大鼠胰岛β细胞GPR40表达与内脏脂肪含量及胰岛素1相分泌的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病,是一种由于胰岛素对糖代谢的调节障碍所致的代谢性疾病,以血糖水平持续升高为特征,最终会导致机体各器官的损害。由于发病率的不断升高,目前已成为世界性的健康问题。肥胖是导致糖尿病的危险因素之一,研究显示,肥胖与胰岛素抵抗和2型糖尿病(type 2 diabetes mellitus,T2DM)密切相关。有研究者认为,脂代谢紊乱是糖尿病的原发病理生理变化,即脂毒性学说,并提出糖尿病其实是糖脂病的观点。
     肥胖所致的内脏脂肪沉积和血游离脂肪酸(free fatty acid,FFA)水平的升高是导致脂毒性的关键因素。FFA通常被认为通过其进入细胞后的一系列代谢反应及产生脂质衍生物调节胰岛素的分泌。2003年,Itoh等研究者提出G蛋白偶联受体40(G protein coupled receptor 40,GPR40)作为中、长链游离脂肪酸的受体在胰岛β细胞高表达,并指出其参与了FFA介导的胰岛素分泌并且可能与肥胖介导的T2DM有关,使GPR40成为治疗T2DM可能的药物靶点。研究显示,FFA能够通过激活胰岛β细胞的GPR40增加葡萄糖刺激的胰岛素分泌(glucose-stimulated insulin secretion,GSIS)[1, 2]。通过siRNA下调β细胞GPR40的表达会导致FFA介导的细胞内Ca2+应答及胰岛素分泌的显著抑制,提示胰岛β细胞GPR40通过介导β细胞Ca2+信号反应参与了FFA刺激的胰岛素分泌[3、4]。表明GPR40可能对肥胖状态下葡萄糖刺激的胰岛素分泌存在调控作用。随后的研究对于GPR40是否参与了FFA水平长期升高导致的胰岛素抵抗(insulin resistance,IR)及T2DM的发生进行了进一步探讨,然而结果却不尽相同。Steneberg[5]等认为GPR40参与了FFA慢性作用对胰岛素分泌的损害作用,提出GPR40拮抗剂可以作为有效的治疗策略预防和治疗肥胖介导的T2DM。而Naqasumi[6]则认为GPR40对改善IR状态下的GSIS发挥了作用。因此,对于GPR40与肥胖和胰岛素抵抗的关系还需进一步深入研究。
     已知肥胖时内脏脂肪沉积增加,但GPR40在胰岛β细胞表达水平的变化与内脏脂肪含量的关系,及其表达是否对正常大鼠GSIS也存在调控作用目前还未见报道,本研究应用免疫组织化学法结合激光扫描共聚焦显微镜(laser scanning confocal microscope,LSCM)技术研究GPR40在不同体重组SD大鼠胰岛β细胞的表达水平,分析GPR40表达与内脏脂肪含量及胰岛素1相分泌的关系。
     目的
     观察不同体重SD大鼠胰岛β细胞G蛋白偶联受体40(GPR40)表达水平与内脏脂肪含量及胰岛素1相分泌之间的关系。
     方法
     1、标准饮食的SD大鼠按体重分为3组(100g组、200g组、300g组);
     2、行静脉糖耐量实验;
     3、放射免疫法检测血胰岛素水平;
     4、采用胶原酶原位灌注法分离胰岛;
     5、留取内脏脂肪及肝脏称重;
     6、应用免疫组织化学法结合激光扫描共聚焦显微镜技术对胰岛β细胞表达的GPR40进行定位,并行半定量分析。
     结果
     1、随着大鼠体重的增加,内脏脂肪含量、肝脏重量和体脂比明显增加。
     2、3组大鼠空腹血糖、静脉糖耐量及胰岛素1相分泌之间无显著差异。
     3、300g组大鼠胰岛β细胞GPR40表达较100g及200g大鼠明显增加。
     结论
     1、大鼠胰岛β细胞GPR40表达的变化可能与内脏脂肪含量及年龄因素有关。
     2、GPR40表达的增多对正常大鼠葡萄糖刺激的胰岛素分泌并无明显影响。
Introduction
     Diabetes, a diease in which glucose metabolism is regulated improperly by insulin, is a serious worldwide health issue now, because of its increasing high incidence. Diabetes is charicaterized by high blood sugar in longterm, it can impair the functions of mang organs of our body. In recent years, obesity has drawn a lot of attention because it has benn thought as one of the risk factors of type 2 diabetes (T2DM). The reaserchers have showed that obesity is typically associated with insulin resistance (IR) and T2DM. They put forward the view that the disorder of lipid metabolism is the foundation of T2DM, it is called“lipotoxicity”, so T2DM can be also named as“diabetes mllipitus”.
