两亲分子调控下金属及金属氧化物纳/微米结构的原位合成与组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以胶体与界面化学为基础,利用两亲分子在合成与组装纳/微米结构材料中巧妙的调控作用,原位合成得到了多种金属及金属氧化物纳/微米结构及其组装体,并探讨了这些材料特有的光学性能。
     在金属纳/微米材料方面,利用表面活性剂SDS在溶液中形成的软模板,通过一步液相合成路线合成得到了多种中空的Cu纳/微米结构(纳米管、由中空的纳米粒子组装而成的微球、中空微球)。利用金属间简单的氧化还原反应,在接近室温的条件下,在不同的金属基片上合成得到了Ag的树枝状纳米结构。
     在金属氧化物纳/微米材料方面,重点开展了在金属箔片上原位合成并组装CuO与ZnO纳/微米结构的相关工作:在不同类型的表面活性剂的辅助下,通过简单的一步水热处理过程,在金属铜箔上原位合成了具有不同维度的CuO纳米结构及其超级组装结构;首次尝试了一种通过无机阴离子调控的液相路线,在金属铜箔上原位合成了由CuO纳米线和纳米片组装而成的蜂窝状和花状的CuO纳米组装结构;在乙二胺水溶液中直接氧化金属锌箔,得到了大规模高度有序的ZnO微米棒/微米管的阵列结构,并发现产物具有很好的发光性能。该方法的突出优点在于,如果向反应体系中引入表面活性剂,就可以很容易地将产物由棒状结构调控为管状结构;在NaOH碱性溶液中,通过水热处理过程,在金属锌箔上原位合成了具有规则的六角棱柱形貌的ZnO纳米棒,并探讨了多种反应条件对于产物形貌的影响。
     在对金属氧化物纳米材料的合成方面,也开展了通过低温液相路线,在溶液中合成CuO与Cu2O纳米结构的相关工作。
This thesis focuses on the discussion for the amphiphilic molecules-directed in situ synthesis and assembly of metals and metal oxides nanostructures based on the colloid and interface science, and the optic properties of these materials are also studied.
     For metals nanostructures, we present a facile one-pot chemical solution procedure to produce hollow Cu nano/micro- structures with different shape, i.e. nanotubes, microspheres assembled from hollow nanosized spheres and hollow microspheres. Dendritic Ag nanostructures are fabricated on the metal foils at room temperature using the simple oxidation-reduction reaction between different metals.
     For metal oxides nanostructures, we emphasize the in situ synthesis and assembly of CuO and ZnO nanostructures on metal foils. Firstly, a one-step surfactant-assisted mild hydrothermal method is developed for the in situ preparation of different dimensional CuO nanostructures and new self-assembly to various CuO nanoarchitectures. Secondly, we describe an anion-controlled mild hydrothermal method for in situ preparation of CuO honeycombs and flowers-like nanoarchitectures assembled from nanowires and nanoribbons on copper foils. Thirdly, we present a simple solution route for growing well-oriented 1D ZnO microrods/microtubes arrays over a large area by direct oxidation of zinc foil in an aqueous solution of ethylenediamine, and the shape of the ZnO microstructures can be easily modulated from rods to tubes simply by adding surfactant into the reaction system. Fourthly, ZnO nanorods with six perfect well-faceted side planes are in situ synthesized on zinc foils in NaOH solution with the hydrothermal treatment, and the influences of many reaction conditions on the morphology of ZnO nanostructures are also investigated.
     For metal oxides nanostructures, we also prepare CuO and Cu2O nanostructures through the low-temperature solution routes.
引文
[1] Shi J, Gider S, Babcock K, et al. Magnetic Clusters in Molecular Beams, Metals, and Semiconductors [J]. Science, 1996, 271: 937-941.
    [2] Ploog K. Microscopical Structuring of Solids by Molecular Beam Epitaxy-Spatially Resolved Materials Synthesis [J]. Angew. Chem. Int. Ed. Engl., 1988, 27: 593-758.
    [3] Eigler D M, Schweizer E K. Positioning Single Atoms with a Scanning Tunneling Microscopes [J]. Nature, 1990, 344: 524-526.
    [4] Mamin H J. Thermal Writing Using a Heated Atomic Force Microscopy Tip [J]. Appl. Phys. Lett., 1996, 69: 433-435.
    [5] Sato A, Tsukamoto Y. Nano Meter-Scale Recording and Erasing with Scanning Tunneling Microscope [J]. Nature, 1993, 363: 431-432.
    [6] Barreff R C, Quate C F. Large-Scale Charge Storage by Scanning Capacifancy Microscopy. Ultramicroscopy, 1992, 44: 262-267.
    [7] 雪晓钧, 陈海峰, 刘忠范. 用 STM 针尖诱导热致气化模式的纳米级信息存储 [J]. 中国科学(B辑), 2001, 31: 67-71.
    [8] 马立平,杨文军,薛增泉, 等. 有机复合薄膜中超高信息存储研究 [J]. 物理学报,1998, 47: 1229-1232
    [9] Ma L P, Yan W J, Xie S S, et al. Ultrahigh Density Data Stereye from Local Polymerization by a Scanning Tunneling [J]. Macroscope. Appl. Phys. Lett., 1998, 73: 3303-3305.
    [10] 蔡元霸, 梁玉仓. 纳米材料的概述、制备及其结构表征 [J]. 结构化学, 2001, 20 (6): 425-438.
    [11] 程虎民. 溶胶和凝胶过程 [M].《当代化学前沿》, 中国致公出版社, 1997,996-997.
    [12] 李铁津. LB 膜的制备 [M].《当代化学前沿》, 中国致公出版社, 1997,983.
    [13] 陈鹏磊,王东军,王小兵等.一个对称奈酞菁的 LB 膜及其二阶非线性光学性质的研究.无机化学学报,2001, 17: 269-274.
    [14] 张引, 林春, 黄景琴, 等. 稀土 Eu(III)双酞菁衍生物 LB 膜的荧光性 [J]. 无机化学学报, 2000, 16: 561-566.
    [15] 柳士忠, 张贞文, 王俊, 等. 十八胺杂多阴离子杂化 LB 膜的制备与表征 [J]. 无机化学学报, 2001, 17: 96-100.
    [16] 张韫宏, 谢兆雄, 华丙增, 等. LB 膜内银超微粒子的电化学制备及表征 [J]. 中国科学(B辑),1996, 26: 522-528.
    [17] 舒磊, 俞书宏, 钱逸泰. 半导体硫化物纳米微粒制备 [J]. 无机化学学报, 1999, 15: 1-17.
    [18] Steigerwald M L, Alivisators A P, Gibson J M et al. Surface Derivatization and Isolation of Semiconductorcluster Molecules [J]. J. Am. Chem. Soc, 1988, 110: 3046-3050.
    [19] Wang Y, Liu H F, Jiang Y Y. A New Method for Lmmobilization of Polymer-Protective Colloidal Platinum Metals via Co-ordination Capture with Anchored Ligands. Synthesis of the First Example of a Mercapto-Containing Supported Metallic Catalyst for Hydrogenation of Alkenes with High Activity [J]. J. Chem. Soc., Chem. Commun, 1989, 1878-1879.
    [20] Borreli N F, Hall D W, Holland H J et al. Quantum Confinement Effects of Semiconducting Microcrystallites in Glass [J]. J. Appl. Phys, 1987, 61: 5399-5409.
    [21] Dameron C T, Reese R N, Mehra R K et al. Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites [J]. Nature, 1989, 338: 596-598.
    [22] Herron N, Wang Y, Eddy M M et al. Structure and Optical Properties of CdS Supercluster in Zeolite Hosts [J]. J. Am. Chem. Soc., 1989, 111: 530-540.
    [23] Burkett S L, Mann S. Spatial Organization and Patterning of Gold Nanoparticles on Self-Assembled Biolipid Tubular Templates [J]. Chem. Commun, 1996, 321-322.
    [24] Attard G S, Glyde J C, Goltner C G. Liquid-Crystalline Phases as Templates for the Synthesis of Mesoporous Silica [J]. Nature, 1995, 378: 366-368.
    [25] Braun E, Eichen Y, Sivan U, et al. DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire [J]. Nature, 1998, 391: 775-778.
    [26] 常同钦. 纳米材料的测试与表征 [J]. 微纳电子技术, 2006, (10): 499-501.
    [27] 李铃, 向航. 功能材料与纳米技术 [M]. 北京:化工工业出版社,2002: 13.
