压力容器用钢1.25Cr0.5Mo高温下疲劳蠕变行为及寿命评估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国石化企业的发展,压力容器等典型承压设备面临的环境越来越苛刻,尤其是高温、高压、超期服役等,这些设备一旦发生失效后果将不堪设想。作为高温、高压环境下典型的失效模式,疲劳、蠕变及其交互作用始终是摆在各国学者面前的难题。本文针对石化企业高温设备中广泛使用的1.25Cr0.5Mo钢,在对其进行了大量的疲劳蠕变试验和断口分析的基础上,分析了影响疲劳蠕变行为及其寿命的主要因素,建立能反映疲劳损伤、蠕变损伤及疲劳蠕变交互作用损伤相互转换关系的四种断裂特征图,提出了免于蠕变失效分析的判定条件,建立了疲劳蠕变寿命预测方法和损伤评估方法。主要研究内容如下:
     实测了1.25Cr0.5Mo钢在不同温度下的单调拉伸力学性能和高温循环拉伸力学性能,得到了该钢的循环应力应变曲线表达式,同时发现材料在500~550℃下具有轻微的循环硬化特性。
     根据石化企业高温承压设备的特点和1.25Cr0.5Mo钢的使用情况,确定了疲劳蠕变试验的控制方式、加载波形、试验温度、试验采用的最大应力。
     通过温度、最大应力、应力幅、平均应力的不同组合试验,分析了这几种因素对材料疲劳、蠕变及其交互作用行为的影响规律,建立了四种疲劳蠕变断裂特征图,初步提出了免于蠕变失效分析的判定条件,同时发现平均应变速率是影响循环寿命的主要因素。
     对各种加载条件下的疲劳蠕变交互作用断口形貌进行扫描电境分析和能谱分析,研究应力幅、平均应力等因素对断口形貌的影响,对应力控制模式下疲劳区(F)、蠕变区(C)及疲劳蠕变交互作用区(FC)的断口形貌和断裂机理进行了详细讨论,找到了疲劳促进韧窝和蠕变孔洞长大、蠕变促进夹杂物或基体脱落的证据,从微观形貌上证实了当发生激烈的疲劳蠕变交互作用时材料寿命急剧下降的试验事实,同时也提供了把应力幅大于平均应力作为免于蠕变失效分析判定条件的微观依据。
     在充分认识疲劳、蠕变及其交互作用行为和主要影响因素的基础上,提出了三种疲劳蠕变寿命预测方法。一是从热力学基本定律出发,在能量法则的基础上提出了一种新的疲劳蠕变寿命预测模型,该模型具有一定的理论基础,推导严密,其寿命预测能力优于FS、SEFS方法;二是以半寿命处的平均应变速率作为控制参量,在损伤力学有效应力概念的基础上,推导出一种简单的寿命预测模型,该模型能将疲劳蠕变寿命与应力幅、平均应力、最大应力、温度之间的复杂关系转变为寿命与平均应变速率
With the development of petrochemical enterprises in China, the service environment which typical pressure-bearing equipment such as pressure vessel etc. faces becomes more and more aggressive, particularly high temperature, high pressure, overtime serviced equipment etc., once fails, will bring a consequence one can not bear think about. As the typical failure mode under high-temperature and high-pressure environment, fatigue, creep and their interaction are always a puzzle in the face of scholars of every country. With respect to the extensively used 1.25Cr0.5Mo steel in high-temperature equipments of petrochemical enterprises, based on enormous amount of fatigue creep tests and fracture analysis on them, the major factors of their exhaustion creep behavior and their service life are analyzed, four kinds of fracture characteristic charts that can reflect the relationship for mutual conversion among fatigue damage, creep damage and fatigue-creep interactive damage, the judgment condition for exemption from creep failure analysis is proposed and fatigue creep life prediction method and damage evaluation method are established in this paper. Major research contents are as follows:Monotonic tensile mechanical property of 1.25Cr0.5Mo steel at different temperatures and tensile mechanical property under high temperature cycle are measured, the expression for cyclic stress vs strain curve of this steel is obtained, meanwhile it is found this material has slight cyclic hardening characteristics under 500-550℃.According to the characteristics of high temperature pressure-bearing equipment of petrochemical enterprises and service conditions of 1.25Cr0.5Mo steel, the control mode for fatigue creep, load waveform, test temperature and maximum stress adopted in test are determined.Through tests with various combination of temperature, maximum stress, stress amplitude and mean stress, the influence law of such factors on fatigue and creep of material and their interaction are analyzed, four kinds of fatigue creep fracture characteristic charts are established, the judgment condition for exemption from creep failure analysis are proposed preliminarily, meanwhile it is found mean strain rate is the major factor that affects cycle life.SEM analysis and energy spectrum analysis are conducted on the fracture under fatigue creep interaction under various loading environments, the effect of such factors as stress amplitude, mean stress etc. on fractographic appearance is studied, the fractographic appearance and fracture mechanism in the fatigue area (F), creep area (C) and fatigue creep interaction area (FC) under stress control mode are discussed in