     The deposition of visceral fat and high level of free fatty acid (FFA) in plasma induced by obesity are the critical factors which can cause lipotoxicity. Until recently, it was considered that fatty acids must enter the beta cells in order to elicit insulin secretion. In 2003, Itoh proposed that GPR40 is activated by long-chain FFA, and its expression is high inβcells. They indicated that GPR40 may take a part in FFA induced insulin secretion, and may have links with T2DM. So GPR40 may become a new durg target against T2DM. Reaserches showed that FFA can inhance glucose stimulated insulin secretion (GSIS) by activate GPR40 inβcells. GPR40 RNAi impaired the ability of FFA to increase both intracellular calcium ([Ca2+]i) and insulin secretion, indicate that GPR40 make a role in FFA stimulated insulin secretion by induce the signals of Ca2+ inβcells. So GPR40 may regulate GSIS in the condition of obesity. After that, many reaserchers studied that whether GPR40 really take a part in insulin resistance and T2DM which are caused by the high level of FFA, but the results are quite different. Steneberg thought that GPR40 participate the impairment in insulin secretion which is caused by chronic effects of FFA, and propose that GPR40 antagonists may present a useful therapeutic strategy for the prevetion and treatment of obesity-associated T2DM. but Naqasumi thought that GPR40 can improve GSIS in IR. In a word, the relationship between GPR40, obesity and IR need further study.
     Visceral fat will increase in the condition of obesity, but so far there are few reaserches show the relationship between visceral fat and the level of GPR40 expression inβcells, whether its expression regulate GSIS in normal rats. Thus, our study use immunohistochemical and laser-scanning confocal microscopy to investigate the expression of GPR40 in beta cells, analyze the relationship between visceral fat、first phase of insulin secretion and GPR40 expressing in beta cells in rats.
     Objective To investigate the relationship between visceral fat、first phase of insulin secretion and G-protein coupled receptor 40 expressing in beta cells in SD rats with different weight. Methods
     1、18 male SD rats were divided into three groups averagely by body weight(100g、200g、300g).
     2、Intravenous glucose tolerance test (IVGTT) was measured.
     3、Islets of rats were isolated by the digestion of pancreas with collagenase V.
     4、Immunohistochemical and laser-scanning confocal microscopy were used to observe the expression of GPR40 in beta cells.
     Results
     1、Visceral fat、liver weight and body fat proportion are increased with rats body weight gain in each group(P < 0.05).
     2、The expression of GPR40 in beta cells in 300g group was significantly increased as compared with 100g and 200g group(P < 0.05).
     3、IVGTT has no obvious change among these groups.
     Conclusions
     The expression of GPR40 in pancreatic beta cells may relate to visceral fat and age, and the increased expression of GPR40 in beta cells did not show any effect on GSIS.
引文
[1] Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40 [J]. Nature, 2003, 422(6928): 173-176.
    [2] Itoh Y, Hinuma S. GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion [J]. Hepatol Res, 2005, 33 (10):171-173.
    [3] Schnell S ,Schaefer M,Schofl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta cells through activation of GPR40 [J]. Mol Cell Endocrinol,2007,263:173-180.
    [4] Shapiro H, Shachar S, Sekler I, et al. Role of GPR40 in fatty acid action on theβcell line INS-1E [J]. Biochem Biophys Res Commun, 2005 ,335(1):97-104
    [5] Steneberg P, Rubins N, Bartoov-Shifman R, et al. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse [J]. Cell Metab 2005,1(4):245-258.
    [6] Nagasumi K,Esaki R,Iwachidow K, et al . Overexpression of GPR40 in pancreatic beta-cells augments glucose-stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice [J]. Diabetes 2009;58(5):1067–76.
