基于能量耗散原理的土与结构接触面模型研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土与结构接触面的力学行为是土与结构相互作用的微观反映,其主要以土与混凝土接触面为代表,它涉及到岩土工程的诸多领域。详细研究接触面的力学行为并建立相应的本构模型具有重要的理论意义和实用价值。本文从基础试验、接触面单元、接触面本构模型等方面对土与混凝土接触面的力学行为进行了系统的研究;建立了基于能量耗散假定的3参数应力应变模型,进而建立了接触面正反向剪切本构模型;最后在岩土工程中推广了新3参数应力应变模型的应用,并通过数学严格证明了新3参数应力应变模型与传统模型的关系,主要内容如下:
     (1) 通过多种接触面直剪试验,分析了接触面抗剪强度参数随接触类型和土体含水率变化的规律,指出了接触面的力学行为与结构的亲水性密切相关。
     (2) 进行了土与混凝土接触面4个含水率、4个正向剪切比的正反向单剪试验,研究了不同含水率与正向剪切比对接触面反向抗剪强度的影响规律,观察了接触面剪切破坏的位置。
     (3) 分析试验数据,基于热力学原理和能量耗散假定,得到了接触面应力~应变曲线的控制微分方程,建立了更为适用的接触面3参数应力~应变新模型;给出了其相应的拟合评价体系,通过多种试验数据对3参数模型进行了验证;从能量耗散和微分方程的角度,分析了本文3参数模型与2参数模型的关系,引用数学特征“半值收敛指数”指出了传统模型在理论和数学上的不足。
     (4) 基于能量耗散的接触面应力应变3参数模型,建立了接触面正向剪切模型。
     (5) 在接触面正反向单剪试验的基础上,明确提出了“临界正向剪切比”的概念;建立了基于能量耗散原理的接触面正反向剪切本构模型。
     (6) 从能量耗散的机理出发,将本文3参数应力应变模型推广到土体本构模型和膨胀土的膨胀变形、桩极限承载力的增长、垃圾填埋封顶沉降、软土地基工后沉降等一类岩土工程课题的表征中;最后统一了这类课题的本质:具有相同的基于能量耗散的控制微分方程,并从理论上证明了其各自传统模型的缺陷。
     (7) 从数学上严格证明了2参数双曲线模型、指数曲线模型均是3参数模型的特例;采用2种方法证明了初始导数、极限值对应相等的情况下,指数曲线模型、2参数双曲线模型分别是3参数模型的上界、下界;采用3种方法证明了指数曲线模型数值大于对应的2参数双曲线模型数值。
Soil-concrete interface determines the behavior of many geotechnical structures, and it is the micro-representive of soil-structure interaction. Therefore, proper understanding of the interface shearing mechanisms and establishing its good constitutive model are essential in both theory aspect and practical aspect. In this paper, soil-concrete interface behavior is comprehensively studied including laboratory tests, interface element and interface constitutive law, and a new constitutive model considering previous shear ratio is proposed based on laboratory tests and some potential energy dissipating theory postulates. The mew-built 3-parameter model is generalized to some geotechnical subjects. Finally, pure mathematic analysis on relationship between the new model and traditional models are conducted. The main contents can be summarized as follows:(1) According to direct shear tests on four kinds of interface types, analysis on interface behavior changed with soil water content and contacted structure is conducted, and conclusion that interface behavior depends closely on structure hydrophilic nature is made.(2) Improved simple shear tests on soil-concrete interface, considering four soil water contents and four previous shear ratios, are accomplished, and interface behaviors under different soil water contents and previous shear ratios are analyzed in details. Shear failure position of the interface is recorded, too.(3) Combined with tests results and potential energy dissipating theory postulates, control differential equation for interface stress-strain relationship is developed, and a new 3-paramenter model for it is established. Appraisal factor for the 3-paramenter model is presented and fitting accuracy of the new model is proved by many laboratory tests results. Form potential energy dissipating theory and control differential equation angles, the relationships between the 3-paramenter model and corresponding traditional models are discussed, and mathematics "half value index" is used to point out deficiency of traditional models in both mathematics and mechanical theory.(4) A new interface constitutive model neglecting previous shear ratio is presented on the basis of above established 3-parameter stress-strain model.(5) Based on improved simple shear tests on soil-concrete interface, the concept "critical previous shear ratio" is put forward, then a new interface constitutive model based on potential energy dissipating theory considering previous shear ratio is proposed.(6) Form potential energy dissipating principle and control differential equation angles, the developed 3-parameter model is generalized to constitutive model of soil itself
    and to one kind time effect geotechnical subject, including expansive deformation of expansive soil, time-dependent ultimate bearing capacity of pile, post-settlement of municipal refuse landfill and post-settlement of soft foundation. Finally, the nature of this kind subject is indicated that they have same control differential equation, and deficiency of their traditional models in both mathematics and mechanical theory is analyzed, too.(7) According pure mathematic proof, conclusion that 2-parameter hyperbolic model and exponential model are both simplified types of the new 3-parameter model is made. Two mathematic methods are presented to prove that 2-parameter hyperbolic model and exponential model are the superior limit and lower limit of the corresponding new 3-parameter model respectively. Three mathematic methods are put forward to confirm that the value of exponential model is larger than that of corresponding 2-parameter hyperbolic model.