detail, and the evidences that fatigue promotes growth of dimples and creep voids and creep promotes dropout of inclusions or matrix are found, thus confirming the test fact that the service of life of material sharply declines when there happens violent fatigue creep interaction, meanwhile providing the microscopic basis for taking stress amplitude being bigger than mean stress as the judgment condition for exemption from creep failure analysis.Based on adequate recognition of fatigue, creep and their interaction behavior and major influential factors, three fatigue creep life prediction methods are proposed. One is
    starting from thermodynamic fundamental law and based on engine theorem, a new model for fatigue creep life prediction is proposed, this model has certain theoretical basis with rigorous derivation, its capability for life prediction is better than FS and SEFS techniques;the other is by taking mean strain rate at half value period as control parameter and based on the concept of effective stress of damage mechanics, a simple life prediction model is deduced, this model can convert the complex relationships between fatigue creep service life and stress amplitude, mean stress, maximum stress and temperature to simple linear relationship between service life and mean strain rate, thus obtaining a principal curve, its life prediction is better;the third one is based on exhaustion ductility theory a fatigue creep life prediction method is proposed, this method can be used for stress control mode and can comprehensively reflect the effect of stress ratio, loading speed, tensile load maintaining time and mean strain rate, the accuracy of life prediction by this method is apparently higher than other methods.Starting from the angle of damage mechanics, a damage mechanic model for fatigue and creep and their interaction is established that can comprehensively reflect the effect of maximum stress and stress amplitude, the change in non-elastic strain energy density is selected as damage parameter to describe damage, a unified expression for damage evolution of 1.25Cr0.5Mo steel at different temperatures and under different loading conditions is obtained, which is some helpful exploration made by us for application of damage mechanics in fatigue creep interaction.The innovation points in this paper:(1) The law of effect of temperature, maximum stress, stress amplitude and mean stress on fatigue, creep and their interactive behavior of 1.25Cr0.5Mo steel is systematically studied, four fatigue creep charts are established and judgment condition for exemption from creep failure analysis is proposed.(2) The test fact is verified that material service life will sharp decline when there happens violent fatigue creep interaction from the microscopic fractographic appearance of 1.25Cr0.5Mo under fatigue and creep and their interaction in stress control mode, the microscopic basis for taking stress amplitude being bigger than mean stress as the judgment condition for exemption from creep failure analysis;(3) Starting from thermodynamic fundamental law, damage mechanics and exhaustion ductility theory, three new prediction models for fatigue creep service life under stress control mode are established with better effect of fatigue creep service life.(4) Starting from the angle of damage mechanics, damage mechanic model for fatigue, creep and their interaction is established that can comprehensively reflect effect of temperature, maximum stress and stress amplitude, and by selecting the change in non-elastic strain energy density as damage parameter, the damage mechanic model for fatigue creep interaction is established that can comprehensively reflect the effect of temperature, maximum stress and stress amplitude.
