N、S掺杂NaTaO_3及SrFeO_3的制备与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来光催化已发展成为一门新兴的备受关注的前沿学科,许多半导体材料具有光催化作用,可被用于污染控制。但是大多数光催化剂的光响应范围都在紫外光区,而太阳光中紫外光含量仅占3-4%,对太阳光的利用率较低。因此,研制光响应范围更广的、结构稳定的、易回收、可重复使用的新型光催化剂势在必行。钙钛矿型化合物的结构和组成具有多样性,可以在保持其结构的条件下通过改变组成来提高光催化活性,是一类极有潜力的光催化剂。目前,对于钙钛矿型光催化剂的研究还较少。因此,进一步加强对钙钛矿型化合物的合成及催化性能的研究,对于发展和完善光催化技术具有重要意义。
     光催化性能优异的钙钛矿型NaTaO3,只能在紫外光下受激发,严重限制了光催化技术的推广应用。为了进一步提高NaTaO3的光催化性能,本文研究了非金属元素N、S离子掺杂对纳米NaTaO3的晶体结构、粒子形貌及光催化性能的影响,并对其掺杂改性机理进行研究。采用改进的固相法和水热法合成了N掺杂NaTaO3(NaTaO3-xNx)光催化剂,并对其光催化性能进行对比研究。实验结果表明改进固相法能够在700℃下得到结晶度高、粒径大小均一的N掺杂的NaTaO3,而且实验过程中不需要二次研磨。虽然固相法制备的N掺杂的NaTaO3不具有可见光活性,但是N的掺杂增加了NaTaO3在紫外光下的吸收。水热法制备的N掺杂的NaTaO3结晶度高,具有立方形貌,平均粒径在200-500nm之间,而且在可见光下具有较好的活性。这充分证明光催化剂的制备方法对提高光催化活性过程中的重要性。
     N元素的掺入成功的提高了NaTaO3的光催化活性,可能与N元素掺入后在NaTaO3晶体内形成O空位有关。相关研究表明,光催化剂中掺入的非金属离子能够在样品内形成一个接近导带的新的浅势能级,这个浅势能级可以作为光生电子或空穴的捕获陷阱,有利于光生电子和空穴的分离,从而使光催化剂表面产生更多的OH·和·O2-,这种活性自由基一方面可以进一步促进光生电子和空穴的分离;另一方面,可以参加反应的具有强氧化性活性自由基越多,光催化氧化反应的效率更高,即光催化剂的活性更高。
     钙钛矿型SrFeO3是一种具有多种独特理化性能的新型无机非金属材料,但对其光催化活性的研究却相对较少。论文采用两种技术路线合成了钙钛矿型SrFeO3光催化剂,并对其光催化行为进行深入研究。实验结果表明,聚乙二醇的加入对纯相SrFeO3的形成有一定的影响。当体系中不加入聚乙二醇时,无论怎样改变反应条件,最终产物中仍含有SrCO3杂质,可能是由于样品在烧结后的冷却过程中与周围环境中的CO2相互作用而产生了部分SrCO3;当体系中加入聚乙二醇时,能够得到纯相SrFeO3,这可能是由于在溶胶-凝胶的过程中柠檬酸与乙二醇可以通过聚合反应形成有机网络,这种有机网络具有优异的热稳定性,煅烧时不容易发生偏析,所以能够得到纯相的SrFeO3。甲基橙光降解实验结果表明,与纯相的SrFeO3相比,杂相的SrFeO3在可见光下具有较高的活性,这可能是因为纯相的SrFeO3其表面氧空位相对含量远小于杂相SeFeO3,所以光催化活性较低。光催化稳定性研究表明,含有杂相的SrFeO3光催化实验后其自身结构发生晶格坍塌,而纯相SrFeO3光催化测试后样品的结构没有明显变化,由此可以推出SrFeO3所显示的光催化活性有可能来自于其晶格内的Fe4+离子和表面氧空位的共同作用。
     综上所述,论文首次系统的研究了非金属元素N、S离子掺杂对纳米NaTaO3的晶体结构、粒子形貌及光催化性能的影响和铁酸锶在光降解过程中的稳定性。该项研究对于新型半导体光催化剂的开发,科研以及将来的实际应用有着重要的意义。
In the last decades, the semiconductor photocatalysis has attracted extensive attention due to its wide potential application in the treatment of all kinds of contaminants, especially for the removal of organic contaminants. However, most photocatalysts can only be excited by UV or near-UV radiation (only 5% of the natural solar light), which hinders its practical applications. So, it is of great significance to develop the photocatalysts that can be used in visible light, structural stability, easy recovery and reusable catalyst. Perovskites compounds with the diversity of structure and composition can be improved the photocatalytic activity by changing the composition, which is a promising kind of photocatalyst. But there are very few investigations about the perovskite photocatalysts. So, further strengthening the study on the systhesis and catalytic properties is of great significance for the development and improvement of photocatalytic technology
     Among these semiconductors, NaTaO3 with a perovskite structure show high activity for photocatalytic water splitting only under UV light irradiation, which hinders its practical applications. Due to this fact, NaTaO3 is not active under visible-light irradiation, which hinders its practical applications. To further improve the photocatalytic properties of NaTaO3, the effect of N, S elements doped on crystal structure, particle morphology, photocatalytic properties, and the doping mechanism were investigated. N-doped NaTaO3 (NaTaO3-xNx) was synthesized by the improved solid phase and one-step hydrothermal method, respectively. The results showed that the improved solid stated method requires low calcination temperature (only 700℃), which is obviously lower than 1000℃and avoidance of intermittent grinding. Although as prepared photocatalyst do not have visible light response, N doping can increased its photocatalytic activity under UV-light irradiation. The NaTaO3-xNx synthesized by hydrothermal method showed cubic morphology with the edge length of 200-500 nm. Moreover, this photocatalyst has good activity under visible light. All these results prove that the preparation method of photocatalyst is important for the photocatalytic activity increased.
     N elements doping can improve NaTaO3 photocatalytic activity, which may be related to the formation of O vacancies in crystal lattice after N doping. Researches indicate that in the case of the right nitrogen, the newly formed intra-band gap states can serve as a capture trap of photo-electron or cavity, which is conducive to photo-electron and cavity separation. The surface of photocatalyts can produce more OH·and·O2-, which can further promote separation of photo-electron and cavity. Moreover, the more strong oxidizing activity of radical, the higher photocatalytic activity.