引文
[1] 师昌旭.是到了该重视基础研究的时候了[J].科技导报,2005,23(8):卷首寄语
    [2] 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1995.
    [3] 卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报,2000,2:71-75.
    [4] 张冬霁,卢廷浩.一种土与结构接触面模型的建立及应用[J].岩土工程学报,1998,20(6):62-66.
    [5] 恩格斯.自然辩证法[M].北京:人民出版社,1971:249.
    [6] 同济大学数学教研室.高等数学(上册)[M].北京:高等教育出版社,1995.
    [7] 南京大学物理化学教研室.物理化学(下册)[M].北京:高等教育出版社,1992.
    [8] Ferdinand P Beer, E Russell Johnston. Vector machanics for enginers[M]. New York: Mccraw-Hill book company, 1988.
    [9] Jesse S Doolittle, Francis J Hale. Thermodynamics for engineers[M]. New York: Johns and Sons, 1983
    [10] 杨本洛.经典热力学中若干基本概念的探讨[M].北京:科学出版社,1996.
    [11] 杨东华.不可逆过程热力学原理及工程应用[M].北京:科学出版社,1989.
    [12] 蒋汉文,邱信立.热力学原理及应用[M].上海:同济大学出版社,1990.
    [13] Le Pape Y, Sieffen J G. Application of thermodynamics to the global modeling of shallow foundations on friction material[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(14): 1377-1408.
    [14] Sheng D, Sloan S W, Gens A. A constitutive model for unsaturated soils: Thermomechanical and computational aspects[J]. Computational Mechanics, 2004, 33(6): 453-465.
    [15] Lu X B. Thermo-visco-plastic instability analysis of saturated soil[J]. International Journal of Non-Linear Mechanics, 2001, 36, (4): 687-692.
    [16] Rubin M B. Elastic-viscoplastie model for large deformation of soils[J]. Journal of Engineering Mechanics, 1996, 116(9): 1995-2016.
    [17] 孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学,1999,20(3):7-12.
    [18] Hayir A, Todorovska M I, Trifunac M D. Antiplane response of a dike with flexible soil-structure interface to incident SH waves[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(7): 37-44.
    [19] 宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版社,1993.
    [20] Dutta Sekhar Chandra, Roy Rana. A critical review on idealization and modeling for interaction among soil-foundation-structure system[J]. Computers and Structures, 2002, 80(20): 1579-1594.
    [21] 梅国雄.固结有限层理论及其应用[博士学位论文D].南京:河海大学,2002.
    [22] Butterfield R, Banerjee P K. The Elastic Analysis of Compressible Piles and Pile Groups[J]. Geotechnique, 1971, 21(1): 43-60.
    [23] Randolph M F, Worth C P. Analysis of Deformation of Vertically loaded piles[J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 1978, 104(12): 1465-1488.
    [24] Poulos H G, Davis E H. Pile Foundation Analysis and Design[A]. In: Series in Geotechnical Engineering[C]. New York: John Wiley &sons, 1977: 50-58.
    [25] Cooke R W. A study of load transfer and settlement under working condition[J]. Geotechnique, 1979, 29(2): 113-147.
    [26] Cooke R W. A contribution to design philosophy[J]. Geotechique, 1986, 36(2): 169-203.
    [27] 冯国栋、刘祖德.群桩基础的荷载传递函参数之确定[A].中国土木工程学会第五届土力学与地基基础学术会议论文集[C].北京:中国建筑工业出版社,1990:220-225.
    [28] 胡汉兵,茜平一,陈小平.桩-承台-土共同作用三维有限元分析[J].工程勘察,1999(6):1-4.
    [29] 尚守平,杜运兴,周芬.桩箱(筏)基础与地基土共同作用的分析研究[J].土木工程学报,2001,34(4):94-97.