引文
[1] 高温环境下在用压力容器检测与安全评估技术方法研究[R],十五攻关专题研究报告
    [2] BS 5500, Unfired fusion welded pressure vessels[S], British Standards Institute
    [3] V. A. Carucci, R. C. Chao, D. J. Stelling. Recommendations for Design of Vessels for Elevated Temperature Service[R]. WRC Bulletin 470, New York: WRC, 2002
    [4] 黄胜发,加氢精制装置临氢压力容器的材料选用和质量控制[J],石油化工设备设计,1989,10(5):5-11
    [5] 仇恩沧,临氢设备用材点滴.石油化工设备技术[J],1993,14(6):2-6
    [6] 涂善东著,高温结构完整性原理[M],北京:科学出版社,2003,8
    [7] S. W. Nam, S. C. Lee, J. M. Lee, The effect of creep cavitation on the fatigue life under creep-fatigue interaction[J], Nuclear Engineering and Design, 1995, 153: 213-221
    [8] J. C. Yeol, S. W. Nam, Estimation of the damaging energy under creep-fatigue interaction conditions in 1Cr-Mo-V steel[J], Scripta Materialia, 1999, 40(5): 623-629
    [9] W. J. Plumbridge, R. H. Priest, E. G. Ellison, Damage formation during fatigue-creep interactions[J], Cambridge: Proceedings of the Third International Conference on Mechanical Behavior of Materials, 1979, 2: 129
    [10] U. Fumiyoshi, A. Kazumi, W. Yusaku, Study on metallographic damage parameter in creep-damage-dominant condition under creep-fatigue loading[J], Nuclear Engineering and Design, 1996, 162(1): 85-95
    [11] K. D. Challenger, A. K. Miller, C. R. Brinkman, Trans ASME J Eng Mater Technol 1981, 103: 7
    [12] 范志超,蒋家羚,16MnR钢中温低周疲劳行为研究[J],浙江大学学报(工学版),2004,38(9):1190-1195
    [13] T. Goswami, H. Hanninen, Dwell effects on high temperature fatigue behavior, Part Ⅰ[J]. Materials and Design, 2001, 22(3): 199-215
    [14] [R. Alain, P. Violan, J. Mendez, Low cycle fatigue behavior in vacuum of a 316L type austenitic stainless steel between 20 and 600℃, Part Ⅰ: fatigue resistance and cyclic behavior[J], Materials Science and Engineering A, 1997, A229: 87-94
    [15] S. D. Mann, Electricity Commission of Victoria, Melbourne, Australia, 1991, unpublished
    [16] E. G. Ellison, Patterson AJF, Proc Ⅰ Mech Eng, 1976, 190: 321
    [17] V. S. Srinivasan, A. Nagesha, M. Valsan, K. Bhanu Sankara Rao, S. L. Mannan, D. H. Sastry, Effect of hold-time on low cycle fatigue behaviour of nitrogen bearing 316L stainless steel[J], International Journal of pressure Vessels and Piping 1999, 76: 863-870
    [18] 陈国良,束国刚,12CrlMoV钢主蒸汽管道疲劳蠕变交互作用[J],中国电机工程学报,1990,10(1):1-10
    [19] 陈国良,何庆复等,熔铸盘疲劳蠕变交互作用第一类疲劳蠕变断裂特征图[J],北京钢铁学院学报,1986,2:41-51
    [20] R. Hales, A Quantitative Matallographic Assessment of Structural Degradation of Type316 Stainless Steel During Creep-Fatigue[J], Fat. Eng. Mater. Struct., 1980, 3: 33g
    [21] 陈国良,束国刚,第三类疲劳蠕变交互作用断裂特征图[J],热力发电,1989,3:34-40
    [22] 陈国良,杨王玥,12Cr1MoV钢主蒸汽管道疲劳蠕变交互作用及断裂模式[J],金属学报,1991,27(2):A137-A143
    [23] 陈国良,杨王玥,12Cr1MoV钢在保载条件下的疲劳蠕变交互作用断裂特征图[J],钢铁,1992,27(5):42-45
    [24] T. Goswami, H. Hanninen, Dwell effects on high temperature fatigue damage mechanisms Part Ⅱ[J], Materials and Design, 2001, 22: 217-236
    [25] C. R. Brinkman, J. P. Strizak, M. K. Brooker, C. E. Jaske, Journal of Nuclear Materials, 1976, 622/3: 181
    [26] C. Y. Jeong, B. G. Choi, S. W. Nam, Normalized life prediction in terms of stress relaxation behavior under creep-fatigue interaction[J], Materials Letters, 2001, 49(1): 20-24
    [27] 陈杰富,李厚毅等,12Cr1MoV钢制部件蠕变-疲劳交互作用的特性曲线研制[J],东方锅炉,2001.4:10-16
    [28] T. Nakamura, M. Yaguchi, A. Ishikawa, Y. Asada, Creep-fatigue damage assessment by subsequent fatigue straining[J], Nuclear Engineering and Design, 1996, 162: 97-106
    [29] 张光荣,王锦桥,低周疲劳和蠕变交互作用下汽轮机寿命的计算方法[J],机械工程学报,1989,25(1):73-79