    [28] 项金钟, 吴兴惠. 纳米粒子与纳米结构薄膜 [M]. 北京:化工工业出版社,2003: 401.
    [29] 白春礼. 纳米科技及其发展前景 [J]. 微纳电子技术, 2002, 39 (1): 2-5.
    [30] 白春礼, 田芳, 罗克. 扫描力显微术 [M]. 北京:科学出版社, 2000, 238.
    [31] 陈本永. 纳米测量技术的挑战与机遇 [J]. 仪器仪表学报, 2005, 26 (5): 547-550.
    [32] Wang Z L. Towards property nanomeasurements by in-sity TEM-present and prospects [J]. 电子显微学报, 2000, 19 (1): 1-13.
    [33] Ng H T, Chen B, Li J, et al. Optical properties of single-crystalline ZnO nanowires on m-sapphire [J]. Appl. Phys. Lett., 2003, 82 (13): 2023-2025.
    [34] Park P W, Ragle C S, Boyer C L, et al. In2O3/Al2O3 catalysts for NOx reduction in lean condition [J]. J. Catal., 2002, 210 (1): 97-105.
    [35] 刘欢, 翟锦, 江雷. 纳米材料的自组装研究进展 [J]. 无机化学学报, 2006, 22 (4): 585-597.
    [36] 张登松, 施利毅, 方建慧, 等. 纳米材料自组装合成技术研究进展 [J]. 2003, 31 (5): 4-7.
    [37] Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett Nanorod Assembly [J]. J. Am. Chem. Soc., 2001, 123: 4360-4361.
    [38] Varki A. Biological roles of oligosaccharides: all of the theories are correct [J]. Glycobiology, 1993, 3 (2): 97-130.
    [39] Andres R P, Bielefeld J D, Henderson J I, et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters [J]. Science, 1996, 273: 1690-1693.
    [40] Patil V, Mayya K S, Pradhan S D, et al. Evidence for Novel Interdigitated Bilayer Formation of Fatty Acids during Three-Dimensional Self-Assembly on Silver Colloidal Particles [J]. J. Am. Chem. Soc., 1997, 119: 9281-9282.
    [41] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 607-609.
    [42] Boal A K, Rotello V M, Fabrication and Self-Optimization of Multivalent Receptors on Nanoparticle Scaffolds [J]. J. Am. Chem. Soc., 2000, 122: 734-735.
    [43] Caruso F, Susha A S, Giersig M, et al. Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres [J]. Adv. Mater., 1999, 11: 950-953.
    [44] Caruso F, Caruso R, M?hwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282: 1111-1114.
    [45] Bowden N B, Weck M, Choi I S, et al. Molecule-Mimetic Chemistry and Mesoscale Self-Assembly [J]. Acc. Chem. Res., 2001, 34: 231-238.
    [46] Bico J, Roman B, Moulin L, et al. Elastocapillary coalescence in wet hair [J]. Nature, 2004, 432: 690-690.
    [47] Li D, Lütt M, Fitzsimmons M R, et al. Preparation, Characterization, and Properties of Mixed Organic and Polymeric Self-Assembled Multilayers [J]. J. Am. Chem. Soc., 1998, 120: 8797-8804.
    [48] Schlittler R R, Seo J W, Gimzewshi J K, et al. Single Crystals of Single - Walled Carbon Nanotubes Formed by Self –Assembly [J]. Science, 2001, 292: 1136-1139.
    [49] 段旭, 赵晓鹏. 纳米材料的分子自组装合成述评 [J]. 材料导报, 2001, 15(4): 44-47.
    [50] Das S, Pal A J. Layer-by-layer self-assembling of a low molecular weight organic material by different electrostatic adsorption processes [J]. Langmuir, 2002, 18: 458-461.
    [51] Salil G, Israel R, Takaya T, et al. Secretin self-assembles and interacts spontaneously with phospholipids in vitro [J]. Peptides, 2002, 23 (1): 201-204.
    [52] 何静, 冯桃, 段雪, 等. 原位自组装形成二氧化硅/十六烷基三甲基溴化铵纳米网络粒子 [J]. 高分子学报, 2001, 10 (5): 639-644.
    [53] Decher G, Hong J D, Bunsenges B. Buildup of ultrathin multilayer films by a self – assembly process: II. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolyteson charged surfaces [J]. Physical Chemistry, 1991, 95: 1430-1434.
    [54] Ziegler A, Stumpe J, Toutianoush A, et al. Photo orientation of azobenzene moisties in self-assembled polyelectrolyte multilayers [J]. Colloids and Surfaces A – Physicochemical and Engineering Aspects, 2002, 198: 777-784.
    [55] Zhang L, Zhang F, Wang Y, et al. Linear electro-optic tensor ratio determination and quadratic electro - optic modulationof electrostatically self - assembled CdSe quantum dot films [J]. J. Chem. Phys., 2002, 116: 6297-6304.
    [56] Zhang Y, Yang S, Liu X, et al. Photo - induced DNA cleavage in self-assembly multilayer films [J]. New J. Chem., 2002, 26: 617-620.
    [57] Arregui F J, Claus R O, Matias I R, et al. Optical fiber devices based on nanoscale self-assembly [J]. Sci. Eng. Compos. Mater., 2002, 10:19-27.
    [58] Dai J H, Balachandra A M, Lee J I, et al. Controlling ion transport through multilayer polyelectrolyte membranes by derivatization with photolabile functional groups [J]. Macromolecules, 2002, 35: 3164-3170.
    [59] Kim T H, Sohn B H. Photocatalytic thin films containing TiO2 nanoparticles by the layer-by-layer self-assembling method [J]. Appl. Surf. Sci., 2002, 201: 109-114.
    [60] Todd O Y, Jennifer E P. Designing supramolecular protein assemblies [J]. Curr. Opin. Struc. Bio., 2002, 12(4): 464-470.
    [61] Netzer L, Sagiv J. A new approach to construction of artificial monolayer assemblies [J]. J. Am. Chem. Soc., 1983, 105(3): 674-676.
    [62] Calvo E J, Forzani E S, Otero M. Study of layer-by-layer self-assembled viscoelastic films on thickness-shear mode resonator surfaces [J]. Anal. Chem., 2002, 74: 3281-3289.
    [63] Katagiri K, Hamasaki R, Ariga K, et al. Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic - inorganic hybrid [J]. J. Am. Chem. Soc., 2002,124: 7892-7893.
    [64] Khomutov G B, Beresneva I V, Bykov I V, et al. Formation of polymer films containing multivalent metal cations by stepwise alternate adsorption of metal cations and polyanions [J]. Colloids Surfaces A- Physicochemical and Engineering Aspects, 2002, 198: 491-499.
    [65] Weller H. Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules [J]. Angew. Chem. Int. Ed., 1993, 32: 41-53.
    [66] Shiang J J, Heath J R, Collier C P, et al. Cooperative Phenomena in Artificial Solids Made from Silver Quantum Dots: The Importance of Classical Coupling [J]. J. Phys. Chem. B, 1998, 102: 3425-3430.
    [67] Collier C P, Saykally R J, ShiangJ J, et al. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition [J]. Science, 1997, 277: 1978-1981.
    [68] Andres R P, Bielefeld J D, Henderson J I, et al. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters [J]. Science, 1996, 273: 1690-1693.
    [69] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 277: 1078-1081.
    [70] Musick M D, Pena D J, Botsko S L, et al. Electrochemical Properties of Colloidal Au-Based Surfaces: Multilayer Assemblies and Seeded Colloid Films [J]. Langmuir, 1999, 15: 844-850.
    [71] Zamborini F P, Hicks J F, Murray R W. Quantized Double Layer Charging of Nanoparticle Films Assembled Using Carboxylate/(Cu2+ or Zn2+)/Carboxylate Bridges [J]. J. Am. Chem.Soc., 2000, 122: 4514-4515.
    [72] Brust M, Walker M, Bethell D, et al. Synthesis of Thiol Derivatised Gold Nanoparticles in a Two-Phase Liquid/Liquid System [J]. J. Chem. Soc. Chem. Commun., 1994, 7: 801-802.
    [73] Hostetler M J, Templeton A C, Murray R W. Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules [J]. Langmuir, 1999, 15: 3782-3789.
    [74] Maye M M, Chun S C, Han L, et al. Novel Spherical Assembly of Gold Nanoparticles Mediated by a Tetradentate Thioether [J]. J. Am. Chem. Soc., 2002, 124: 4958-4959.