    [30] Burland J B, Broms B B, de Mello VFB. Behavior of foundation and structures[A]. In: Proceedings of 9th international conference of soil mechanics and foundation engineering[C]. Tokyo, 1977: 495-546.
    [31] 刘利民,姜静,陈竹昌.复台桩基工作性状的非线性分析[J].土木工程学报,2001,34(1):56-60.
    [32] 宰金珉,杨嵘昌.桩周土非线形分析的广义剪切位移法[J].南京建筑工程学院学报,1993,(1):1-16.
    [33] 宰金珉.群桩与土和承台非线形共同作用的半数值半解析方法[J].建筑结构学报,1996,17(1):63-74.
    [34] 宰金珉,凌华,王旭东.桩筏基础非线形共同作用数值分析[J].南京工业大学学报,2002,24(5):1-6.
    [35] 宰金珉.复合桩基承台下土的极限承载力提高值理论解[J].岩土工程学报,1997,19(4):39-48.
    [36] Kucukarslan S, Banerjee P K. Inelastic dynamic analysis of pile-soil-structure interaction[J]. International Journal of Computational Engineering Science, 2004, 5(1): 245-258.
    [37] 管自立.疏桩基础设计实例分析与探讨[J].建筑结构,1993,(11):42-46.
    [38] 黄绍铭.软土中桩基沉降计算[A].中国土木工程学会第4届土力学与地基基础学术会议论文集[C].北京:中国建筑工业出版社,1986:77-82.
    [39] 候学渊,杨敏.软土地基变形控制理论和工程实践[M].上海:同济大学出版社,1996.
    [40] 刘金砺.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2002,24(2),151-157.
    [41] 龚晓南,陈明中.桩筏基础设计方案优化若干问题[J].土木工程学报,2001,34(4):117-110.
    [42] 王旭东,宰金珉.基于强度和变形双重控制的复合桩基优化设计[J].基建优化,2002,23(6):42-45.
    [43] 卢廷浩,汪荣大.瀑布沟土石坝防渗墙应力变形分析[J].河海大学学报,1998,26(2):41-44
    [44] Corwin Arthur B, Tuozzolo Thomas J, Schmall P C. Groundwater control at difficult geological interfaces[J]. Geotechnical Special Publication, 1999, (90): 957-968.
    [45] Brauns J, Bieberstein A, Reith H. A testing unit for monitoring wall permeability in situ[J]. Geotechnical Testing Journal, 2003, 26(2): 265-239.
    [46] Ling H I, Cardany C P, Sun L X, Hashimoto H. Finite element study of a geosynthetic-reinforced soil retaining wall with concrete-block facing[J]. Geosynthetics International, 2000, 7(3): 163-188.
    [47] Maher M M, Akl A Y, Metwally K G. Advanced analysis of concrete pipe-soil interaction[J]. Journal of Engineering and Applied Science, 2005, 52(3): 437-456.
    [48] Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles[J]. Computers and Geotechnics, 2002, 29(5): 363-386.
    [49] Ta L D, Small J C. Analysis of piled raft systems in layered soils[J]. International Journal for Numerical and Analytical Methods in Geomechanic, 1996, 20(1): 57-72.
    [50] Ta L D, Small J C. An approximation for analysis of raft and piled raft foundations[J]. Computers and Geotechnics, 1997, 20(2): 105-123.
    [51] Ashour M, Norris G. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 2000, 126(5): 420-428.
    [52] Kerop Daniel Janoyan. Interaction between soil and full scale drilled shaft under cyclic lateral load[PHD thesis]. Los Angeles: University of California, 2001.
    [53] Ashford S, Rollins K. full-scale behavior of laterally loaded deep foundations in liquefied sand: test results[R]. Structural systems research report, University of California at San Diego, La Jolla, 2000.
    [54] Boulanger R. seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 1999, 125(9): 750-759.
    [55] Chen L, Poulos H G. A method of pile-soil interaction analysis for piles subjected to lateral soil movement[J]. Procedings of 8th International Conference on Computer Methods and Advances in Geomechanics, 1994, (3): 2311-2317.
    [56] Stavridis L T. Simplified analysis of layered soil-structure interaction[J]. Journal of Structural Engineering, 2002, 128(2): 224-230.
    [57] Potnoy J G. Skin Friction between various soils and construction materials[J]. Geotechnique, 1961, 11(4): 339-53.
    [58] Desai C S, Drumm E C, Zaman M M. Cyclic testing and modeling interfaces[J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 1985, 111(6): 793-815.