     Perovskite SrFeO3 is a new material, but its photocatalytic activity is very few investigations. In this paper, SrFeO3 was prepared through two lines and its photocatalytic behavior was investigated in details. The experimental results showed that the addition of polyethylene glycol on the formation of pure phase SrFeO3 has a certain impact. When polyethylene glycol was not added, the final product contains SrCO3 impurities, which may be due to the samples reacted with CO2 in surrounding environment after cooling process. When polyethylene glycol was added, the pure phase SrFeO3 can be obtained. The possible reason is that during the sol-gel process, citric acid and ethylene glycol can form organic network which has excellent organic thermal stability and not prone to segregation during calcination, so the pure phase SrFeO3 can be prepared. The photodegradation results showed that compared with the pure phase SrFeO3, miscellaneous phase SrFeO3 has much higher photocatalytic activity, which may be due to the oxygen vacancies in the surface of pure phase SrFeO3 was much fewer than of impurity SeFeO3. Photocatalytic stability studies displayed that the lattice structure of impurity SrFeO3 collapsed and the pure phase SrFeO3 did not change after photocatalytic experiment, which indicate that SrFeO3 photocatalytic activity possibly come from Fe4+ ions in the lattice reacted with the surface oxygen vacancies.
     In summary, the effect of the nonmetallic element N, S doping on the crystal structure, morphology and photocatalytic properties and the stability of strontium ferrate during the degradation process were investigated. This study has important significance for the new semiconductor catalyst development, scientific research and practical applications.
引文
钙钛矿型NaTaO3,只能在紫外光下受激发,严重限制了光催化技术的推广应用。一般都是在NaTaO3中掺杂一些金属离子(如过渡金属和稀土元素等)来提高催化剂的光催化性能,而对于非金属离子掺杂改性纳米Ti02的研究报道很少。根据半导体能带理论,半导体的导带能级主要取决于半导体中金属离子空的d轨道能级,价带则主要取决于非金属离子的p轨道能级。和02p轨道相比,非金属离子(N、C、S、X、P)的p轨道能量相对较高,用这些元素取代O来提高光催化剂的价带电位,或者改变过渡金属阳离子来降低半导体光催化剂的导带位置,使其能带与水的氧化还原电位匹配,是设计具有可见光催化剂的方向之一。
    为了进一步提高NaTa03的光催化性能,揭示非金属元素离子掺杂对纳米NaTa03的晶体结构、粒子形貌及光催化性能的影响,并对不同非金属元素离子掺杂改性机理进行研究。本部分主要研究内容如下:
    (1)以Ta205和NaOH为起始原料,三聚氰胺(C3N6H6)为氮源采用改进的高温固相法制备N掺杂NaTa03(NaTa03-xNx)光催化剂。采用XRD,SEM,XPS和紫外可见漫反射(UV-vis)等现代测试手段,研究不同制备条件对催化剂结构及性能的影响利用合成的催化剂进行亚甲基蓝的模拟催化降解实验,探讨其光催化活性及其影响因素。
    (2)以Ta2O5为前驱体,NH40H为N源,采用一步水热法合成N掺杂NaTa03。实验过程中探索钽酸盐的水热合成工艺及条件,采用现在测试手段研究合成条件对催化剂结构的影响。以甲基橙和亚甲基蓝为目标降解物,在可见光下评价其光催化活性,并对其降解机理进行探讨。
    (3)以Fe(N03)3·9H20和Sr(N03)2为原料,采用两种技术路线合成了钙钛矿型SrFeO3光催化剂,并对其结构和光催化行为进行研究。
    [1]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [2]GAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J]. Bulletin of Environment Contamination and Toxicology,1976,16:697-701.
    [3]HAMEED A, GONDAL M A, YAMANI Z H. Effect of transition metal doping on photocatalytic activity of W03 for water splitting under laser illumination:role of 3d-orbitals [J]. Catalysis Communications, 2004,5:715-719.
    [4]CRUZ A M L, MARTINEZ D S, CUELLAR E L. Synthesis and characterization of W03 nanoparticles prepared by the precipitation method:Evaluation of photocatalytic activity under vis-irradiation [J]. Solid State Sciences,2010,12:88-94.
    [5]XIN G, GUO W, MA T L. Effect of annealing temperature on the photocatalytic activity of W03 for O2 evolution [J]. Applied Surface Science,2009,256:165-169.
    [6]SONG L M, ZHANG S J. Formation of α-Fe203/Fe00H nanostructures with various morphologiesby a hydrothermal route and their photocatalytic properties [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,348:217-220.
    [7]KAWAHARA T, YAMADA K I, TADA H. Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film [J]. Journal of Colloid and Interface Science,2006,294:504-507.
    [8]ZHOU W J, MA J Y, WANG M T, et al. Biosynthesis of mesoporous organic-inorganic hybrid Fe203 with high photocatalytic activity [J]. Materials Science and Engineering C,2009,29:1893-1896.
    [9]SAKTHIVEL S, GEISSEN S U, BAHNEMANN D W, et al. Enhancement of photocatalytic activity by semiconductor heterojunctions:α-Fe2O3, W03 and CdS deposited on ZnO [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148:283-293.
    [10]HU K H, LIU Z, HUANG F, et al. Synthesis and photocatalytic properties of nano-MoS2/kaolin composite [J]. Chemical Engineering Journal,2010,162:836-843.
    [11]KANDA S, AKITA T, FUJISHIMA M, TADA H. Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism [J]. Journal of Colloid and Interface Science,2011,354:607-610.
    [12]POLYAKOV M, INDRIS S, SCHWAMBORN S, et al. Mechanochemical activation of MoS2-Surface properties and catalytic activities in hydrogenation and isomerization of alkenes and in H2/D2 exchange [J]. Journal of Catalysis,2008,260:236-244.
    [13]POURABBAS B, JAMSHIDI B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chemical Engineering Journal,2008,138:55-62.
    [14]MINERO C, DAVIDE V. A quantitative evalution of the photocatalytic performance of TiO2 slurries [J]. Applied Catalysis B: Environmental,2006,67:257-269.
    [15]VIONE D, MINERO C, MAURINO V, CARLOTTI M E, et al. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst [J]. Applied Catalysis B:Environmental,2005,58:79-88.
    [16]WU T X, LIU G M, ZHAO J C, et al. Photoassisted degradation of dye pollutants. V. self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions [J]. Journal of Physical Chemistry B,1998,102:5845-5851.
    [17]LIU Y, CHEN X, LI J, BURBA C. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts [J]. Chemosphere,2005,61: 11-18.
    [18]HUANG H H, TSENG D H, JUANG L C. Titanium dioxide mediated photocatalytic degradation of monochlorobenzene in aqueous phase [J]. Chemosphere,2008,71:398-405.