    [75] Tripp S L, Pusztay S V, Ribbe A E, et al. Self-Assembly of Cobalt Nanoparticle Rings [J]. J. Am. Chem. Soc., 2002, 124: 7914-7915.
    [76] Kiely C J, Fink J, Brust M, et al. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters [J]. Nature, 1998, 396: 444-446.
    [77] Shevchenko E V, et al. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals [J]. J. Am. Chem. Soc., 2002, 124: 11480-11485.
    [78] Redl F X, Cho K S, Murray C B, et al. Three-dimensional Binary Superlattices of Magnetic Nanocrystals and Semiconductor Quantum Dots [J]. Nature, 2003, 423: 968-971.
    [79] Shevchenko E V, Talapin D V, O’Brien S, et al. Polymorphism in AB13 Nanoparticle Superlattices: An Example of Semiconductor-Metal Metamaterials [J]. J. Am. Chem. Soc., 2005, 127: 8741-8747.
    [80] Shevchenko E V, Talapin D V, Kotov N A, et al. Structural diversity in binary nanoparticle superlattices [J]. Nature, 2006, 439: 55-59.
    [81] Eldridge M D, Madden P A, Frenkel D. Entropically driven microphase transitions in mixtures of colloidal rods and spheres [J]. Nature, 1993, 365: 35-37.
    [82] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liqiud-liquid interface [J]. Science, 2003, 299: 226-229.
    [83] Lin Y, Skaff H, B Ker A, et al. Ultrathin Cross-Linked Nanoparticle Membranes [J]. J. Am. Chem. Soc., 2003, 125: 12690-12691.
    [84] Reincke F, Hickey S, Kegel W, et al. Spontaneous assembly of a. monolayer of charged gold nanocrystals at the water/oil interface [J]. Angew. Chem., Int.Ed., 2004, 43: 458-462.
    [85] Duan H, WangD, Kurth D G, et al. Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces [J]. Angew. Chem., Int. Ed., 2004, 43: 5639-5642.
    [86] Duan H, Wang D, Sobal Nelli S, et al. Magnetic Colloidosomes Derived from Nanoparticle Interfacial Self-Assembly [J]. Nano Lett., 2005, 5: 949-952.
    [87] Pacholski C, Kornowski A, Weller H. Self-Assembly of ZnO: From Nanodots to Nanorods [J]. Angew. Chem. Int. Ed., 2002, 41: 1188-1191.
    [88] Reincke F, Hickey S G, Kegel W K, et al. Spontaneous assembly of a. monolayer of charged gold nanocrystals at the water/oil interface [J]. Angew. Chem. Int. Ed., 2004, 43: 458-462.
    [89] Tao A, Kim F, Hess C, et al. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy [J]. Nano Lett., 2003, 3: 1229~1233.
    [90]Yang P. Nanotechnology Wires on water [J]. Nature, 2003, 425: 243-244.
    [91] Whang D, Jin S, Wu Y, et al. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems [J]. Nano Lett., 2003, 3: 1255-1259.
    [92] Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett Nanorod Assembly [J]. J. Am. Chem. Soc., 2001,123: 4360-4361.
    [93] Diehl M R, Yaliraki S N, Beckman R A, et al. Self-Assembled, Deterministic Carbon Nanotube Wiring Networks [J]. Angew. Chem., 2002, 114: 363-366.
    [94] Liu H, Li S, Zhai J, et al. Self-Assembly of Large-scale Micropatterns on Aligned Carbon Nanotube Films [J]. Angew. Chem. Int. Ed., 2004, 43: 1146-1149.
    [95] Park S, Lim J H, Chung S W, et al. Self-Assembly of Mesoscopic Metal Polymer Amphiphiles [J]. Science, 2004, 303: 348-351.
    [96] Li Y G, Tan B, Wu Y Y. Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays [J]. J. Am. Chem. Soc., 2006, 128: 14258-14259
    [97] Xie Q, Qian Y T, Zhang S Y, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property [J]. Chem. Commun., 2004, 712-713.
    [98] Lu C H, Qi L M, Yang J H, et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate [J]. Chem. Commun., 2006, 3551-3553.
    [99] Wu X F, Bai H, Li C, et al. Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature [J]. Chem. Commun., 2006, 1655-1657.
    [100] Tong Y H, Liu Y C, Shao C L, et al. Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes [J]. J. Phys. Chem. B, 2006, 110: 14714-14718.
    [101] Yu H D, Zhang Z P, Han M Y, et al. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays [J]. J. Am. Chem. Soc., 2005, 127: 2378-2379
    [102] Zhang L Z, Yu J C, Mo M S, et al. A General Solution-Phase Approach to OrientedNanostructured Films of Metal Chalcogenides on Metal Foils: The Case of Nickel Sulfide [J]. J. Am. Chem. Soc., 2004, 126: 8116-8117.
    [103] Zhang B, Ye X C, Dai W, et al. Biomolecule-Assisted Synthesis, Electrochemical Hydrogen Storage of Novel Porous Spongy-Like Ni3S2 Nanostructures on Nickel Foils [J]. Chem. Eur. J., 2006, 12: 2337-2342.
    [104] 宋彩霞, 王德宝, 古国华, 等. 表面活性剂有序聚集体在纳米材料制备中的应用 [J]. 材料导报, 2002, 16(9): 56-59.
    [105] Fendler J H. Membrane Mimetic Chem. Wiley-inter-science [M]. NewYork,1982.
    [106] 吴宗斌, 王丽萍, 洪广言. 反相胶束微乳液法制备纳米氧化钇微晶 [J]. 应用化学, 1999, 16(6): 9-12.
    [107] 吴庆生, 郑能武, 丁亚平. 氯化铅纳米线的胶束模板诱导合成及其机理研究 [J]. 高等学校化学学报, 2001, 22(6): 898-900.
    [108] Boutonnet M, Kizling J, Stenins P, et al. preparation of monodispersed colloidal metal particles from microemulsions [J]. Colloids and surfaces, 1982, 5: 209-225.
    [109] 梁桂勇, 翟学良, 微乳液法制备纳米银离子 [J]. 功能材料 ,1999 ,30(5) :484-485.
    [110] 成国祥, 唐懿, 沈锋, 水/Span85-Tween60/环己烷微乳液及纳米复合微粒制备[J]. 天津大学学报, 2000, 33(3): 401-403.
    [111] 李彦, 张庆敏, 黄福志, 模板法制备硫化物半导体纳米材料 [J]. 无机化学学报, 2002, 18(1): 79-82.
    [112] Gauffre F, Roux D. Studying a New Type of Surfactant Aggregate ("Spherulites") as Chemical Microreactors. A First Example: Copper Ion Entrapping and Particle Synthesis [J]. Langmuir, 1999, 15: 3738-3747.
    [113] C?lfen H, Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures [J]. Angew. Chem. Int. Ed., 2003, 42: 2350-2365.
    [114] Adair J H, Suvaci E. Morphological control of particles [J]. Curr. Opin. Colloid Interface Sci., 2000, 5: 160-167.
    [115] C?lfen H, Qi L M, Mastai Y, et al. Formation of Unusual 10-Petal BaSO4 Structures in the Presence of a Polymeric Additive [J]. Cryst. Growth Des., 2002, 2: 191-196.
    [116] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature,1999, 402: 393-395.
    [117] Nikoobakht B, Wang Z L, El-Sayed M A. Microstructure and its effect on electron field emission of size-controlled nanocrystalline diamond films [J]. J. Phys. Chem. B, 2000, 104: 8635-8640.
    [118] Puntes V F, Krishnan K M, Alivisatos A P. Self-Assembly of Gold Nanorods [J]. Science, 2001, 291: 2115-2117.
    [119] Jana N R, Gearheart L A, Obare S O, et al. Liquid Crystalline Assemblies of Ordered Gold Nanorods [J]. J. Mater. Chem., 2002, 12: 2909-2912.
    [1] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions [J]. J. Am. Chem. Soc., 2002, 124: 7642-7643.
    [2] Kang Z, Wang E, Gao L, et al. One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite [J]. J. Am. Chem. Soc., 2003, 125: 13652-13653.
    [3] Kang Z, Wang E, Mao B, et al. Obtaining carbon nanotubes from grass [J]. Nanotechnology, 2005, 16: 1192-1195.
    [4] Sun Y, Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science, 2002, 298: 2176-2179.