    [59] Yin Zong-Ze, Zhu Hong, Xu Guo-Hua. A study of deformation in the interface between soil and concrete[J]. Computers and Geotechnics, 1995, 17(1): 75-92.
    [60] 殷宗泽,朱泓,许国华.土与结构材料接触面的变形及数值模拟[J].岩土工程学报,1994,16(3):14-22.
    [61] 朱泓,殷宗泽.土与结构材料接触面性能研究综述[J].河海科技进展,1994,14(4):1-8.
    [62] Jewell R A. Direct shear test on sand[J]. Geotechnique, 1989, 39(2): 309-322.
    [63] Ooi L H. A constant normal stiffness direct shear device for static and cyclic loading[J]. Geotechnical Testing, 1987, 10(1): 3-22.
    [64] 张明义,邓安福.桩-土滑动摩擦的实验研究[J].岩土力学,2002,23(2):246-249.
    [65] 胡黎明,濮家骝.土与结构接触面物理力学特性试验研究[J].岩土工程学报,2001, 23(4):431-435.
    [66] 刘希亮,罗静,赵光思,等.高应力下砂与不同结构接触面抗剪强度的试验研究[J].焦作工学院学报,2001,20(3):18-21.
    [67] Coyel H M. skin friction for steel piles in sand[J]. Journal of soil mechanic and foundation division, American Society of Civil Engineers, 1967, 93(6): 261-278.
    [68] Kishiida H, Uesugi M. Test of interface between san and steel in the simple shear apparatus[J]. Journal of Geotechnique, 1987, 37(1): 45-52.
    [69] Vucetic M. Specimen size effect in simple shear teat[J]. Journal of Geotechnical Engineering Division, American Society of Civil Engineers, 1982, 108(12): 1567-1585.
    [70] Desai C S, Ma Youzhi. Modeling of joints and interfaces using the disturbed-stated concept[J]. International Journal for Numerical and Analytical Methods in Geomechanic, 1992, 16(1): 623-53.
    [71] Desai C S. A dynamic multi degree-of freedom shear device[M]. Virginia Tech: Blacksburg, 1980.
    [72] 吴军帅,姜朴.土与混凝土接触面的动力剪切特性[J].岩土工程学报,1992,14(2):61-66.
    [73] Liu Sihong, Lu Tinghao. Microscopic shear mechanism of granular materials in simple shear by DEM[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 608-611.
    [74] 高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,33(4):42-46.
    [75] 张嘎,张建民.大型土与结构接触面循环加载剪切仪的研制及应用[J].岩土工程学报,2003,25(2):149-154.
    [76] 张丙印,付建,李全明.散粒体材料间接触面力学特性的单剪试验研究[J].岩土力学,2004,25(10):1522-1526.
    [77] 张嘎,张建民.粗粒土与结构接触面的静动本构规律[J].岩土工程学报,2005,27(5):516-520.
    [78] 张嘎,张建民.粗粒土与结构接触面的可逆性与不可逆性剪胀规律[J].岩土力学,2005,26(5):699-705.
    [79] Clough G W, Duncan J M. Finite element analyses of retaining wall behavior[J]. Journal of soil mechanic and foundation division, American Society of Civil Engineers, 1971, 97(12): 1657-1673.
    [80] Brant J R T. Behavior of soil-concrete interfaces[M]. Canada: the University of Alberta, 1985.
    [81] 陈慧远.摩擦接触面单元及其分析方法[J].水利学报,1985,(4):44-50.
    [82] 钱家欢.接触面剪切流变特性试验研究[R].南京:河海大学,安关峰,高大钊.接触面单元塑性本构关系[J].土木工程学报,2001,34(1):88-91.
    [83] 朱泓.土与混凝土接触面变形的试验研究及其在桩土共同作用中的运用[硕士学位论文D].南京:河海大学,1993.
    [84] 胡黎明,濮家骝.土与结构接触面损伤本构模型[J].岩土力学,2002,23(1):6-11.
    [85] 胡黎明,濮家骝,王刚.接触面损伤本构模型应用于三维有限元分析[J].水利学报,2002,3:44-49.
    [86] Liming Hu, Jia liu Pu. Testing and modeling of soil-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 851-860.
    [87] Liming Hu, Jia liu Pu. Application of damage model for soil-structure interface[J]. Computers and Geotechnics, 2003, 30(2): 165-183.
    [88] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock[J]. Journal of soil mechanic and foundation division, American Society of Civil Engineers, 1968, 94(3): 637-660.
    [89] Gens A, carol I, Aionso EEA. Constitutive model for rock joints and formula and numerical implementation[J]. Computers and Geotechnics, 1990, 9(1): 3-20.