    [30] R. Lagneborg, R. Attermo, Metall Trans, 1971, 2: 1821
    [31] X. S. Xie, X. Q. Sun, et al, Proc of 5th Int. Conf on Mechanical Behavior of Material, Vol. 11. Oxford, Pergamon, 1987: 1037
    [32] G. L. Chen, Chinese Journal of Metal Science Technology, 1990, 16: 391
    [33] L. E Coffin, Proc. Institution of Mech. Engineers, London, 9, 74, 1974, pp188
    [34] 何晋瑞著,金属高温疲劳[M],北京:科学出版社,1988
    [35] W. J. Ostergren. A damage fundation hold time and frequency effects in elevated temperature low cycle fatigue[J]. Journal of Testing Evaluation, 1967, 4: 327-339
    [36] 苏翰生,何晋瑞,拉拉应力条件下蠕变疲劳寿命预测新方法[J],机械工程材料,1989,4:30-32
    [37] 苏翰生,高温合金循环蠕变及其寿命预测[J],航空材料学报,1991,11(2):62-71
    [38] S. W. Nam, Assessment of damage and life prediction of austenitic stainless steel under high temperature creep-fatigue interaction condition[J], Materials Science and Engineering: 2002, A322(1-2): 64-72
    [39] T. Goswami, Creep-fatigue life prediction-a ductility model[J], High Temperature Materials and Processes 1995, 14(2): 101-114
    [40] T. Goswami, New creep-fatigue life prediction model[J], High Temperature Materials and Processes 1996, 15(1-2): 91-96
    [41] T. Goswami, Low cycle fatigue life prediction-a new model [J], International Journal of fatigue, 1997, 19(2): 109-115
    [42] H. G. Edmund, D. J. White, Journal of Mechanical Engineering Science, 1996, 8: 310-321
    [43] E. W. Hart, Acta. Metall. 1970, 18: 599-610
    [44] E. W. Hart, H. D. Solomon, Acta. Metall. 1973, 21: 295-307
    [45] J. Lemaitre, J. L. Chaboche.固体材料力学[M],国防工业出版社,1997
    [46] J. Lemaitre, Application of damage concepts to predict creep-fatigue failures[J]. Transaction of the ASME, Journal of Engineering Materials and Technology, 1979, 101: 284-292
    [47] T. Goswami, Applicability of modifed Diercks equation with NRIM data[J], High Temperature Materials and Processes 1995, 14(2): 81-90
    [48] 杨宜科,俞忠华等,在蠕变-疲劳复合作用下12Cr1MoV钢强度特性的研究[J],理化检验:物 理分册,1989,25(3):13-16,24
    [49] 金尧,孙亚芳,蠕变/疲劳共同作用下寿命估算方法[J],材料工程,2000,11:6-8
    [50] 吴非文,栗淑华等,调峰机组主蒸汽管道蠕变疲劳交互作用寿命研究[J],热力发电,1995,1:26-37
    [51] 李贵军,特种压力容器用钢2.25Cr1Mo的中温低周疲劳行为及寿命评估技术的研究,浙江大学博士学位论文,2004.6
    [52] 戴振羽,霍己,2.25Cr1Mo 钢疲劳-蠕变损伤演化行为[J],西南交通大学学报,1998,33(1):30-34
    [53] ASME Case of ASME boiler and pressure vessel code, section Ⅲ—class I components in elevated temperature service[S]. Code Case N47-29. New York: ASME, 1990.
    [54] T. Goswami, Creep fatigue: paper Ⅰ compilation of data and trends in the creep-fatigue behavior of low alloy steels[J], High Temperature Materials and Processes 1995, 14(1): 1-20
    [55] T. Goswami, Creep fatigue: paper Ⅱ creep fatigue life prediction: methods and trends[J], High Temperature Materials and Processes 1995, 14(1): 21-33
    [56] T. Goswami, Creep fatigue: paper Ⅲ Diercks equation: modification and applicability[J], High Temperature Materials and Processes 1995, 14(1): 35-45
    [57] R5. Assessment procedure for the high temperature response of structures[S], Procedure R5, Issue 2. Gloucester: Nuclear Electric Ltd, 1997
    [58] British Standards BS 7910: 1999, Guide to methods of assessing the acceptability of flaws in fusion welded structures[S], London;BSI, 1999
    [59] 高温环境下在用压力容器检测与安全评估技术方法研究[R],十五攻关专题研究报告分报告二:高温断裂判据及高温失效评定图研究
    [60] 轩福贞,涂善东,王正东,李培宁,高温金属结构缺陷免予蠕变失效评定的条件[J],中国机械工程,2004,15(10):928-931
    [61] 轩福贞,涂善东,王正东,基于TDFAD的高温缺陷“三级”评定方法[J],中国电机工程学报,2004,24(12):222-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700