    [5] Jiang Z Y, Xie Z X, Zhang X H, et al. Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates [J]. Adv. Mater., 2004, 16: 904-907.
    [6] Yin Y, Rioux R M, Erdonmez X K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect [J]. Science, 2004, 304: 711-714.
    [7] Yang J, Qi L, Lu C, et al. Morphosynthesis of rhombdodecahedral silver cages by self-assembly coupled with precursor crystal templating [J]. Angew. Chem. Int. Ed., 2005, 44: 598-603.
    [8] Chen J, Saeki F, Wiley B J, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents [J]. Nano Lett., 2005, 5: 473-477.
    [9] Park S, Lim J –H, Chung S –W, et al. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles [J]. Science, 2004, 303: 348-351.
    [10] Sun Y, Xia Y. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium [J]. J. Am. Chem. Soc., 2004, 126: 3892-3893.
    [11] Caruso F, Caruso R A, M?hwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282: 1111-1114.
    [12] Liu B, Zeng H C. Salt-Assisted Deposition of SnO2 on α-MoO3 Nanorods and Fabrication of Polycrystalline SnO2 Nanotubes [J]. J. Phys. Chem. B, 2004, 108: 5867-5874.
    [13] Guo C –W, Cao Y, Xie S –H, et al. Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors [J]. Chem. Commun., 2003, 700-701.
    [14] Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids [J]. J. Am. Chem. Soc., 2003, 125: 6386-6387.
    [15] Sun Y, Mayers B, Xia Y. Metal nanostructures with hollow interiors [J]. Adv. Mater., 2003, 15: 641-644.
    [16] Sun Y, Mayers B, Xia Y. Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors [J]. Nano Lett., 2002, 2: 481-485.
    [17] Yang H G, Zeng H C. Preparation of Hollow Anatase TiO2 Nanospheres Via Ostwald Ripening [J]. J. Phys. Chem. B, 2004, 108: 3492-3495.
    [18] Bigi A, Boanini E, Walsh D, et al. Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization [J]. Angew. Chem. Int. Ed., 2002, 41: 2163-2166.
    [19] Lu C H, Qi L M, Yang J H, et al. One-pot synthesis of octahedral Cu2O nanocages by a catalytic solution route [J]. Adv. Mater., 2005, 17: 2562-2567.
    [20] Liu Q, Liu H J, Han M, et al. Nanometer-Sized Nickel Hollow Spheres [J]. Adv. Mater., 2005, 17: 1995-1997.
    [21] Zhang D, Qi L, Ma J, et al. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions [J]. Adv. Mater., 2002, 14: 1499-1502.
    [22] Bao J, Liang Y, Xu Z, et al. Facile Synthesis of Hollow Nickel Submicrometer Spheres [J]. Adv. Mater., 2003, 15: 1832-1835.
    [23] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature [J]. Science, 2000, 287: 1463-1466.
    [24] Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J]. Appl. Phys. Lett., 2001, 78: 718-720.
    [25] Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors [J]. J. Am. Chem. Soc., 1993, 115: 3887-3896.
    [26] Filankembo A, Giorgio S, Lisiecki I, et al. Is the anion the major parameter in the shape control of nanocrystal? [J]. J. Phys. Chem. B, 2003, 107: 7492-7500.
    [27] Lisiecki I, Filankembo A, Sack-Kongehl H, et al. Structural investigations of copper nanorods by high-resolution TEM [J]. Phys. Rev. B 2000, 61, 4968-4974.
    [28] Tao A T, Pileni M P. Assemblies of cigar-shaped ferrite nanocrystals: orientation of the easy magnetization axes [J]. Colloids Surf. A, 2003, 228: 107-117.
    [29] Pinna N, Weiss K, Sack-Kongehl H, et al. Triangular CdS Nanocrystals: Synthesis, Characterization, and Stability [J]. Langmuir, 2001, 17: 7982-7987.
    [30] Salzemann C, Urban J, Lisiecki I, et al. Characterization and growth process of copper nanodisks [J]. Adv. Funct. Mater., 2005, 15: 1277-1284.
    [31] Yen M, Chiu C, Hsia C, et al. Synthesis of Cable-Like Copper Nanowires [J]. Adv. Mater., 2003, 15: 235-238.
    [32] Ren X L, Chen D, Tang F Q. Controlled synthesis of copper colloids with a simple chemical route [J]. J. Phys. Chem. B, 2005, 109: 15803-15807.
    [33] Cong H L, Zhang M F, Cao W X. Hollow Cu-NP Spheres Made from Electroless Cu Deposition with Colloidal Particles as Templates [J]. Macromol. Rapid Commun., 2005, 26: 734-737.
    [34] Rabenau A. The role of hydrothermal synthesis in preparative chemistry [J]. Angew. Chem. Int. Ed. Engl., 1985, 24: 1026-1040.
    [35] Healy T W, Drummond C J, Grieser F, et al. Electrostatic surface potential and critical micelle concentration relationship for ionic micelles [J]. Langmuir, 1990, 6: 506-508.
    [36] Rubio D A, Zanette D, Nome F, et al. Effect of 1-butanol on Micellization of sodium dodecyl sulfate on fluorescence quenching by bromide ion [J]. Langmuir, 1994, 10: 1151-1154.
    [37] Rockenberger J, Tr?ger L, Rogach A L, et al. The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals [J]. J. Chem.Phys., 1998, 108: 7807-7815.
    [38] Kang Z H, Wang E B, Jiang M, et al. Synthesis and characterization of polyoxometalate nanowires based on a novel microemulsion process [J]. Nanotechnology, 2004, 15: 55-58.
    [39] Schmitz K S. Macroions in Solution and Colloidal Suspension; VCH: New York, 1993. b) Brown W, Static Light Scattering. Principles and Development; Clarendon: Oxford, 1996.
    [40] Sedlák M. Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization [J]. J. Phys. Chem. B, 2006, 110: 4329-4338.
    [41] Sedlák M.Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: II. Kinetics of theformation and long-time stability [J]. J. Phys. Chem. B, 2006, 110: 4339-4345.
    [42] Kwan S, Kim F, Akana J, et al. Synthesis and assembly of BaWO4 nanorods [J]. Chem. Commun., 2001, 447-448.
    [43] Liu Y, Chu Y, Yang L K, et al. A novel solution-phase route for the synthesis of crystalline silver nanowires [J]. Mater. Res. Bull., 2005, 40: 1796-1798
    [44] Hou H, Xie Y, Li Q. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons [J]. Cryst. Growth Des., 2005, 5: 201-206
    [45] Liu Y, Chu Y, Li M Y, et al. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process [J]. J. Mater. Chem., 2006, 16: 192-198.
    [46] Sun Y G, Xia Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. J. Am. Chem. Soc., 2004, 126: 3892-3893.
    [47] Norris D J, Vlasov Y A. Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals [J]. Adv. Mater., 2001, 13: 371-376.
    [1] Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev., 2005, 105:1025-1102.
    [2] Murphy C J, Sau T K, Gole A M, et al. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications [J]. J. Phys. Chem. B, 2005, 109: 13857-13870.
    [3] Pacholski C, Kornowski A, Weller H. Self-Assembly of ZnO: From Nanodots to Nanorods [J]. Angew. Chem. Int. Ed., 2002, 41: 1188-1191.
    [4] Lin S, Li M, Dujardin E, et al. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks [J]. Adv. Mater., 2005, 17: 2553-2556.
    [5] Tang Z, Kotov N A, Giersig M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires [J]. Science, 2002, 297: 237-240.
    [6] Giersig M, Pastorza-Santos I, Liz-Marzán L M. Evidence of an aggregative mechanism during the formation of silver in N,N-dimethylformadide [J]. J. Mater. Chem., 2004, 14: 607-610.
    [7] Cho K, Talapin D V, Gaschler W, et al. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles [J]. J. Am. Chem. Soc., 2005, 127: 7140-7147.
    [8] Yu S H, C?lfen H, Antonietti M. The combination of colloid-controlled heterogeneous nucleation and polymer-controlled crystallization: Facile synthesis of separated, uniform high-aspect ratio single-crystalline BaCrO4 nanofibers [J]. Adv. Mater., 2003, 15:133-136.
    [9] Lu L H, Capek R, Kornowski A, et al. Selective Fabrication of Ordered Bimetallic Nanostructures with Hierarchical Porosity [J]. Angew. Chem. Int. Ed., 2005, 44: 5997-6001.