    [90] Kaliakin V N, Li J. Insight into deficiencies associated with commonly used zero-thickness interface elements[J]. Computers and Geotechnics, 1995, 14(2): 225-252
    [91] Zenkiewicz. Analysis of nonlinear problems with particular reference to jointed rock systems[A]. Proceedings of 2nd conference society of rock mechanics[C]. Belgrade, 1970, 3: 501-509.
    [92] Desai C S. Thin-layer elements for interface and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanic, 1984, 8(1): 19-43.
    [93] Zaman M M, Desai C S, Drumm E C. An interface model for dynamic soil structure interaction[J]. Journal of Geotechnical engineering, American Society of Civil Engineers, 1985, 110(4): 1257-1273.
    [94] Desai C S, Nagaraj B K. Modeling for cyclic normal and shear behavior of interface[J]. Journal of Engineering mechanics, 1988, 114(7): 1198-1217.
    [95] Desai C S, Phan H V, Perumpral J V. Mechanics of three-dimensional soil-structure interaction[J]. Journal of the Engineering Mechanics Division, American Society of Civil Engineers, 1982, 108(5): 731-747.
    [96] Frost J D, DeJong J T, Recalde M. Shear failure behavior of granular-continuum interfaces[J]. Engineering Fracture Mechanics, 2002, 69(17): 2029-2048.
    [97] Boulion M. Basic features of soil structure interface behavior[J]. Computers and Geotechnics, 1989, 16(7): 115-31.
    [98] Coutinho A, Martins M, Sydenstricker R, et al. Simple zero thickness kinematically consistent interface elements[J]. Computers and Geotechnics, 2003, 30(5): 347-374.
    [99] Terzaghi K. Theoretical soil mechanics. New York: John Wiley & Sons, 1943.
    [100] Terzaghi K, Ralph B P, Gholamerza M. Soil Mechanics in Engineering Practice[M]. New York: John Wiley & Sons, 1996.
    [101] Fleming W G K. Pile Engineering[M]. New York: John Wiley & Sons, 1992.
    [102] Lambe T W, and Whitman R V. Soil Mechanics[M]. New York: John & sons, 1969.
    [103] Xiaoyan Lei. Contact friction analysis with a simple interface element[J]. Computer methods in applied mechanics and engineering, 2001, 190(15): 1955-1965.
    [104] V D Gennaro, R. Frank. Elasto-plastic analysis of the interface behavior between granular media and structure[J]. Computers and Geotechnics, 2002, 29(7): 547-572.
    [105] George A A. Results of direct shear tests on geotextile reinforced cohesive soil[J]. Geotextile and Geomembranes, 1996, 14(2): 619-644.
    [106] DRV Jones, N Dixon. Shear strength properties of geomembrane/geotextile interfaces[J]. Geotexiles and Geomembranes 1998, 16(1): 45-71.
    [107] Kim H G. Interface element method for a partitioned system with non-matching interfaces[J]. Computer methods in applied mechanics and engineering, 2002, 191(29): 3165-3194.
    [108] A Foriero, B Ladanyi. FEM simulation of interface problem for laterally loaded piles in permafrost[J]. Cold Regions Science and Technology, 1995, 23(2): 121-136.
    [109] Zeghal Morched, Edil Tuncer B. Soil structure interaction analysis: Modeling the interface[J]. Canadian Geotechnical Journal, 2002, 39(3): 620-628.
    [110] Karabatakis D A, Hatzigogos T N. Analysis of creep behaviour using interface elements[J]. Computers and Geotechnics, 2002, 29(4): 257-277.
    [111] Cremer C, Pecker A, Davenne L. Cyclic macro-element for soil-structure interaction: Material and geometrical non-linearities[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(13): 1257-1284.
    [112] Carter J P, Boey C F, Airey D W. Shear behaviour of interfaces in cemented carbonate soil[J]. International Journal of Offshore and Polar Engineering, 1992, 2(2): 114-122.
    [113] [Eigenbrod K D, Burak J P, Locker J G. Differential shear movements at soil-geotextile interfaces[J]. Canadian Geotechnical Journal, 1990, 27(4): 520-526.
    [114] Lemos L J L, Vaughan P R. Clay-interface shear resistance[J]. Geotechnique, 2000, 50(1): 55-64.
    [115] Chu Lok Man, Yin Jianhua. Comparison of interface shear strength of soil nails measured by both direct shear box tests and pullout tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1097-1107.