    [19]MUN K S, ALVAREZ S D, CHOI W Y, Sailor M. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays [J]. ACSNANO,2010,4:2070-2076.
    [20]WANG Q, CHEN G, ZHOU C, et al. Sacrificial template method for the synthesis of CdS nanosponges and their photocatalytic properties [J]. Journal of Alloys and Compounds,2010,503:485-489.
    [21]KUMAR A, MITAL S. Photophysics and photocatalytic behavior of composite CdS-purine nanoparticles in the presence of certain indoles [J]. Journal of Colloid and Interface Science,2003,265:432-438.
    [22]KUMAR A, JAIN A K. Photophysics and photocatalytic properties of Ag+-activated sandwich Q-CdS-TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2003,156:207-218.
    [23]HOFFMANN M R, MARTIN S T, CHOI W, Bahnemann. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews,1995, 95:69-96.
    [24]WANG C Y, SHANG H M, TAO Y, et al. Properties and morphology of CdS compounded Ti02 visiblelight photocatalytic nanofilms coated on glass surface [J]. Separation and Purification Technology,2003,32:357-362.
    [25]MA H C, HAN J H, FU Y H, et al. Synthesis of visible light responsive Zn0-ZnS/C photocatalyst by simple carbothermal reduction [J]. Applied Catalysis B:Environmental, DOI:10.1016/j.apcatb.2010.12.014.
    [26]GU L, CAO X B, ZHAO C. Gram-scale preparation of hollow spheres of ZnS by scarifying ZnO crystallites within core-shell-structured ZnS/ZnO precursors [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,326:98-102.
    [27]YU X L, SONG J G, FU Y S, et al. ZnS/ZnO Heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells [J]. Journal of Physical Chemistry C,2010,114:2380-2384.
    [28]NI Y H, YANG S, HONG J M, et al. Fabrication, Characterization and properties of flowerlike ZnS-ZnO heterogeneous microstructures built up by ZnS-Particle-Strewn ZnO microrods [J]. Journal of Physical Chemistry C,2008,112,8200-8205.
    [29]KUMAR A, JAIN A K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole [J]. Journal of Molecular Catalysis A:Chemical,2001,165:265-273.
    [30]TRISTAO J C, MAGALHAES F, CORIO P, et al. Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,181:152-157.
    [31]TACHIBANA Y, UMEKITA K, OTSUKA Y, et al. Charge Recombination kinetics at an in situ chemical bath-deposited CdS/Nanocrystalline TiO2 interface [J]. Journal of Physical Chemistry C,2009,113:6852-6858.
    [32]FUJII M, NAGASUNA K, FUJISHIMA M, et al. Photodeposition of CdS quantum dots on TiO2:preparation, characterization, and reaction mechanism [J]. Journal of Physical Chemistry C,2009.113:16711-16716.
    [33]DASKALAKI V M, ANTONIADOU M, PUMA G L, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater [J]. Environmental Science & Technology,2010,44:7200-7205.
    [34]KOCA A, SAHIN M. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution [J]. International Journal of Hydrogen Energy,2002,27:363-367.
    [35]LIN C F, WU C H, ONN Z N. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems [J]. Journal of Hazardous Materials,2008,154:1033-1039.
    [36]NIITSOO 0, SARKAR S K, PEJOUX C, et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,181:306-313.
    [37]LEGHARI S A K, SAJJAD S, CHEN F, ZHANG J L. WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst [J]. Chemical Engineering Journal, DOI:10.1016/j. cej.2010.11.065.
    [38]ILIEV V, TOMOVA D, RAKOVSKY S, et al. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation [J]. Journal of Molecular Catalysis A:Chemical,2010,327:51-57.
    [39]HSU C S, LIN C K, CHAN C C. Preparation and characterization of nanocrystalline porous TiO2/WO3 composite thin films [J]. Thin Solid Films,2006,494:228-233.
    [40]CHEN S F, CHEN L, GAO S, GAO G Y. The preparation of coupled WO3/TiO2 photocatalyst by ball milling [J]. Powder Technology,2005,160:198-202.
    [41]CHEN H N, LI W P, LIU H C, ZHU L Q. A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes:Sequential chemical bath deposition [J]. Solar Energy,2010,84:1201-1207.
    [42]MENG X Q, ZHAO D X, ZHANG J Y, et al. Photoluminescence properties of single crystalline ZnO/CdS core/shell one-dimensional nanostructures [J]. Materials Letters,2007,61:3535-3538.
    [43]WANG X W, LIU G, LU G Q, CHENG H M. Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods[J]. International Journal of Hydrogen Energy,2010.35:8199-8205.
    [44]MACHT B, TURRION M, BARKSCHAT A, et al. Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques [J]. Solar Energy Materials & Solar Cells,2002,73:163-173.
    [45]TRIBUTSCH H. Dye sensitization solar cells:a critical assessment of the learning curve [J]. Coordination Chemistry Reviews,2004,248:1511-1530.
    [46]LEE K M, HSU Y C, IKEGAMI M, et al. Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells [J]. Journal of Power Sources,2011,196:2416-2421
    [47]SPITLER M T, PARKINSON B A. Dye Sensitization of single crystal semiconductor electrodes [J]. Accounts of Chemical Research, 2009,42:2017-2029.
    [48]KUANG D B, Walter P, Nuesch F, et al. Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells [J]. Langmuir,2007,23:10906-10909
    [49]USHIRODA S, RUZYCKI N, LU Y, et al. Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes [J]. Journal of The American Chemical Society,2005,127:5158-5168.
    [50]LUO F, WANG L D, MA B B, QIU Y. Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,197:375-381.
    [51]CHO Y M, PARK Y, CHOI W Y. Ruthenium bipyridyl complex-sensitized dechlorination of CCl4 in aqueous micellar solutions under visible light [J]. Journal of Industrial and Engineering Chemistry,2008,14:315-321.
    [52]BAE E Y, CHOI W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light [J]. Environmental Science & Technology,2003,37:147-152.
    [53]LI D Z, CHEN Z X, CHEN Y L, et al. A New Route for Degradation of volatile organic compounds under visible light:using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 atmosphere [J]. Environmental Science & Technology,2008,42:2130-2135.
    [54]ZOU J J, HE H, CUI L, DU H Y. Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method [J]. International Journal of Hydrogen Energy,2007,32:1762-1770.
    [55]CHEN R Z, DU Y, XING W H, et al. The effect of titania structure on Ni/TiO2 catalysts for p-Nitrophenol hydrogenation [J]. Chinese Journal of Chemical Engineering,2006,14:665-669.