    [7] SawzdargoM, George SR, Nguyen T, et al. A cluster of four novel human G protein - coupled receptor genes occurring in close p roximityto CD22 gene on chromosome 19q13.1. Biochem Biophys Res Com2mun, 1997, 239: 543 - 547.
    [8] Elbein SC, Hasstedt SJ. Quantitative trait linkage analysis of lipid -related traits in familial type 2 diabetes: evidence for linkage of triglyceride levels to chromosome 19q. Diabetes, 2002, 51: 528 - 535.
    [9] J i TH, Grossmann M, J i I. G protein-coupled receptors 1. Diversity of receptor - ligand interactions [ J ]. J Biol Chem, 1998, 273 (28) : 17299 - 17302.
    [10] G蛋白偶联受体40 /游离脂肪酸受体1的研究进展.田源,陈璐璐,中国病理生理杂志Chinese Journal of Pathophysiology 2008, 24 (2) : 399 - 401、416·399
    [11] Kotarsky K, Nilsson NE, Flodgren E, et al. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun, 2003, 301: 406 - 410.
    [12] Briscoe CP,Tadayyon M,Andrews JL ,et al. The orphan G protein coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. J Biol Chem 2003,278(13):11303-11311.
    [13] Tomita T, Masuzaki H, Iwakura H, et al. Expression of the gene for a membrane - bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia, 2006, 49(5) : 962 - 968.
    [14] Flodgren E, Olde B, Meidute-Abaraviciene S, Winzell MS, Ahren B, Salehi A. GPR40 is expressed in glucagon producing cells and affects glucagon secretion.Biochem Biophys Res Commun 2007;354(1):240–5.
    [15] Stewart G, Hira T, Higgins A, et al. Mouse GPR40 heterologously expressed in Xenopus oocytes is activated by short - , medium - ,and long - chain fatty acids. Am J Physiol Cell Physiol, 2006, 290(3) : 785 - 792.
    [16]朱峰,李红,脂肪酸受体GPR40的研究进展,中华内分泌代谢杂志2005年10月第21卷第5期Chin J EndocrinolMetab, October 2005, Vol 21, No. 5
    [17] Gras D, Chanez P, Urbach V, Vachier I, Godard P, Bonnans C. Thiazolidinediones induce proliferation of human bronchial epithelial cells through the GPR40 receptor. Am J Physiol Lung Cell Mol Physiol 2009;296(6):L970–8.
    [18] Tan CP, Feng Y, Zhou YP, Eiermann GJ, Petrov A, Zhou C, et al. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice.Diabetes 2008.
    [19] Briscoe CP, Peat AJ , McKeown SC, et al. Pharmacological regulation of insulin secretion in M IN6 cells through the fatty acid recep tor GPR40: identification of agonist and antagonist small molecules [ J ]. Br J Pharmacol, 2006,148 (5) : 619 - 628.
    [20] Salehi A, Flodgren E, Nilsson NE, et al. Free fatty acid receptor 1 [ FFA (1) R /GPR40 ] and its involvement in fatty - acid - stimulated insulin secretion [ J ]. Cell Tissue Res, 2005, 322 (2) : 207 - 215.
    [21] Haber EP, Ximenes HM, Procopio J, Carvalho CR, Curi R,Carpinelli AR Pleiotropic effects of fatty acids on pancreatic beta-cells. J Cell Physiol. 2003 Jan;194(1):1-12.
    [22] Yaney G.C., and Corkey B.E. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia. 2003 Oct; 46(10):1297-312.
    [23] Dobbins RL, Szczepaniak LS, Myhill J, et al. The composition of dietary fat directly influences glucose-stimulated insulin secretion in rats.Diabetes, 2002, 51: 182521833.
    [24] Fujiwara K,Maekawa F ,Yada T. Oleic acid interacts with GPR40 to induce Ca2 + signaling in rat islet beta cells :mediation by phospholipase C and L-type Ca2 + channel and link to insulin release. Am J Physiol Endocrinol Metab , 2005, 289 :E670-E677
    [25] Feng DD, Luo Z, Roh SG, et al. Reduction in voltage - gated K+ currents in p rimary cultured rat pancreatic beta - cells by linoleicacids. Endocrinology, 2006, 147 (2) : 674 - 682.