    [10] Selvan S T, Hayakawa T, Nogami M, et al. Block Copolymer Mediated Synthesis of Gold Quantum Dots and Novel Gold-Polypyrrole Nanocomposites [J]. J. Phys. Chem. B, 1999, 103: 7441-7448.
    [11] Peng Q, Dong Y J, Deng Z X, et al. Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals [J]. Inorg. Chem., 2002, 41: 5249-5254.
    [12] Parfenov A, Gryczynski I, Malicka J, et al. Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces [J]. J. Phys. Chem. B, 2003, 107: 8829-8833.
    [13] Sander L M, Fractal growth processes [J]. Nature, 1986, 322: 789-793.
    [14] Ahmadi T S, Wang Z L, Green T C, et al. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles [J]. Science, 1996, 272: 1924-1926.
    [15] Wang X, Itoh H, Naka K, et al. Tetrathiafulvalene-Assisted Formation of Silver Dendritic Nanostructures in Acetonitrile [J]. Langmuir, 2003, 19: 6242-6246.
    [16] Chimentao R J, Kirm I, Medina F, et al. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase [J]. Chem. Commun., 2004, 846-847.
    [17] Zhang J, Li X, Sun X, et al. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes [J]. J. Phys. Chem. B, 2005, 109: 12544-12548.
    [18] Busbee B D, Obare S O, Murphy C J. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods [J]. Adv. Mater., 2003, 15: 414-416.
    [19] Kim F, Song J H, Yang P D. Photochemical Synthesis of Gold Nanorods [J]. J. Am. Chem. Soc., 2002, 124:14316-14317.
    [20] Chen S, Fan Z, Carroll D L. Silver Nanodisks: Synthesis, Characterization, and Self-Assembly [J]. J. Phys. Chem. B, 2002, 106: 10777-10781.
    [21] Maillard M, Giorgio S, Pileni M P. Silver Nanodisks [J]. Adv. Mater., 2002, 14: 1084-1086.
    [22] Sun X, Dong S, Wang E. Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of Nanometer Thickness by a Wet-Chemical Route [J]. Angew. Chem. Int. Ed., 2004, 43: 6360-6363.
    [23] Li Z, Liu Z, Zhang J, et al. Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids [J]. J. Phys. Chem. B, 2005, 109: 14445-14448.
    [24]Yu D, Yam V W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water [J]. J.Am.Chem.Soc. 2004, 126,13200-13201.
    [25] Jin R, Cao Y, Mirkin C A, et al. Photo-Induced Conversion of Silver Nanospheres to Nanoprisms [J]. Science, 2001, 294:1901-1904.
    [26] Jin R, Cao Y C, Hao E, et al. Controlling anisotropic nanoparticle growth through plasmon excitation [J]. Nature, 2003, 425: 487-490.
    [27] Zhang D, Qi L, Ma J, et al. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions [J]. Adv. Mater., 2002, 14:1499-1502.
    [28] Sun Y G, Mayers B, Xia Y N. Metal Nanostructures with Hollow Interiors [J]. Adv. Mater., 2003, 15: 641-646.
    [29] Kim F, Connor S, Song H, et al. Platonic Gold Nanocrystals [J]. Angew. Chem. Int. Ed., 2004, 43: 3673-3677.
    [30] Sau T K, Murphy C J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution [J]. J. Am. Chem. Soc., 2004, 126: 8648-8649.
    [31] Luo J, Huang Z P, Zhao Y G, et al. Arrays of Heterojunctions of Ag Nanowires and Amorphous Carbon Nanotubes [J]. Adv. Mater., 2004, 16: 1512-1515.
    [32] Choi J, Sauer G, Nielsch K, et al. Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio [J]. Chem. Mater., 2003, 15: 776-779.
    [33] Chang J Y, Chang J J, Lo B, et al. Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water [J]. Chem. Phys. Lett., 2003, 379: 261-265.
    [34] Tao A, Kim F, Hess C, et al. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy [J]. Nano Lett., 2003, 3: 1229-1233.
    [35] Huang M H, Choudrey A, Yang P D. Nanowire Formation within Mesopomus Silica [J]. Chem. Commun., 2000, 1063-1064.
    [36] Hong B H, Bae S B, Lee C W, et al. Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase [J]. Science, 2001, 294: 348-351.
    [37] Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature, 1998, 391:775-778.
    [38] Behrens S, Wu J, Habicht W, et al. Silver Nanoparticle and Nanowire Formation by Microtubule Templates [J]. Chem. Mater., 2004,16: 3085-3090.
    [39] Sun Y G, Gates B, Mayers B, et al. Crystalline Silver Nanowires by Soft SolutionProcessing [J]. Nano Lett., 2002, 2: 165-168.
    [40] Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. [J]. Adv. Mater., 2002, 14: 833-836.
    [41] Gao Y, Jiang P, Liu D F, et al. Synthesis, characterization and self-assembly of silver nanowires [J]. Chem. Phys.Lett., 2003, 380: 146-149.
    [42] Wen X G, Xie Y T, Cheung Mak M W, et al. Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications [J]. Langmuir, 2006, 22: 4836-4842.
    [43] Geddes C D, Parfenov A, Gryczynski I, et al. Luminescent blinking from silver nanostructures [J]. J. Phys. Chem. B, 2003, 107: 9989-9993.
    [44] Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photo-reduction technique for preparation of single crystal Ag nanorods and Ag dendrites [J]. Adv. Mater., 1999, 11: 850-852
    [45] Xiao J P, Xie Y, Tang R, et al. Novel ultrasonically assisted templated synthesis of palladium and silver dendritric nanostructures [J]. Adv. Mater., 2001, 13: 1887-1891.
    [46] Li Q C, Kumar V, Li Y, et al. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions [J]. Chem. Mater., 2005, 17: 1001-1006.
    [1] Huang Y, Duan X F, Wei Q Q, et al. Directed Assembly of One Dimensional Nanostructures into Functional Networks [J]. Science, 2001, 291: 630-633.
    [2] Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science, 2002, 295: 2418-2421.
    [3] Thalladi V R, Whitesides G M. Crystals of Crystals: Fabrication of Encapsulated and Ordered Two-Dimensional Arrays of Microcrystals [J]. J. Am. Chem. Soc., 2002, 124: 3520-3521.
    [4] C?lfen H, Mann S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures [J]. Angew. Chem., Int. Ed., 2003, 42: 2350-2365.
    [5] Yang P. Wires on water [J]. Nature, 2003, 425: 243-244.
    [6] Zhang Z P, Shao X Q, Yu H D, et al. Morphosynthesis and Ornamentation of 3D Dendritic Nanoarchitectures [J]. Chem. Mater., 2005, 17: 332-336.
    [7] Ohara P C, Heath J R, Gelbart W M. Self-Assembly of Submicrometer Rings of Particles from Solutions of Nanoparticles [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 1078-1080.
    [8] Alivisatos A P, Johnsson K P, Peng X G, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382: 609-611.
    [9] Kwan S, Kim F, Akana J, et al. Synthesis and assembly of BaWO4 nanorods [J]. Chem. Commun., 2001, 447-448.
    [10] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanocrystal shape and size control the case of cobalt [J]. Science, 2001, 291: 2115-2117.
    [11] Gracias D H, Tien J, Breen T L, et al. Forming electrical networks in three dimensions by self-assembly [J]. Science, 2000, 289: 1170-1172.
    [12] Shi H, Qi L, Ma J, et al. Polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles [J]. J. Am. Chem. Soc., 2003, 125: 3450-3451.
    [13] Wu H, Thalladi V R, Whitesides S, Whitesides G M. Using Hierarchical Self-Assembly To Form Three-Dimensional Lattices of Spheres [J]. J. Am. Chem. Soc., 2002, 124: 14495-14502.
    [14] Smith P A, Nordquist C D, Jackson T N, et al. Electric-field assisted assembly and alignment of metallic nanowires [J]. Appl. Phys. Lett., 2000, 77: 1399-1404.
    [15] Patzke G R, Krumeich F, Nesper R. Oxidic Nanotubes and Nanorods - Anisotropic Modules for a Future Nanotechnology [J]. Angew. Chem., Int. Ed., 2002, 41: 2446-2461.
    [16] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271: 933-937.
    [17] Xia Y, Yang P, Sun Y, et al. One-dementional nanostuctures: synthesis, characterization, and applications [J]. Adv. Mater., 2003, 15: 353-389.