    [56]WU T H, YAN Q G, WAN H L. Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO2 catalyst [J]. Journal of Molecular Catalysis A:Chemical,2005,226:41-48.
    [57]RANGANATHA S, VENKATESHA T V, VATHSALA K. Development of electroless Ni-Zn-P/nano-TiO2 composite coatings and their properties [J]. Applied Surface Science,2010,256:7377-7383.
    [58]CHAN C C, CHANG C C, HSU W C, et al. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films [J]. Chemical Engineering Journal, 2009,152:492-497.
    [59]YANG Y F, SANGEETHA P, CHEN Y W. Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream [J]. International Journal of Hydrogen Energy,2009,34:8912-8920.
    [60]HE C, SHU D, SU M H, et al. Photocatalytic activity of metal (Pt, Ag, and Cu)-deposited TiO2 photoelectrodes for degradation of organic pollutants in aqueous solution [J]. Desalination,2010,253:88-93.
    [61]SHEN X F, GARCES L J, DING Y S, et al. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses [J]. Applied Catalysis A:General, 2008,335:187-195.
    [62]LIN W C, CHEN C N, TSENG T T, et al. Micellar layer-by-layer synthesis of TiO2/Ag hybrid particles for bactericidal and photocatalytic activities [J]. Journal of the European Ceramic Society,2010,30:2849-2857.
    [63]XIE J M, JANG D L, CHEN M, et al. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,372:107-114.
    [64]GAO J Q, LUAN X Y, WANG J, et al. Preparation of Er3+:YA103/Fe-doped TiO2-ZnO and its application in photocatalytic degradation of dyes under solar light irradiation [J]. Desalination,2011, 268:68-75.
    [65]KUMARESAN L, MAHALAKSHMI M, PALANICHAMY M, MURUGESAN V. Synthesis, Characterization, and photocatalytic activity of Sr2+ doped TiO2 nanoplates [J]. Industrial & Engineering Chemistry Research,2010,49:1480-1485.
    [66]PENG B, MENG X W, TANG F Q, et al. General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles [J]. Journal of Physical Chemistry C,2009,113,20240-20245.
    [67]CHPI W Y, TERMIN A, HOFFMANN M R. The role of metal ion dopants in quantum-sized Ti02:correlation between photoreactivity and charge carrier recombination dynamics [J]. Journal of Physical Chemistry,1994, 98:13669-13679.
    [68]ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293: 269-271.
    [69]KHAN S U M, MOFAREH A S, WILLIAM B I J. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 [J]. Science,2002,297: 2243-2245.
    [70]LINDGREN T, LU J, HOEL A, GRANQVIST C G, et al. Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte [J]. Solar Energy Materials & Solar Cells,2004,84:145-157.
    [71]MIYAUCHI M, NAKAJIMA A, WATANABE T, et al. Photoinduced hydrophilic conversion of TiO2/W03 layered thin films [J]. Chemistry of Materials,2002,14:4714-4720.
    [72]SAKTHIVEL S, JANCZAREK M, KISCH H. Visible light activity and photoelectrochemical properties of Nitrogen-doped TiO2 [J]. Journal of Physical Chemistry B,2004,108:19384-19387.
    [73]MATTSSON A, LEIDEBORG M, LARSSON K, et al. Adsorption and solar light decomposition of acetone on anatase TiO2 and Niobium doped TiO2 thin films [J]. Journal of Physical Chemistry B,2006,110:1210-1220.
    [74]ZHAO Y X, QIU X F, BURDA CLEMENS. The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles [J]. Chemistry of Materials,2008,20:2629-2636.
    [75]WANG Y, FENG C X, ZHANG M, et al. Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen [J]. Applied Catalysis B:Environmental,2010,100:84-90.
    [76]BANGKEDPHOL S, KEENAN H E, DAVIDSON C M, et al. Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst [J]. Journal of Hazardous Materials,2010,184:533-537.
    [771SENTHILNATHAN J, PHILIP L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2 [J]. Chemical Engineering Journal,2010,161:83-92.
    [78]SOMEKAWA S, KUSUMOTO Y, IKEDA M, et al, Fabrication of N-doped TiO2 thin films by laser ablation method:Mechanism of N-doping and evaluation of the thin films [J]. Catalysis Communications,2008,9: 437-440.
    [79]XU J J, AO Y H, CHEN M D, FU D G. Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays [J]. Applied Surface Science,2010,256:4397-4401.
    [80]LIU B S, WEN L P, ZHAO X J. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering [J]. Solar Energy Materials & Solar Cells,2008, 92:1-10.
    [81]BU X Z, ZHANG G K, GAO Y Y, YANG Y Q. Preparation and photocatalytic properties of visible light responsive N-doped Ti02/rectorite composites [J]. Microporous and Mesoporous Materials,2010,136:132-137.
    [82]LI H Y, WANG D J, FAN H M, et al. Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties [J]. Journal of Colloid and Interface Science,2011,354: 175-180.
    [83]GAO H T, DING C H, DAI D M. Density functional characterization of C-doped anatase Ti02 with different oxidation state [J]. Journal of Molecular Structure:THEOCHEM,2010,944:156-162.
    [84]WU G S, NISHIKAWA T, OHTANI B, CHEN A C. Synthesis and characterization of carbon-Doped TiO2 nanostructures with enhanced visible light response [J]. Chemistry of Materials,2007,19:4530-4537.
    [85]DONG F, WANG H Q, SEN GUO. Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air [J]. Journal of Hazardous Matetials, DOI:10.1016/j. jhazmat. 011.01.062.
    [86]MATOS J, GARCIA A, ZHAO L, et al. Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light [J]. Applied Catalysis A:General,2010,390:175-182.
    [87]ENACHE C S, SCHOONMAN J, KROL R V D. Addition of carbon to anatase TiO2 by n-hexane treatment-surface or bulk doping? [J]. Applied Surface Science,2006,252:6342-6347.
    [88]OHNO T, MURAKAMI N, TSUBOTA T, NISHIMURA H. Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light [J]. Applied Catalysis A:General,2008,349:70-75.
    [89]UMEBAYASHI T, YAMAKI T, TANAKA S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2 [J]. Chemistry Letters,2003, 32:330-331.
    [90]UMEBAYASHI T, YAMAKI T, ITOH H, ASAI K. Band gap narrowing of titanium dioxide by sulfur doping [J]. Applied Physics Letters,2002, 81:454-456.
    [91]ZHAO W, MA W H, CHEN C C, ZHAO J C, SHUAI Z G. Efficient degradation of toxic organic pollutants with Ni2O3/Ti02-xBx under visible irradiation [J]. Journal of The American Chemical Society,2004,126:4782-4783.