    [26]张志岐,束刚,G蛋白偶联受体介导游离脂肪酸的信号通路及生理功能,中国生物化学与分子生物学报2009年9月,25 (9) :789~795
    [27] Yonezawa T, Katoh K, Obara Y. Existence of GPR40 functioning in a human breast cancer cell line, MCF - 7 [ J ].Biochem Biophys Res Commun, 2004, 314 (3) : 805 - 809.
    [28] Ogawa T, Hirose H, Miyashita K, et al. GPR40 gene Arg211His polymorphism may contribute to the variation of insulin secretory capacity in Japanese men. Metabolism, 2005, 54 (3) : 296 - 299.
    [29] Hamid YH, Vissing H, Holst B, et al. Studies of relationship s between variation of the human G p rotein - coupled receptor 40 Gene and Type 2 diabetes and insulin release. DiabetMed, 2005, 22 (1) :74 - 80
    [30] Kim H Y, Akbar M, Lau A, et al. Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem,2000, 275(45): 35215-35223
    [31] Mattson M P, Duan W, Pedersen W A, et al.Neurodegenerative disorders and ischemic brain diseases.Apoptosis, 2001,6(1-2): 69~81
    [32] Del Prato S , Diengo A. The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus.Diabetes MetabRes Rev , 2001 ,17 :1642174.
    [33] Luzi L, DeFronzo RA. Effect of loss of first-phase insulin secretion on hepatic glucose disposal in humans [J]. Am J Physiol. 1989, 257(2 Pt 1):E241-246.
    [34] Gerich JE. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes 2002;51 Suppl 1: S117-S121.
    [35] Perfetti R, Barnett PS, Mathur R, Egan JM. Novel therapeutic strategies for the treatment of type 2 diabetes [J]. Diabetes Metab Rev. 1998,14(3):207-225.
    [36] Jovanovic L, Gondos B. Type 2 diabetes: the epidemic of the new millennium. Ann Clin Lab Sci, 1999, 29: 33 - 42.
    [37] Grill V,Qvigstad E.Fatty acids and insulin secretion[J] .British Journal of Nutrition, 2000,83 [ Suppl 1 ]: S79-S84.
    [38] Tong J,Boyko EJ, Utzschneider KM, et al. Intra-abdominal fat accumulation predicts the development of the metabolic syndrome in non-diabetic Japanese- Americans[ J ]. Diabetologia, 2007, 50 ( 6) :115621160
    [39] Goodpaster BH , Kelley DE , Wing RR , et al. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes , 1999 ,48 :8392847
    [40] David E, Kelley MD, Bret H, et al. Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance.Diabetes care, 2001,24:933-941.
    [41] Wang MY ,Koyama K.shimabukuro M.ob/ob gene transfer to leptin resistance islets reverses diabetogentic phenotype[J] Proc Natl Acad SciUSA,1998,95:714-718
    [42] Brownlie R, Mayers RM, Pierce JA, Marley AE, Smith DM. The long-chain fatty acid receptor , GPR40 , and glucolipotoxicity, investigations using GPR40-knockout mice. Biochem Soc Trans 2008;36(Pt 5):950–4.
    [43] Latour MG, Alquier T, Oseid E,et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo [J]. Diabetes 2007;56(4):1087–94.
    [44] Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 2008;57(9):2432–7.
    [45] Lan H, Hoos LM, Liu L, et al. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease [J]. Diabetes 2008;57(11):2999–3006.
    [46] Doshi LS, Brahma MK, Sayyed SG, Dixit AV, et al. Acute administrationof GPR40 receptor agonist potentiates glucose-stimulated insulin secretion in vivo in the rat. Metabolism 2009;58(3):333–43.
    [47] Alquier, T. and V. Poitout, GPR40: good cop, bad cop? Diabetes, 2009.58(5): p. 1035-6.
    [48] Morgan, N.G. and S. Dhayal, G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol, 2009. 78(12): 1419-27.
    [49]田源,高棕榈酸、罗格列酮和非诺贝特对β细胞游离脂肪酸受体1mRNA表达的影响,华中科技大学硕士学位论文。
    [50]李广文,胰岛素对胰岛β细胞磷脂酶Cγ1及其磷酸化水平表达的影响,第四军医大学硕士学位论文。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700