    [18]Liang J, Liu J, Xie Q, et al. Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J]. J. Phys. Chem. B, 2005, 109: 9463-9467.
    [19] Hou H, Xie Y, Li Q. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons [J]. Cryst. Growth Des., 2005, 5: 201-206.
    [20] Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions" [J]. J. Am. Chem. Soc., 2004, 126: 8124-8125.
    [21] Zhang D, Sun L, Yin J, et al. Attachment-Driven Morphology Evolvement of Rectangular ZnO Nanowires [J]. J. Phys. Chem. B, 2005, 109: 8786-8790.
    [22] Liu C H, Zapien J A, Yao Y, et al. High-density, ordered ultraviolet light-emitting ZnO nanowire arrays [J]. Adv. Mater., 2003, 15: 838-841.
    [23] Zheng X G, Xu C N, Tomokiyo Y, et al. Observation of Charge Stripes in Cupric Oxide [J]. Phys. Rev. Lett., 2000, 85: 5170-5173.
    [24] Brookshier M A, Chusuei C C, Goodman D W. Control of CuO Particle Size on SiO2 by Spin Coating [J]. Langmuir, 1999, 15: 2043-2046.
    [25] Kumar R V, Elgamiel R, Diamant Y, et al. Sonochemical Preparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly(vinyl alcohol) and Its Effect on Crystal Growth of Copper Oxide [J]. Langmuir, 2001, 17: 1406-1410.
    [26] Reitz J B, Solomon E I. Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity [J]. J. Am. Chem. Soc., 1998, 120: 11467-11468.
    [27] Switzer J A, Kothari H M, Poizot P, et al. Enantiospecific Electrodeposition of a Chiral Catalyst [J]. Nature, 2003, 425: 490-493.
    [28] Gao X P, Bao J L, Pan G L, et al. Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery [J]. J. Phys. Chem. B, 2004, 108: 5547-5551.
    [29] Hsieh C T, Chen J M, Lin H H, et al. Field emission from various CuO nanostructures [J]. Appl. Phys. Lett., 2003, 83: 3383-3385.
    [30] Yu X F, Wu N Z, Xie Y C, et al. A monolayer dispersion study of titania-supported copper oxide [J]. J. Mater. Chem., 2000, 10: 1629-1634.
    [31] Kumar R V, Diamant Y, Gedanken A. Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates [J]. Chem. Mater., 2000, 12: 2301-2308.
    [32] Carnes C L, Stipp J, Klabunde K J, et al. Synthesis, Characterization, and Adsorption Studies of Nanocrystalline Copper Oxide and Nickel Oxide [J]. Langmuir, 2002, 18: 1352-1359.
    [33] Chen S, Carroll D. Silver Nanoplates: Size Control in Two Dimensions and Formation Mechanisms [J]. J. Phys. Chem. B, 2004, 108: 5500-5506.
    [34] Kang Z, Wang E, Jiang M, et al. Convenient Controllable Synthesis of Inorganic ID Nanocrystals and 3D High-Ordered Microtubes [J]. Eur. J. Inorg. Chem., 2003, 370-376.
    [35] Rabenau A. The role of hydrothermal synthesis in preparative chemistry [J]. Angew. Chem. (English Ed.), 1985, 24:1026-1040.
    [36] Kang Z, Wang E, Mao B, et al. Controllable Fabrication of Carbon Nanotube and Nanobelt with a Polyoxometalate-Assisted Mild Hydrothermal Process [J]. J. Am. Chem. Soc., 2005, 127: 6534-6535.
    [37] Mo M S, Yu J C, Zhang L Z, et al. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres [J]. Adv. Mater., 2005, 17: 756-759.
    [38] Xu S J, Chua S J, Liu B, et al. Luminescence characteristics of impurities-activatedZnS nanocrystals prepared in microemulsion with hydrothermal treatment [J]. Appl. Phys. Lett., 1998, 73: 478-480.
    [39] Mayers B, Xia Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach [J]., J. Mater. Chem. 2002, 12: 1875-1881.
    [40] McCann J, Li D, Xia Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures [J]. J. Mater. Chem., 2005, 15: 735-738.
    [41] Fang X S, Ye C H, Peng X S, et al. Temperature-controlled growth of Al2O3 nanobelts and nanosheets [J]. J. Mater. Chem., 2003, 13: 3040-3043.
    [42]Fang X S, Ye C H, Peng X S, et al. Temperature-Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders [J]. Adv. Funct. Mater., 2005, 15: 63-68.
    [43] Kim F, Connor S, Song H, et al. Platonic Gold Nanocrystals [J]. Angew. Chem. Int. Ed., 2004, 43: 3673-3677.
    [44] Pan Z, Dai Z, Xu L, et al. Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders [J]. J. Phys. Chem. B., 2001, 105: 2507-2514.
    [45] Pan Z, Dai S, Beach D, et al. Temperature Dependence of Morphologies of Aligned Silicon Oxide Nanowire Assemblies Catalyzed by Molten Gallium [J]. Nano. Lett. 2003, 3: 1279-1284.
    [46] Fang X S, Ye C H, Zhang L D, et al. Synthesis of Ultrathin ZnO Nanofibers Aligned on a Zinc Substrate [J]. Small, 2005, 1: 612-616.
    [47] Kang Z, Wang E, Gao L, et al. One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite [J]. J. Am. Chem. Soc., 2003, 125, 13652-13653.
    [48] Liu Z, Li S, Yang Y, et al. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts, Adv. Mater., 2003, 15: 1946-1948.
    [49] C?lfen H, Qi L M, Mastai Y, et al. Formation of Unusual 10-Petal BaSO4 Structures in the Presence of a Polymeric Additive [J]. Cryst. Growth Des., 2002, 2: 191-196.
    [50] Shi H, Qi L, Ma J, et al. Polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles [J]. J. Am. Chem. Soc., 2003, 125: 3450-3451.
    [51] Park S, Lim J H, Chung S W, et al. Self-Assembly of Mesoscopic Metal-Polymer Amphiles [J]. Science, 2004, 303: 348-352.
    [52] Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions" [J]. J. Am. Chem. Soc., 2004, 126: 8124-8124.
    [53] Peng Q, Dong Y, Li Y. ZnSe Semiconductor Hollow Microspheres [J]. Angew. Chem. Int. Ed., 2003, 42: 3027-3030.
    [54] Yang H G, Zeng H C. Self-Construction of Hollow SnO2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J]. Angew. Chem. Int. Ed., 2004, 43: 5930-5934.
    [55] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect [J]. Science 2004, 304: 711-714.
    [56] Caruso F, Caruso R A, Mohwald H. Microencapsulation of uncharged low molecular weight organic materials by polyelectyolyte multilayer self-assembly [J]. Science 1998, 282:1111-1114.
    [57] Zhou X F, Chen S Y, Zhang D Y, et al. Microsphere Organization of Nanorods Directed by PEG Linear Polymer [J]. Langmuir, 2006, 22: 1383-1387.
    [58] Liu Q, Liu H, Han M, et al. Nanometer Nickel Hollow Spheres [J]. Adv. Mater. 2005, 17: 1995-1999.
    [59] Lu C H, Qi L M, Yang J H, et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate [J]. Chem. Commun., 2006, 3551.
    [60] Ba J, Polleux J, Antonietti M, et al. Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures [J]. Adv.Mater. 2005, 17: 2509-2512.
    [61]Shipway A N, Katz E, Willner I, Nanoparticle Arrays on Surfaces for Electronic, Optical and Sensor Applications [J]. ChemPhysChem, 2000, 1: 18-52.
    [62] Wen X, Xie Y, Choi C, et al. Copper-Based Nanowire Materials: Templated Syntheses, Characterizations, and Applications [J]. Langmuir, 2005, 10: 4729-4737.
    [63] Maruyama T. Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate [J]. Sol. Energy Mater. Sol. Cells. 1998, 56: 85-90.
    [64] Chang Y, Lye M, Zeng H. Large-scale synthesis of highquality ultralong copper nanowires [J]. Langmuir 2005, 9: 3746-3748.
    [65] Xu Y Y, Chen D R, Jiao X L. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route [J]. J. Phys. Chem. B, 2005, 109: 13561-13566.
    [66]Yao W T, Yu S H, Zhou Y, et al. Formation of Uniform CuO Nanorods by Spontaneous Aggregation: Selective Synthesis of CuO, Cu2O, and Cu Nanoparticles by a Solid-Liquid Phase Arc Discharge Process [J]. J. Phys. Chem. B, 2005, 109: 14011-14016.