    [92]YU J G, YU J C, CHENG B, HARK S K, IU K. The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders [J]. Journal of Solid State Chemistry,2003,174:372-380.
    [93]HIRAKAWA T, NOSAKA Y. Properties of O2- and OH'formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions [J]. Langmuir,2002,18:3247-3254.
    [94]刘亚兰.活性炭纤维负载二氧化钛光催化剂的制备及性能评价[D].黑龙江:东北林业大学木材科学与技术,2009.
    [95]LO C C, HUANG C W, LIAO C H, WU J C S. Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting [J]. International Journal of Hydrogen Energy,2010,35: 1523-1529.
    [96]JING D W, GUO L J, ZHAO L, ZHANG X M, et al. Efficient solar hydrogen production by photocatalytic water splitting:From fundamental study to pilot demonstration [J]. International Journal of Hydrogen Energy,2010,35:7087-7097.
    [97]DHOLAM R, PATEL N, ADAMI M, MIOTELLO A. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst [J]. International Journal of Hydrogen Energy,2009, 34:5337-5346.
    [98]IKEDA S, HIRAO K, ISHINO S, et al. Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system [J]. Catalysis Today,2006,117:343-349
    [99]DHOLAM R, PATEL N, ADAM I M, MIOTELLO A. Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting [J]. International Journal of Hydrogen Energy,2008,33:6896-6903.
    [100]SAYAMA K, ARAKAWA H, DOMEN K. Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb) [J]. Catalysis Today,1996,28:175-182.
    [101]DHOLAM R, PATEL N, ADAMI M, MIOTELLO A. Efficient indium tin oxide/Cr-doped-Ti02 multilayer thin films for H2 production by photocatalytic water-splitting [J]. International Journal of Hydrogen Energy,2010,35:9581-9590.
    [102]SREETHAWONG T, JUNBUA C, CHAVADEJ S. Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst [J]. Journal of Power Sources,2099,190:513-524.
    [103]HUANG Y F, WU J H, WEI Y L, et al. Hydrothermal synthesis of K2La2Ti3O10 and photocatalytic splitting of water [J]. Journal of Alloys and Compounds,2008,456:364-367.
    [104]LI Y B, WU J H, HUANG Y F, et al. Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335 (A= K, H) [J]. International Journal of Hydrogen Energy,2009,34:7927-7933.
    [105]ARAI N, SAITO N, NISHIYAMA H, et al. Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting [J]. Catalysis Today, 2007,129:407-413.
    [106]WEI Y L, LI J, HUANG Y F, et al. Photocatalytic water splitting with In-doped H2LaNb207 composite oxide semiconductors [J]. Solar Energy Materials & Solar Cells,2009,93:1176-1181.
    [107]JITPUTTI J, PAVASUPREE S, SUZUKI Y, et al. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method [J]. Journal of Solid State Chemistry,2007,180:1743-1749.
    [108]BAE S W, JI S M, HONG S J, et al. Photocatalytic overall water splitting with dual-bed system under visible light irradiation [J]. International Journal of Hydrogen Energy,2009,34:3243-3249.
    [109]LIN H Y, CHANG Y S. Photocatalytic water splitting for hydrogen production on Au/KTiNbO5 [J]. International Journal of Hydrogen Energy, 2010,35:8463-8471.
    [110]MATSUOKA M, KITANO M, TAKEUCHI M, et al. Photocatalysis for new energy production recent advances in photocatalytic water splitting reactions for hydrogen production [J]. Catalysis Today,2007,122:51-61.
    [111]LODHA S, JAIN A, PUNJABI P B. A novel route for waste water treatment:Photocatalytic degradation of rhodamine B [J]. Arabian Journal of Chemistry, doi:10.1016/j. arabjc.2010.07.008
    [112]MCCULLAGH C, ROBERTSON P K J, ADAMS M, et al. Development of a slurry continuous flow reactor for photocatalytic treatment of industrial waste water [J]. Journal of Photochemistry and Photobiology A:Chemistry,2010,211:42-46.
    [113]CHONG M N, JIN B, CHOW C W K, SAINT C. Recent developments in photocatalytic water treatment technology:A review [J]. Water Research, 2010,44:2997-3027.
    [114]BICKLEY R I, SLATER M J, WANG W J. Engineering Development of a photocatalytic reactor for waste water treatment [J]. Institution of Chemical Engineers,2005,83:205-216.
    [115]FRANKE R, FRANKE C. Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water [J]. Chemosphere,1999,39:2651-2659.
    [116]HOUAS A, LACHHEB H, KSIBI M, et al. Photocatalytic degradation pathway of methylene blue in water [J]. Applied Catalysis B: Environmental,2001,31:145-157.
    [117]WILLIAM D, POHLAND F G. Emerging Technologies for Hazardous Waste Management [J]. Emerging technologies in hazardous waste management III,1993,22:1-15.
    [118]Daskalaki V M, Antoniadou M, Puma G L, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater [J]. Environmental Science & Technology,2010,44:7200-7205.
    [119]MOZIA S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review [J]. Separation and Purification Technology,2010,73:71-91.
    [120]OLLIS D F, THRCHI C S. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack [J]. Journal of Catalysis,1990,122:178-192.
    [121]ZHU X D, NANNY M A, BUTLER E C. Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2007,185:289-294.
    [122]KU Y, LEU R M, LEE K C. Decomposition of 2-chlorophenol in aqueous solution bu UV irradiation with the presence of titanium dioxide [J]. Water Research,1996,30:2569-2578.
    [123]KLOPFFER W. Photochemical degradation of pesticides and other chemicals in the environment:a critical assessment of the state of the art [J]. Science of The Total Environment,1992,123-124:145-159.
    [124]LETTER E. Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water [J]. Applied Catalysis B:Environmental,2003,46:415-419.
    [125]KANECO S, KURIMOTO H, OHTA K, et al. Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,109:59-63.
    [126]QIN S Y, XIN F, LIU Y D, et al. Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts [J]. Journal of Colloid and Interface Science, doi:10.1016/j. jcis.2010.12. 034.
    [1271ANPO M, YAMASHITA H, IKEUE K, et al. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts [J]. Catalysis Today 1998,44:327-332.
    [128JSLAMET, NASUTION H W, PURNAMA E, et al. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method [J]. Catalysis Communications,2005,6:313-319.
    [129]MIZUNO T, ADACHI K, OHTA K, SAJI A. Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry. and Photobiology A:Chemistry,1996,98:87-90.
    [130]KANECO S, KURIMOTO H, SHIMIZU Y, et al. Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid C02 [J]. Energy,1999,24:21-30.