    [116] Desai Chandra S, El Hoseiny, Khaled E. Prediction of field behavior of reinforced soil wall using advanced constitutive model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 729-739.
    [117] Micic S, Lo K Y, Shang J Q. Increasing load-carrying capacities of offshore foundations in soft clays[J]. Journal of Petroleum Technology, 2004, 56(2): 53-55.
    [118] Gomez Jesus E, Filz George M, Ebeling Robert M. Extended hyperbolic model for sand-to-concrete interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 993-1000.
    [119] Haydar Arslan. Finite element study of soil structure interface problem[J]. Electronic Journal of Geotechnical Engineering, 2005, 10(C): 6
    [120] Frost J D, DeJong J T, Recalde M. Shear failure behavior of granular-continuum interfaces[J]. Engineering Fracture Mechanics, 2002, 69(17): 2029-2048.
    [121] WANG Wei, LU Tinghao, ZAI Jinmin. On methods for determining time-dependent ultimate bearing capacity of single driven pile[A]. In: Proceedings of the 2nd China-Japan Geotechnical symposium[C]. Shanghai: TongJi University Press, 2005: 614-618
    [122] Paikowsky Samuel G, Hajduk Edward L. Design and construction of three instrumented test piles to examine time dependent pile capacity gain[J]. Geotechnical Testing Journal, 2004, 27(6): 515-531.
    [123] Xu Yongfu, Dai Jiqun, Yin Zongze. Preliminary study on the model of the swelling deformation of some expansive soils in Ningxia[J]. Journal of basic science and engineering, 1997, 5(2): 161-166.
    [124] Al Shamrani, Mosleh A. Applicability of the rectangular hyperbolic method to settlement predictions ofsabkha soils[J]. Geotechnical and Geological Engineering, 2004, 22(4): 563-587.
    [125] Castelli Francesco, Maugeri Michele. Simplified nonlinear analysis for settlement prediction of pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 76-84.
    [126] Mitaim Sanchai, Detournay Emmanuel. Determination of ground reaction curve for hyperbolic soil model using the hodograph method[J]. Canadian Geotechnical Journal, 2005, 42(3): 964-968.
    [127] Robinson R G. A study on the beginning of secondary compression of soils[J]. Journal of Testing and Evaluation, 2003, 31(5): 388-397.
    [128] Asaoka A. Observational procedure of settlement prediction[J]. Soils & Foundations, 1978, 18(4): 87-101.
    [129] Justo J L, Durand P. Settlement-time behaviour of granular embankments[J]. International Journal for Numerical and Analytical Methods in Geomeehanics, 2000, 24(3): 281-303.
    [130] Liu Xiaoli, Yu Jianxing. Study on comparison method of settlement calculating of highway in reinforced soft foundation[A]. In: Proceedings of the 2004 International Symposium on Safety Science and Technology[C]. Shanghai, 2004: 699-702.
    [131] Zhu JG, Yin JH, S T Luk. Time-dependent behavior of Hong Kong marine deposits[J]. Geotechnical Testing Journal, 1999, 22(2): 118-126.
    [132] Park H I, Lee S R. Long-term settlement behaviour of MSW landfills with various fill ages[J]. Waste Management and Research, 2002, 20(3): 259-268.
    [133] 孙逊,张连卫,张嘎.公伯峡面板坝堆石垫层料与挤压式边墙接触面静动力学特性试验研究[A].中国土木工程学会第九届中国土力学及岩土工程会议论文集[C],北京:清华大学出版社,2003:293-296.
    [134] 刘芳,张嘎,张建民.面板坝挤压式边墙的数值模拟方法研究[A].中国土木工程学会第九届中国土力学及岩土工程会议论文集[C],北京:清华大学出版社,2003:1007-1010.
    [135] 高国瑞.膨胀土结构和膨胀势[J].岩土工程学报,1984,6(2):40-49.
    [136] Gao G R. The study of swell-shrink behavior of expansive soils in China[A]. Proceedings 8th International Congress IAEG[C]. Vancouver, Canada, 1998: 295-297.
    [137] Abduljauwad S N. Improvement of plasticity and swelling potential of calcareous expansive clays[J]. Geotechnical Engineering, 1995, 26(1): 3-16.
    [138] Mesri G, Pakbaz M C, Cepeda-Diaz A F. Meaning, measurement and field application of swelling pressure of clay shales[J]. Geotechnique, 1994, 44(1): 129-145.
    [139] Shuai Fangsheng, Fredlund D G. Model for the simulation of swelling-pressure measurements on expansive soils[J]. Canadian Geotechnical Journal, 1998, 35(1): 96-114.
