M.A. Quraishi. A study of natural compounds as corrosion inhibitors for industrial cooling systems. Corrosion Prevention & Control, 1999, 46 (2): 32~38
    [139] F. Bentiss, M. Lagrenee, M. Traisnel. The corrosion inhibition of mild steel in acidic media by a new triazole derivative. Corrosion Science, 1999, 41 (4): 789~803
    [140] 王佳,曹楚南. 缓蚀剂阳极脱附现象的研究IV 缓蚀剂浓度极值现象. 中国腐蚀与防护学报,1996,16(1):15~19
    [141] 王佳,曹楚南,陈家坚等. 缓蚀剂阳极脱附现象的研究I 缓蚀剂阳极脱附现象. 中国腐蚀与防护学报,1995,15(4):241~246
    [142] M.O. Benka-Coker, W. Metseagharun, J.A. Ekundayo. Abundance of Sulphate Reducing Bacteria in Niger Delta oilfield waters. Bioresource Technology, 1995, 54: 151~154
    [143] Beer D., Stoodley P., Roe F., et al. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, 1994, 43 (11): 1131~1136
    [144] [日] 田中敬一,永谷隆编辑,李文镇,应国华等译. 图解扫描电子显微镜-生物样品制备. 北京:科学出版社,1984:60,256
    [145] I.B. Beech, C.W.S. Cheung, D.B. Johnson, et al. Comparative studies of bacterial biofilm on steel surface using Atomic Force Microscopy and Environmental Scanning Electron Microscopy. Biofouling, 1996, 10 (3): 65~77
    [146] Salvago G., Magagnin L.. Biofilm effect on the cathodic and anodic processes on stainless steel in seawater near the corrosion potential: Part 1-corrosion potential. Corrosion, 2001, 57 (8): 680~692
    [147] Okabe Satoshi, Satoh Hisashi, Itoh Tsukasa, et al. Microbial ecology of sulfate-reducing bacteria in wastewater biofilms analyzed by microelectrodes and fish (fluorescent in situ hybridization) technique. Water Science and Technology, 1999, 39 (7): 41~47
    [148] Stewart P.S., Murga R., Srinivasan R., et al. Biofilm structural heterogeneity visualized by three microscopic methods. Water Research, 1995, 29 (8): 2006~2009
    [149] Per Halkjaer, Nielsen. Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic conditions. Application Environment Microbiology, 1995, 53 (1): 27~32
    [150] 刘靖,郑家燊,许立铭等. 电场和杀菌剂对杀灭生物膜下硫酸盐还原菌的协同作用. 腐蚀科学与防护技术,2002,14(1):23~26
    [151] Tanji Y., Itoh T., Nakano T.; et al. Chemical analysis of an artificial biofilm that enhances or inhibits carbon steel corrosion. Corrosion, 2002, 58 (3): 232~239
    [152] Zbigniew Lewandowski, Wayne Dickinson, Whoncheel Lee. Electrochemical interactions of biofilms with metal surfaces. Wat. Sci. Tech. 1997, 36 (1): 295~302
    [153] Herbert H.P. Fang, Li-Chong Xu, Kwong-Yu Chan. Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Research, 2002, 36: 4709~4716
    [154] Starosvetsky D., Khaselev O., Starosvetsky J.S., et al: Effect of iron exposure in SRB media on pitting initiation. Corrosion Science, 2000, 42 (2): 345~359
    [155] Javaherdashti, Reza. Modeling microbiologically influenced corrosion of N-80 carbon steel by fuzzy calculus. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35 A (7): 2051~2056
    [156] Kh. M. Ismail, A. Jayaraman, T. K. Wood, et al. The influence of bacteria on the passive film stability of 304 stainless steel. Electrochimica Acta., 1999, 44 (7): 4685~4692
    [157] LeChevallier Mark W., Lowry Cheryl D., Lee Ramon G., et al. Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. Journal of the American Water Works Association, 1993, 85 (7): 111~123
    [158] Fouad Bentiss, Michel Traisnel, Leon Gengembre, et al. A new triazole derivative as inhibitor of the acid corrosion of mild steel: Electrochemical studies, Weight loss determination, SEM and XPS. Applied Surface Science, 1999, 52 (3): 237~249
    [159] F. kadirgan, S. Suzer. Electrochemical and XPS studies of corrosion behaviour of a low carbon steel in the presence FT2000 Inhibitor. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116: 597~601
    [160] Satoshi Okabe, Takayuki Matsuda, Hisashi Satoh, et al. Sulfate reduction and sulfide oxidation in aerobic mixed population biofilms. Water Science and Technology, 1998, 37 (4-5): 131~138
    [161] Bae W., Rittmann B.E.. A structural model of dual-limitation kinetics. Biotechnology and Bioengineering, 1996 (b), 49 (2): 683~689
    [162] Daniel R. Noguera, Gonzalo Pizarro, David A. Stahl, et al. Simulation of multispecies biofilm development in three dimensions. Wat. Sci. Tech., 1999, 39 (7): 123~130
    [163] Picioreanu C., Van Loosdrech M.C.M.. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnology and Bioengineering, 1998, 58 (5): 101~116
    [164] Picioreanu C., Van Loosdrecht M.C.M., Heijnen J.J.. A new combined differential-discrete cellular automaton approach for biofilm modeling, Application for growth in beads. Biotechnology and Bioengineering, 1998, 57 (8): 718~731
    [165] Hermanowicz S.W.. A model of two-dimensional biofilm morphology. Water Science and Technology, 1997, 37 (4-5): 213~222
    [166] 孔祥平,包木太,马代鑫,等. 油田水中细菌群落分析. 油田化学,2003,20(4):372~376
    [167] 陈蓉,金华,朱杰. 油田注水细菌快速测定方法研究. 石油钻采工艺,2002,24 (增刊):84~86
    [168] 易绍金,丁齐柱,薛燕. 快速测定硫酸盐还原菌菌量的培养-镜检法. 江汉石油学院学报,1992,14(4):49~52
    [169] 徐建国主编. 分子医学细菌学. 北京:科学技术出版社,2000:137
    [170] 曹楚南. 腐蚀电化学原理(第二版). 北京:化学工业出版社,2004:279~283
    [171] 樊友军,皮振邦,华萍等. 一种化能异养菌对碳钢腐蚀的电化学研究. 腐蚀科学与防护技术,2001,13(5):254~257
    [172] M.J. Franklin, D.E. Nivens, J.B.. Guckert, et al. Technical note: effect of Electrochemical Impedance Spectroscopy on microbial biofilm cell numbers, viability, and activity. Corrosion, 1991, 47 (7): 519~522
    [173] 陆柱,郑士忠,钱滇子等. 油田水处理技术. 北京:石油工业出版社,1992:209~248
    [174] Toshiaki Ohtsuka, Hirotaka Yamada. Effect of ferrous ion in solution on the formation of anodic oxide film on iron. Corrosion Science, 1998, 40 (7): 1131~1138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700