    [131JTSUNEOKA H, TERAMURA K, SHISHIDO T, TANAKA T. Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2 [J]. Journal of Physical Chemistry C,2010,114:8892-8898.
    [132]USUBHARATANA P, MCMARTIN D, VEAWAB A, et al. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial and Engineering Chemistry Research,2006,45,2558-2568.
    [133]Hirano K, Inoue K, Yatsu T. Photocatalysed teduction of C02 in aqueous TiO2 suspension mixed with copper powder [J]. Journal of Photochemistry and Photobiology A:Chemistry,1992,64:255-258.
    [134]HIRANO K, ASAYAMA H, HOSHINO A, WAKATSUKI H. Metal powder addition effect on the photocatalytic reactions and the photo-generated electric charge collected at an inert electrode in aqueous TiO2 suspensions [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997,110:307-311.
    [135]ISHITANI 0, INOUE C, SUZUKI Y, et al. Photocatalytic reduction of carbom dioxide to methane and acid by an aqueous suspension of metal-deposited TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry,1993,72:269-271.
    [136]GUAN G Q, KIDA T, YOSHIDA A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst [J]. Applied Catalysis B:Environmental,2003,41: 387-396.
    [137]MATSUMOTO Y,OBATA M, HOMBO J. Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder [J]. Journal of Physical Chemistry, 1994,98:2950-2951.
    [138]SONG L M, ZHANG S J. Formation of a-Fe2O3/Fe00H nanostructures with various morphologies by a hydrothermal route and their photocatalytic properties [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,348:217-220.
    [139]WU J H, HUANG Y F, LI T H, et al. Synthesis and photocatalytic properties of layered nanocomposite H2La2Ti3O10/Fe2O3 [J]. Scripta Materialia,2006,54:1357-1362.
    [140]ZHANG H T, WU X B, WANG Y M, et al. Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties [J]. Journal of Physics and Chemistry of Solids,2008,68:280-283.
    [141]SHI R, HUANG G L, LIN J, ZHU Y F. Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution [J]. Journal of Physical Chemistry C,2009,113:19633-19638.
    [142]CUI Z K, ZENG D W, TANG T T, et al. Processing-structure-property relationships of Bi2WO6 nanostructures as visible-light-driven photocatalyst [J]. Journal of Hazardous Materials,2010,183:211-217.
    [143]XU J H, WANG W Z, GAO E, et al. Bi2WO6/CuO:A novel coupled system with enhanced photocatalytic activity by Fenton-like synergistic effect [J]. Catalysis Communications, doi:10.1016/j. catcom.2011.01. 011
    [144]SHANG M, WANG W Z, ZHANG L, et al.3D Bi2WO6/TiO2 hierarchical heterostructure:controllable synthesis and enhanced visible photocatalytic degradation performances [J]. Journal of Physical Chemistry C,2009,113:14727-14731.
    [145]LEI X F, XUE X X. Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag [J]. Transactions of Nonferrous Metals Society of China,2010,20:2294-2298.
    [146]EBBINGHAUS S G, ABICHT H P, DRONSKOWSKI R, et al. Perovskite-related oxynitrides-recent developments in synthesis, characterisation and investiations of physical properties [J]. Progress in Solid State Chemistry,2009,37:173-205.
    [147]LI J J, JIA L S, FANG W P, ZENG J L. Enhanccement of activity of LaNi0.7Cu0.3O3 for photocatalytic water splitting by teduction treatment at moderate temperature [J]. International Journal of Hydrogen Enegry,2010,35:5270-5275.
    [148]PARI G, JAYA M, SUB RAMONIAM G, ASOKAMANI R. Density-functional description of the electronic structure of LaMO3 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) [J]. Physical Rewiew B,1995,51:16575-16581.
    [149]SHIMIZU TAKASHI. Effect of electronic structure and tolerance factor on co oxidation activity of perovskite oxides [J]. Chemistry Letters,1980:1-4.
    [150]TORRANCE J B, LACORRO P, ASAVAROENGCHAI C, METZGER R M. Simple and perovskite oxides of transition-metals:Why some are metallic, while most are Insulating [J]. Journal of Solid State Chemistry,1991:90, 168-172.
    [151]杨秋华.纳米钙钛矿型ABO。复合氧化物的光催化氧化还原活性[D].天津:天津大学化学学院,2002.
    [152]KATO H, KUDO A. Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A=Li, Na, and K) [J]. Journal of Physical Chemistry B,2001,105:4285-4292.
    [153]ARNEY D, HARDY C, GREVE B, MAGGARD P A. Flux synthesis of AgNbO3:Effect of particle surfaces and sizes on photocatalytic activity [J]. Journal of Photochemistry and Photobiology A:Chemistry,2010,214: 54-60.
    [154]XU H, WU C D, LI H M, CHU J Y, SUN G S, et al. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts [J]. Applied Surface Science,2009,256:597-602.
    [155]XU J S, XUE D F, YAN C L. Chemical synthesis of NaTaO3 powder at low-temperature [J]. Materials Letters,2005,59:2920-2922.
    [156]ILEPERUMA O A, TENNAKONE K, DISSANAYAKE W D D P. Photocatalytic behaviour of metal doped titanium dioxide [J]. Applied Catalysis,1990, 62:L1-L5.
    [157]白洪亮.铋掺杂纳米NaTa03的结构和电子特性研究[D].内蒙古:内蒙古大学化学化工学院,2008.
    [158]TORRES-MARTINEZ L M, CRUZ-LOPEZ A, JUAREZ-RAMIREZ I, et al. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La [J]. Jouranl of Hazardous Materials,2009,165:774-779.
    [159]KATO H, ASAKURA K, KUDO A, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure [J]. Journal of The American Chemical Society,2003,125:3082-3089.
    [160]FU H B, ZHANG S C, ZHANG L W, ZHU Y F. Visible-light-driven NaTaO3-xNx catalyst prepared by a hydrothermal process [J]. Materials Research Bulletin,2008,43:864-872.
    [161]YANG Y, CAO Z Q, JIANG Y S, LIU L H, SUN Y B. Photoinduced structural transformation of SrFeO3 and Ca2Fe2O5 during photodegradation of methyl orange [J]. Matetials Science and Engineering B,2006,132: 311-314.
    [162]CARRAWAY E R, HOFFMAN A J, HOFFMANN M R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids [J]. Environmental Science and Technology,1994,28:786-793.
    [163]SUN Y F, PIGNATELLO J J. Evidence for a surface dual hole-radical mechanism in the TiO2 photocatalytic oxidation of 2,4-dichlorophenoxyacetic acid [J]. Environmental Science and Technology,1995,29:2065-2072.