    [67] Zhang J T, Liu J F, Peng Q, et al. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors [J]. Chem. Mater., 2006, 18: 867-871.
    [68] Lu C H, Qi L M, Yang J H, et al. Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures [J]. J. Phys. Chem. B, 2004, 108: 17825-17831.
    [69] Du G H, Van Tendeloo G. Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts [J]. Chem. Phys. Lett., 2004, 393: 64-69.
    [70] Lou X W, Wang Y, Yuan C, et al. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater., 2006, 18: 2325-2329.
    [71] Liu Y, Chu Y, Li M Y, et al. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process [J]. J. Mater. Chem., 2006, 16: 192-199.
    [72] Yao K X, Zeng H C. Asymmetric ZnO Nanostructures with an Interior Cavity [J]. J. Phys. Chem. B, 2006, 110: 14736-14743.
    [73] Zhao Y, Zhu J J, Hong J M, et al. Microwave-Induced Polyol-Process Synthesis of Copper and Copper Oxide Nanocrystals with Controllable Morphology [J]. Eur. J. Inorg. Chem., 2004, 4072-4080.
    [74] Siegfried M J, Choi K S. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals [J]. J. Am. Chem. Soc., 2006, 128: 10356-10357.
    [75] Israelachvili J N. Intermolecular and Surface Forces; Academic Press: New York, 1992.
    [76] Zhai L M, Zhao M, Sun D J, et al. Salt-Induced Vesicle Formation from Single Anionic Surfactant SDBS and Its Mixture with LSB in Aqueous Solution [J]. J. Phys. Chem. B, 2005, 109: 5627-5630.
    [77] Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic Carbon Nanotube Forests [J]. Nano Lett., 2003, 3: 1701-1705.
    [78]Liu H, Li S, Zhai J, et al. Self-Assembly of Large-Scale Micropatterns on Aligned Carbon Nanotube Films [J]. Angew. Chem, Int. Ed., 2004, 43: 1146-1149.
    [79] Bico J, Roman B, Moulin L, et al. Elastocapillary coalescence in wet hair [J]. Nature, 2004, 432: 690-690.
    [1] Gudiksen M S, Lauhon L J, Wang J F, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics [J]. Nature, 2002, 415: 617-620.
    [2] Park W I, Jun Y H, Jung S W, et al. Specific heat capacity and hemispherical total emissivity of liquid Si measured in electrostatic levitation [J]. Appl. Phys. Lett., 2003, 82: 964-966.
    [3] Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers [J]. Nature, 2003, 421: 241-245.
    [4] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001, 293: 1289-1292.
    [5] Pan Z W, Dai Z R, Xu L, et al. Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders [J]. J. Phys. Chem. B, 2001, 105: 2507-2514.
    [6] Fang X S, Ye C H, Zhang L D, et al. Temperature-Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders [J]. Adv. Funct. Mater., 2005, 15: 63-68.
    [7] Gao P X, Lao C S, Ding Y, et al. Metal/semiconductor core/shell nanodisks and nanotubes [J]. Adv. Funct. Mater., 2006, 16: 53-62.
    [8] Huang M H, Mao S, Feick H, et al. Room- temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    [9] Johnson J, Yan H, Yang P, et al. Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides [J]. J. Phys. Chem. B, 2003, 107: 8816-8828.
    [10] Shibata T, Unno K, Makino E, et al. Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe [J]. Sens. Actuators, A, 2002, 102: 106-113.
    [11] Yumoto H, Inoue T, Li S J, et al. Application of ITO films to photocatalysis [J]. Thin Solid Films, 1999, 345: 38-41.
    [12] Kong X Y, Wang Z L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts [J]. Nano Lett., 2003, 3: 1625-1631.
    [13] Hara K, Horiguchi T, Kinoshita T, et al. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells [J]. Sol. Energy Mater. Sol. Cells, 2000, 64: 115-119.
    [14] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle arrays [J]. Appl. Phys. Lett., 2003, 83: 144-146.
    [15] Morales A M, Lieber C M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires [J]. Science, 1998, 279: 208-211.
    [16] Wu Y Y, Yang P D. Direct Observation of Vapor-Liquid-Solid Nanowire Growth [J]. J Am. Chem. Soc., 2001, 123: 3165-3166.
    [17] He J H, Hsu J H, Wang C W, et al. Pattern and Feature Designed Growth of ZnO Nanowire Arrays for Vertical Devices [J]. J. Phys. Chem. B, 2006, 110, 50-53.
    [18] Gao P M, Ding Y, Mai W J, et al. Conversion of Zinc Oxide Nanobelts intoSuperlattice-structured Nanohelices [J]. Science, 2005, 309: 1700-1704.
    [19] Peng H Y, Wang N, Zhou X T, et al. Control of growth orientation of GaN nanowires [J]. Chem. Phys. Lett., 2002, 359: 241-245.
    [20] Sun X H, Lam S, Sham T K, et al. Synthesis and Synchrotron Light-Induced Luminescence of ZnO Nanostructures: Nanowires, Nanoneedles, Nanoflowers, and Tubular Whiskers [J]. J. Phys. Chem. B, 2005, 109: 3120-3125.
    [21] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science, 2001, 291: 1947-1949.
    [22] Jie J S, Wang G Z, Wang Q T, et al. Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template [J]. J. Phys. Chem. B, 2004, 108: 11976-11980.
    [23] Choy J H, Jiang E S, Won J H, et al. Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser [J]. Adv. Mater., 2003, 15: 1911-1914.
    [24] Li Q C, Kumar V, Li Y, et al. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions [J]. Chem. Mater., 2005, 17: 1001-1005.
    [25] Zhang H, Yang D R, Ji Y J, et al. Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process [J]. J. Phys. Chem. B, 2004, 108: 3955-3958.
    [26] Wang Z, Qian X F, Yin J, et al. Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route [J]. Langmuir, 2004, 20: 3441-3448.
    [27] Gao S Y, Zhang H J, Wang X M, et al. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods [J]. J. Phys. Chem. B, 2006, 110: 15847-15852.
    [28] Li P, Wei Y, Liu H, et al. A simple low-temperature growth of ZnO nanowhiskers directly from aqueous solution containing Zn(OH)42– ions [J]. Chem. Commun., 2004, 2856-2858.
    [29] Liu B, Zeng H C. Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process [J]. J. Am. Chem. Soc., 2004, 126: 16744-16746.
    [30] Liu B, Zeng H C. Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures [J]. Langmuir, 2004, 20: 4196-4204.
    [31] Liu B, Zeng H C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm [J]. J. Am. Chem. Soc., 2003, 125: 4430-4431.
    [32] Gao X D, Li X M, Yu W D. Flowerlike ZnO Nanostructures via Hexamethylenetetramine Assisted Thermolysis of Zinc-Ethylenediamine Complex [J]. J. Phys. Chem. B, 2005, 109: 1155-1161.
    [33] Sun Y, Fuge G M, Fox N A, et al. Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film [J]. Adv. Mater., 2005, 17: 2477-2481.
    [34]Xu L F, Guo Y, Liao Q, et al. Morphological Control of ZnO Nanostructures by Electrodeposition [J]. J. Phys. Chem. B, 2005, 109: 13519-13522.
    [35] Yu H D, Zhang Z P, Han M Y, et al. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays [J]. J. Am. Chem. Soc., 2005, 127: 2378-2379.
    [36] Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions [J]. Adv. Mater., 2003, 15: 464-466.
    [37] Wu X F, Bai H, Li C, et al. Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature [J]. Chem. Commun., 2006, 1655-1656.
    [38] Fang Y P, Pang Q, Wen X G, et al. Synthesis of Ultrathin ZnO Nanofibers Aligned on a Zinc Substrate [J]. Small, 2006, 2: 612-615.
    [39] Tong Y H, Liu Y C, Dong L, et al. Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique [J]. J. Phys. Chem. B, 2006, 110: 20263-20267.
    [40] Wen X G, Fang Y P, Pang Q, et al. ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Application [J]. J. Phys. Chem. B, 2005, 109: 15303-15308.
    [41] Lu C H, Qi L M, Yang J H, et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate [J]. Chem. Commun., 2006, 3551-3553.
    [42] Kar S, Dev A, Chaudhuri S. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays [J]. J. Phys. Chem. B, 2006, 110: 17848-17853.