    [140] 李凤起,姚建平,赵冬生,等.膨胀土地基原位膨胀力试验研究[J].沈阳建筑大学学报,2005,21(1):29-31
    [141] 徐永福.宁夏膨胀土膨胀变形的速率过程参数的确定[J].河海大学学报,1999,27(5):100-102.
    [142] 徐永福,龚友平,殷宗泽.宁夏膨胀土膨胀变形特征的试验研究[J].水利学报,1997,(9):27-30.
    [143] 徐永福,刘松玉.非饱和土强度理论及其工程应用[M].南京:东南大学出版社,1999.
    [144] 华南理工大学,东南大学,浙江大学,湖南大学.地基及基础[M].北京:中国建筑工业出 版社,1991.
    [145] 卢廷浩.土力学[M].南京:河海大学出版社,2002.
    [146] 张家柱.膨胀土地基变形特性研究[工程硕士学位论文D].南京:河海大学,2004.
    [147] Chow F C, Jardine R J, Brucy F. Effects of time on capacity of pipe piles in dense marine sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(3): 254-264.
    [148] Juan M Pestana, Christopher E Hunt, Jonathan D Bray. Soil Deformation and excess pore pressure field around a closed-ended pile[J]. Geotechnical and geoenvironmental engineering, America Society of Civil Engineers, 2002, 128: 1-11.
    [149] Roy M, Blanchet R, Tavenas F, Rochelle P L. Behavior of a sensitive clay during pile driving[J]. Canadian Geotechnica journal, 1981, 18: 67-85.
    [150] 王伟,卢廷浩,宰金珉.预制桩承载力时效的人工神经网络预测[J].水运工程,2004,(11):9-12.
    [151] 王伟,卢廷浩,宰金珉.桩极限承载力的时间效应分析[A].中国土木工程学会第九届中国土力学及岩土工程会议论文集[C],北京:清华大学出版社,2003:655-658.
    [152] 张明义.层状地基上静力压入桩的沉桩过程及承载力的试验研究.[博士学位论文D].重庆:重庆大学,2001.
    [153] 王伟,宰金珉,王旭东.沉桩引起的三维超静孔隙水压力计算及其应用[J].岩土力学,2004,25(5):774-777.
    [154] 王伟,卢廷浩,宰金珉.基于超静孔压消散的静压桩极限承载力研究[J].岩土力学,2005,26(11):1845-1848.
    [155] 王伟,卢廷浩,宰金珉.单桩极限承载力时间效应估算方法比较.岩土力学,2005,25(增):244-247.
    [156] 柯瀚,陈云敏.填埋封场后的次沉降计算[J].岩土工程学报,2003,25(6):742-746.
    [157] Leonard Michael L Sr, Floom Kenneth J Jr, Brown Scott. Estimating method and use of landfill settlement[J]. Geotechnical Special Publication, 2000, (105): 1-15.
    [158] El-Fadel M, Khoury, R. Modeling settlement in MSW landfills: A critical review[J]. Critical Reviews in Environmental Science and Technology, 2000, 30(3): 327-361.
    [159] Sharma Hari D. Solid waste landfills settlements and post-closure perspectives[C]. In: Proceedings of the ASCE National Conference on Environmental and Pipeline Engineering[A]. Kansas City: 2000: 447-455.
    [160] Machado Sandro L, Carvalho Miriam F, Vilar Orencio M. Constitutive model for municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11): 940-951.
    [161] JonesD R V, Dixon N. Landfill lining stability and integrity: The role of waste settlement[J]. Geotextiles and Geomembranes, 2005, 23(1): 27-53
    [162] Durmusoglu Ertan, Corapcioglu M Yavuz, Tuncay Kagan. Landfill settlement with decomposition and gas generation[J]. Journal of Environmental Engineering, 2005, 131(9): 1311-1321.
    [163] 胡敏云,陈云敏.城市生活垃圾填埋场沉降分析与计算[J].土木工程学报,2001,34(6):88-92.
    [164] Edil T B, Ranguette V J, Wuellner W W. Settlement of municipal refuse[A]. Geotechnics of waste fills theory and practice[C]. Philadelphia: ASTM, 1990: 225-239.
    [165][166] Jiangying Liu, Dimin Xu, Youcai Zhao. Long-term monitoring and prediction for settlement and composition of refuse in Shanghai Laogang Municipal Landfill[J]. Environmental Management, 2004, 34(3): 441-448.
    [166] 张振营,陈云敏.城市垃圾填埋有机物降解沉降模型的研究[J].岩土力学,2004,25(2):238-241.