    [164]TURCHI C S, OLLIS D F. Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack [J]. Journal of Catalysis,1990,122:178-192.
    [165]MLLLST G and HOFFMANN M R. Photocatalytic Degradation of Pentachlorophenol on TiO2 Particles:Identification of Intermediates and Mechanism of Reaction [J]. Environmental Science and Technology,1993,27:1681-1689.
    [166]MILLS A, MORRIS S. Photomineralization of 4-chlorophenol sensitized by titanium dioxide:a study of the initial kinetics of carbon dioxide photogeneration [J]. Journal of Photochemistry and Photobiology A:Chemistry,1993,71:75-83. 照射下使用效果十分稳定,具有很好的应用前景。
    (3)大量的研究表明,N掺杂能够拓展催化剂的光响应范围,使其具有可见光活性。但是,实验结果表明采用固相法制备的N掺杂的NaTa03并没有可见光活性,究其原因可能是制备方法不同导致其没有可见光活性。
    [1]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [2]白洪亮.铋掺杂纳米NaTa03的结构和电子特性研究[D].内蒙古:内蒙古大学化学化工学院,2008.
    [3]TORRES-MARTINEZ L M, CRUZ-LOPEZ A, JUAREZ-RAMIREZ I, et al. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La [J]. Jouranl of Hazardous Materials,2009,165:774-779.
    [4]KATO H, ASAKURA K, KUDO A, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure [J]. Journal of The American Chemical Society,2003,125:3082-3089.
    [5]LI X, ZANG J L. Facile hydrothermal synthesis of sodium Tantalate (NaTaO3) nanocubes and high photocatalytic properties [J]. Journal of Physical Chemistry C,2009,113:19411-19418.
    [6]HU C C, TENG H. Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods [J]. Applied Catalysis A:General,2007,331:44-50.
    [7]ILEPERUMA 0 A, TENNAKONE K, DISSANAYAKE W D D P. Photocatalytic behaviour of metal doped titanium dioxide [J]. Applied Catalysis,1990, 62:L1-L5.
    [8]HE Y, ZHU Y. Solvothermal synthesis of sodium and potassium tantalate perovskite nanocubes [J]. Chemistry Letters,2004,33:900-901.
    [9]NELSON J A, WAGNER M J. Synthesis of sodium tantalate nanorods by alkalide reduction [J]. Journal of The American Chemical Society,2003,125: 332-333.
    [10]LIU J W, CHEN G, LI Z H, ZHANG Z G. Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A=Na and K) [J]. International Journal of Hydrogen Energy,2007,32:2269-2272.
    [11]KATO H, KUDO A. Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A=Li, Na, and K) [J]. Journal of Physical Chemistry B,2001,105:4285-4292.
    [12]MURASE T, IRIE H, HASHIMOTO K. Visible Light Sensitive Photocatalysts Nitrogen-Doped Ta205 Powders [J]. Journal of Physical Chemistry B,2001,108:5803-15807.
    [13]XU J S, XUE D F, YAN C L. Chemical synthesis of NaTaO3 powder at low-temperature [J]. Materials Letters,2005,59:2920-2922.
    [14]HE Y, ZHU Y F, WU N Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance [J]. Journal of Solid State Chemistry,2004,177:3868-3872.
    [15]ILIEV V, TOMOVA D, RAKOVSKY S, et al. Enhancement of photocatalytic oxidation of oxalic acid by gold modified W03/Ti02 photocatalysts under UV and visible light irradiation [J]. Journal of Molecular Catalysis A: Chemical,2010,327:51-57.
    [16]HSU C S, LIN C K, CHAN C C. Preparation and characterization of nanocrystalline porous Ti02/W03 composite thin films [J]. Thin Solid Films,2006,494:228-233.
    [17]KISCH H, MACYK W. Visible-Light Photocatalysis by Modified Titania [J]. ChemPhysChem,2002,3:399-400.
    [18]MOON S C, MAMETSUKA H, SUZUKI E, NAKAHARA Y. Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water [J]. Catalysis Today,1998,45:79-84.
    [19]ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen doped titanium oxides [J], Science,2001,293: 269-271.
    [20]CHEN S Z, ZHANG P Y, ZHUANG D M, ZHU W P. Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering [J]. Catalysis Communications,2004,5:677-680.
    [21]TANG J W, ZOU Z G, YIN J, YE J H. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation [J]. Chemical Physics Letters,2003,382:175-179.
    [22]QU P, ZHAO J C, SHEN T, HIDAKA H. TiO2-assisted photodegradation of dyes:A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution [J]. Journal of Molecular Catalysis A:Chemical,1998,129:257-268.
    [23]LIU B S, WEN L P, ZHAO X J. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering [J]. Solar Energy Materials & Solar Cells,2008,92:1-10.
    [24]BU X Z, ZHANG G K, GAO Y Y, YANG Y Q. Preparation and photocatalytic properties of visible light responsive N-doped Ti02/rectorite composites [J]. Microporous and Mesoporous Materials,2010,136:132-137. 这个浅势能级可以作为光生电子或空穴的捕获陷阱,有利于光生电子和空穴的分离,从而提高了光催化剂的活性。
    (3)将水热法和固相法制备的样品可见光活性对比发现,水热法制备的N掺杂NaTa03在5h内就可以使亚甲基蓝溶液完全脱色;而以固相法制备的样品在相同条件下的脱色率仅为1%左右。
    [1]ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen doped titanium oxides [J], Science,2001,293: 269-271.
    [2]LI X Y, ZHU Z R, ZHAO Q D, WANG L Z. Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods:A comparative study [J]. Journal of Hazardous Materials,2010,186:2089-2096.
    [3]KOLARIK B, WARGOCKI P, SKOREK-OSIKOWSKA A, WISTHALER A. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods [J]. Building and Environment,2010,45: 1434-1440.
    [4]LEE M S, PARK S S, LEE G D, JU C S, HONG S S. Synthesis of TiO2 particles by reverse microemulsion methon using nonionic surfactants with different hydrophilic and hydrophobic group and their photocatalytic activity [J]. Catalysis Today,2005,101:283-290.
    [5]TORRES-MARTINEZ L M, CRUZ-LOPEZ A, JUAREZ-RAMIREZ I, et al. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La [J]. Jouranl of Hazardous Materials,2009,165:774-779.
    [6]HU C C, TENG H. Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods [J]. Applied Catalysis A:General,2007,331:44-50.