    [43] Kar S, Pal B N, Chaudhuri S, et al. One-Dimensional ZnO Nanostructure Arrays: Synthesis and Characterization [J]. J. Phys. Chem. B, 2006, 110: 4605-4611.
    [44] Tong Y H, Liu Y C, Shao C L, et al. Growth and Optical Properties of Faceted Hexagonal ZnO Nanotubes [J]. J. Phys. Chem. B, 2006, 110: 14714-14718.
    [45] Liu Y, Chu Y, Li M Y, et al. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process [J]. J. Mater. Chem., 2006, 16: 192-198.
    [46] Mitra A, Thareja R K. Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films [J]. J. Appl. Phys., 2001, 89: 2025-2028.
    [47] Zhang D H, Wang Q P, Xue Z Y. Photoluminescence of ZnO films excited with light of different wavelength [J]. Appl. Surf. Sci., 2003, 207: 20-25.
    [48] Huang M H, Wu Y, Feick H, et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport [J]. Adv. Mater., 2001, 13: 113-116.
    [49]Wan Q, Li Q H, Chen Y J, et al. Fabrication and Ethanol Sensing Characteristics of ZnO Nanowires Gas Sensor [J].Appl. Phys. Lett.,2004, 84: 3654-3656.
    [50]Dillon A C,Jones K M, Bekkedahl T A, et al. Storage of Hydrogen in Single - Walled Carbon Nanotubes[J]. Nature, 1997, 386: 377-379.
    [51] Huang M H, Mao S, Feick H, et al., Room-Temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    [52] Sberveglieri G., Groppelli S, Nelli P. et al. A novel method for the preparation of NH3 sensors based on ZnO-In thin films [J]. Sens. Actuators B, 1995, 25: 588-590.
    [53] Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76: 3257-3258.
    [54] Ohta H, Kawamura K, Orita M, et al. Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO [J]. Appl. Phys. Lett., 2000, 77: 475-477.
    [55] Zhang H, Yang D, Ji Y, et al. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process [J]. J. Phys. Chem. B, 2004,108: 3955-3958.
    [56] Lisiecki I, Albouy P A, Pileni M P. Face-Centered-Cubic Supracrystals of Cobalt Nanocrystals [J]. Adv. Mater., 2003, 15: 712-716.
    [57] P. Meakin. Formation of fractal clusters and networks by irreversible diffusion limited aggregation [J]. Phys. Rev. Lett., 1983, 51: 1119-1122.
    [58] Kuang D B, Xu A W, Fang Y P, et al. Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process [J]. Adv. Mater., 2003, 15: 1747-1750.
    [1] Boutonnet M, Kizhig J, Stenius P. The preparation of monodisperse colloidal metal particles from microemulsions [J]. Colloids and Surfaces, 1982, 5: 209-225.
    [2] Simmons B A, Li S, John V T, et al. Morphology of CdS Nanocrystals Synthesized in a Mixed Surfactant System [J]. Nano Lett., 2002, 2: 263-268.
    [3] Li M, Mann S. Emergence of Morphological Complexity in BaSO4 Fibers Synthesized in AOT Microemulsions [J]. Langmuir, 2000,16: 7088-7094.
    [4] Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett Nanorod Assembly [J]. J. Am. Chem. Soc., 2001, 123: 4360-4361.
    [5] Kwan S, Kim F, Akana J, et al. Synthesis and assembly of BaWO4 nanorods [J]. Chem. Commun., 2001, 447-448.
    [6] Zhang D B, Qi L M, Ma J M, et al. Formation of crystalline nanosized titania in reverse micelles at room temperature [J]. J. Mater. Chem., 2002, 12: 3677-3679.
    [7] Hirai T, Sato H, Komasawa I. Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide [J]. Ind. Eng. Chem. Res., 1993, 32: 3014-3019.
    [8] Li G L, Wang G H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method [J]. Nanostruct. Mater.,1999, 11: 663-668.
    [9] Rees G D, Evans-Gowing R S, Hammond J, et al. Formation and Morphology of Calcium Sulfate Nanoparticles and Nanowires in Water-in-Oil Microemulsions [J]. Langmuir, 1999, 15: 1993-2002.
    [10] Xie Y, Huang J X, Li B, et al. A Novel Peanut–like Nanostructure of II–VI Semiconductor CdS and ZnS [J]. Adv. Mater., 2000, 12: 1523-1526.
    [11] Sampanthar J T, Zeng H C. Arresting Butterfly-Like Intermediate Nanocrystals of β-Co(OH)2 via Ethylenediamine-Mediated Synthesis [J]. J. Am. Chem. Soc., 2002, 124: 6668-6675.
    [12] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies [J]. Nature, 1996, 380: 325-328.
    [13] Lou X W, Zeng H C. Complex α-MoO3 Nanostructures with External Bonding Capacity for Self-Assembly [J]. J. Am. Chem. Soc., 2003, 125: 2697-2704.
    [14] Iijima S. Helical Microtubules of Graphitic Carbon [J]. Nature, 1991, 354: 56-58.
    [15] Ohara P C, Heath J R, Gelbart W M. Self-Assembly of Submicrometer Rings of Particles from Solutions of Nanoparticles [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 1078-1080.
    [16] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271: 933-937.
    [17] El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes [J]. Acc. Chem. Res., 2001, 34: 257-264.
    [18] Xia Y N, Yang P D, Sun Y G, et al. One-dementional nanostuctures: synthesis, characterization, and applications [J]. Adv.Mater., 2003, 15: 353-389.
    [19] Jin R C, Egusa S, Scherer N F. Thermally-induced formation of atomic Au clusters andconversion into nanocubes [J]. J. Am. Chem. Soc., 2004, 126: 9900-9901.
    [20] Dumestre F, Chaudret B, Amiens C, et al. Super-Lattices of Iron Nanocubes synthesized from Fe[N(SiMe3)2]2 [J]. Science, 2004, 303: 821-823.
    [21] Caruso F, Caruso R A, Mohwald H. Microencapsulation of uncharged low molecular weight organic materials by polyelectyolyte multilayer self-assembly [J]. Science, 1998, 282: 1111-1114.
    [22] Kim S W, Kim M, Lee W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. J. Am. Chem. Soc., 2002, 124: 7642-7643.
    [23] Manna L, Scher E C, Alivisatos A P, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals [J]. J. Am. Chem. Soc., 2000, 122: 12700-12706.
    [24] Manna L, Milliron D J, Meisel A, et al. Controlled growth of tetrapod-branched inorganic nanocrystals [J]. Nat.Mater., 2003, 2: 382-385.
    [25] Briskman R N. Morphologies and microstructures of nano-sized CuO particles [J]. Sol. Energy Mater. Sol. Cells, 1992, 27:361-368.
    [26] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407: 496-499.
    [27] Ramirez-Ortiz J, Medina-Valtierra T O J, Acosta-Ortiz S E, et al. A catalytic application of Cu2O and CuO films deposited over fiberglass [J]. Appl. Surf. Sci., 2001, 174: 177-184.
    [28] Hara M, Kondo T, Komoda M, et al. Cu20 As a Photocatalyst for Overall Water Spliuing under Visible Light Irradiation [J]. Chem. Commun., 1998, 357-358.
    [29] Wang W Z, Wang G H, Wang X S, et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route [J]. Adv. Mater., 2002, 14: 67-69.
    [30] Wang D B, Mo M S, Yu D B, et al. Large-scale Growth and Shape Evolution of Cu2O Cubes [J]. Cryst. Growth Des., 2003, 3: 717-720.
    [31] Gou L F, Murphy C J. Solution-phase synthesis of Cu2O nanocubes [J]. Nano Lett., 2003, 3: 231-234.
    [32] Yang M, Zhu J J. Spherical hollow assembly composed of Cu2O nanoparticles [J]. J. Cryst. Growth, 2003, 256: 134-138.
    [33] Chang Y, Teo J J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres [J]. Langmuir, 2005, 21: 1074-1079.
    [34] Liu R, Oba F, Bohannan E W, et al. Shape Control in Epitaxial Electrodeposition: Cu2O Nanocubes on InP(001) [J]. Chem. Mater. 2003, 15: 4882-4885.
    [35] He P, Shen X H, Gao H C. Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption [J]. J. Colloid. Interface Sci. 2005, 284: 510-515.
    [36] Lu C H, Qi L M, Yang J H, et al. One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route. [J]. Adv. Mater., 2005, 17: 2562-2567.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700