    [167] 黄仁华,赵由才,周海燕.大型垃圾填埋场表面沉降研究[J].上海环境科学,2000,19(8):399-401.
    [168] 王伟,卢廷浩.建筑物沉降控制研究.建筑技术开发,2004,(8):25-27.
    [169] B M Das. Advanced soil mechanics[M]. New York, Hemisphere publishing corporation, 1983: 280-282.
    [170] 涂许杭,王志亮,梁振淼,等.修正的威布尔模型在沉降预测中的应用[J].岩土力学,2005,26(4):621-623.
    [171] 潘林有,谢新宇.用曲线拟合的方法预测软土地基沉降[J].岩土力学,2004,25(7):1053-1058.
    [172] 孙常青,饶锡保,王月香.沉降观测曲线的拟合和最终沉降量的确定[J].长江科学院院报,2002,19(5):58-61.
    [173] 张仪萍,俞亚南,张土乔,等.沉降预测的灰色理论Asaoka法[J].系统工程理论与实践,2002,(9):141-144.
    [174] 杨涛,戴济群,李国维.基于指数法的分级填筑路堤沉降预测方法研究[J].土木工程学报,2005,38(5):92-95.
    [175] 王志亮,吴克海,李永池,等.一个预测路堤沉降的新经验公式模型[J].岩石力学于工程学报,2005,24(12):2013-2017.
    [176] Al Shamrani, Mosleh A. Applicability of the rectangular hyperbolic method to settlement predictions of sabkha soils[J]. Geotechnical and Geological Engineering, 2004, 22(4): 563-587.
    [177] 刘宏,李攀峰,张倬元.九寨黄龙机场高填方地基工后沉降预测[J].岩土工程学报,2005,27(1):90-93.
    [178] Xu Linrong, L Kang, Gu Shaofa, He Xiaoguang. Ground settlement prediction with grey theory on guang-shen high-speed railway[A]. In: Proceedings of the 2004 International Symposium on Safety Science and Technology[C]. Shanghai, 2004: 962-966.
    [179] 张仪萍,张土乔,龚晓南.时变参数预测模型及其在沉降预测中的应用[J].土木工程学报,2003,36(12):83-86.
    [180] 杨涛,李国维,樊琨.基于人工神经网络的公路软基沉降预测模型[J].上海理工大学学报,2003,25(2):117-120.
    [181] Shahin M A, Maier H R, Jaksa M B. Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models[J]. Computers and Geotechnics, 2003, 30(8): 637-647.
    [182] Bergado D T, Lorenzo G A, Duangchan T. Consolidation settlement of reinforced embankment on deep mixing cement piles[J]. Geotechnical Engineering, 2005, 36(1): 77-83.
    [183] 谭昌明,徐日庆,周建,等.软粘土路基沉降的一维固结反演与预测[J].中国公路学报,2002,15(4):14-16.
    [184] 赵维炳,刘国楠,李荣强.控制工后变形新一代软基处理技术的发展[J].土木工程学报, 2004,37(6):78-81.
    [185] Bourdeau, Philippe L. Long-term deformation of soft ground at a trial embankment site and its simplified numerical modeling[A]. In: Proceedings of Geotechnical Engineering for Transportation Projects[C]. Los Angeles: 2004: 420-427.
    [186] 赵俊明,石明磊,张宏.沉降量预测方法及应用[A].中国土木工程学会第九届中国土力学及岩土工程会议论文集[C],北京:清华大学出版社,2003:686-689.
    [187] 刘加才.砂井地基固结理论及工程应用[博士学位论文D].南京:河海大学,2004.
    [188] 曹国强,张仪萍,张土乔,等.地基沉降速率与沉降关系研究及其应用[J].岩土力学,2003,24(3):467-470.
    [189] 宫必宁,卢廷浩.宁高公路二期工程粉射深层搅拌桩质量控制及搅拌桩复合地基沉降规律研究[R].南京:河海大学,2000
    [190] 梅国雄,宰金珉,殷宗泽,等.沉降时间曲线呈“S”型的证明[J].岩土力学,2004,25(1):20-22.
    [191] 宰金珉,梅国雄.全过程的沉降量预测方法研究[J].岩土力学,2000,21(4):322-325.
    [192] 余闯,刘松玉.路堤沉降预测的Gompertz模型应用研究[J].岩土力学,2005,26(1):82-86.
    [193] 杨涛,殷宗泽.软基二灰土桩加固有限元分析[J].岩土力学,1998,19(3):19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700