    [7]TSUBOTA T,ONO A, MURAKAMI N, OHNO T. Characterization and photocatalytic performance of carbon nanotube material-modified TiO2 synthesized by using the hot CVD process [J]. Applied Catalysis B: Environmental,2009,91:533-538.
    [8]POZZO R L, BRANDI R J, GIOMBI J L, BALTANAS M A, CASSANO A E. Design of fluidized bed photoreactors:Optical properties of photocatalytic composites of titania CVD-coated onto quartz sand [J]. Chemical Engineering Science,2005,60:2785-2794.
    [9]CHING W H, LEUNG M, LEUNG D Y C. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality [J]. Solar Energy,2004,77:129-135.
    [10]LENZI G G, FAVERO C V B, COLPINI L M S, BERNABE H, et al. Photocatalytic reduction of Hg(II) on TiO2 and Ag/TiO2 prepared by the sol-gel and impregnation methods [J]. Desalination,2011,270:241-247.
    [11]JING Y, LI L S, ZHANG Q Y, LU P, et al. Photocatalytic ozonation of dimethyl phthalate with Ti02 prepared by a hydrothermal method [J]. Journal of Hazardous Materials, DOI:10.1016/j. jhazmat.2011.01.132.
    [12]WU Z B, WANG H Q, LIU Y, GU Z L. Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method [J]. Journal of Hazardous Materials,2008,151:17-25.
    [13]LI X, ZHANG K L. Facile hydrothermal synthesis of sodium tantalite (NaTaO3) nanocubes and high photocatalytic properties [J]. Journal of Physical Chemistry C,2009,113:19411-19418.
    [14]ZHU S B, FU H B, ZHNAG S C, ZHANG L W, ZHU Y F. Two-step synthesis of a novel visible-light-driven K2Ta2O6-xNx catalyst for the pollutant decomposition [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2008,193:33-41.
    [15]KATO H., KUDO A. Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A=Li, Na, and K) [J]. Journal of Physical Chemistry B,2001,105:4285-4292.
    [16]GOPINATH C S. Comment on "Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J]. Journal of Physical Chemistry B,2006,110:7079-7080.
    [17]NISHIJIMA K, OHTANI B, YAN X L, et al. Incident light dependence for photocatalytic degradation of acetaldehyde and acetic acid on S-doped and N-doped TiO3 photocatalysts [J]. Chemical Physics,2007,339:64-72.
    [18]KUMAR V, UMA G S. Investigation of cation (Sn2+) and anion (N3-) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10 [J]. Journal of Hazardous Materials, DOI:10.1016/j. jhazmat.2011.02.064.
    [19]XU J S, XUE D F, YAN C L. Chemical synthesis of NaTaO3 powder at low-temperature [J]. Materials Letters,2005,59:2920-2922.
    [20]WOHLRAB S, PINNA N, ANTONIETTI M, COLFEN H. Polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructures [J]. Chemistry A European Journal,2005,11:2903-2913.
    [21]TANG J W, ZOU Z G, YIN J, YE J H. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation [J]. Chemical Physics Letters,2003,382:175-179.
    [22]QU P, ZHAO J C, SHEN T, HIDAKA H. TiO2-assisted photodegradation of dyes:A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution [J]. Journal of Molecular Catalysis A:Chemical,1998,129:257-268.
    [23]XU J J, AO Y H, CHEN M D, FU D G. Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays [J]. Applied Surface Science,2010,256:4397-4401.
    [23JLIU B S, WEN L P, ZHAO X J. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering [J]. Solar Energy Materials & Solar Cells,2008,92:1-10.
    [25]梁金生.稀土/纳米Ti02的表面电子结构[J].中国稀土学报,2002,20(1): 74-76.
    [26]ZHAO J, YANG X. Photocatalytic oxidation for indoor air puri&cation:a literature review [J]. Building and Environment,2003,38: 645-654.
    [27]栾勇.金属离子掺杂对TiO2光催化活性能的影响[J].化学进展,2004,16(5):738-746.
    [28]梁金生.环境净化功能M/TiO2纳米材料光催化活性的研究.硅酸盐学报,1999,27(5):601-604.
    [29]DAI K, CHEN H, PENG T Y, KE D G, YI H B. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles [J]. Chemosphere,2007,69:1361-1367.
    [30]LI F F, SUN S M, JIANG Y S, et al. Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral [J]. Journal of Hazardous Materials,2008,152:1037-1044.
    [31]GHALY M Y, FARAH J Y, FATHY A M. Enhancement of decolorization rate and COD removal from dyes containing wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation [J]. Desalination,2007,217: 74-84.
    [32]LI P Q, ZHAO G H, CUI X, ZHANG Y G, TANG Y T. Constructing stake structured Ti02-NTs/Sb-doped Sn02 electrode simultaneously with high electrocatalytic and photocatalytic performance for complete minerzlization of refractory aromatic acid [J]. Journal of Physical Chemistry C,2009,113:2375-2383.
    [33]SHANG M, WANG W Z, SUN S M, et al. Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiV04 [J]. Journal of Physical Chemistry C,2009,113:20228-20233.
    [34]MIYAUCHI M, NAKAJIMA A, WATANABE T, et al. Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films [J]. Chemistry of Materials,2002,14:4714-4720.
    [35]SAKTHIVEL S, JANCZAREK M, KISCH H. Visible light activity and photoelectrochemical properties of Nitrogen-doped TiO2 [J]. Journal of Physical Chemistry B,2004,108:19384-19387.
    [36]SENTHILNATHAN J, PHILIP L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2 [J]. Chemical Engineering Journal,2010,161:83-92.
    [1]于涛,吴越.钙钛矿型复合氧化物La1_,SrxFe03-λ催化性能的研究.催化学报,1989,10(4):432-437.
    [2]杨秋华.纳米钙钛矿型ABO3复合氧化物的光催化氧化还原活性[D].天津:天津大学化学学院,2002.
    [3]Ji L S, Ding T, Li Q B, Tang Y. Study of photocatalytic performance of SrFeO3-x by ultrasonic radiation [J]. Catalysis Communications,2007,8: 963-966.
    [4]Yang Y, Cao Z Q, Jiang Y S, Liu L H, Sun Y B. Photoinduced structural transformation of SrFeO3 and Ca2Fe205 during photodegradation of methyl orange [J]. Materials Science and Engineering B,2006,132:311-314.
    [5]Harizanov 0 A. Sol-gel BaTiO3 from a peptized solution [J]. Materials Letters,1998,34:232-236.
    [6]Majid A, Tunney J, Argue S, et al. Preparation of SrFeO_2.85 perovskite using a citric acid assisted Pechini-type method [J]. Journal of Alloys and Compounds,2005,398:48-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700