聚合物多孔膜辅助构筑有序微结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米及微米尺度上的有序微结构具有尺寸和形状依赖的光、电、磁等物理性质,使其在微电子器件、生物传感器、光学器件、信息存储等方面有重要应用。基于此,人们致力于发展构筑图案化有序微结构的方法。近年来,模板辅助构筑微观有序结构的方法受到人们的关注。本论文中,我们结合胶体晶体自组装和微接触印刷技术制备了聚乙烯醇的有序多孔膜,考察了聚合物热降解行为对聚合物膜层孔形貌的影响,随着聚合物的热降解,多孔膜的孔形貌逐渐由圆形向多角形转变。进一步,通过向聚合物中复合金属的前躯体材料,以聚合物为结构诱导模板制备了金属的环状结构阵列。控制实验条件,可以选择性地制备金属环或网格结构阵列,两种结构的形成取决于模板聚合物相邻孔间的距离。然后以在较低热降解温度热处理后的聚合物膜层为模板,结合蒸镀,形成聚合物/金属复合多孔膜层,再煅烧除去聚合物模板,得到金属纳米粒子阵列。控制蒸镀金属薄膜的厚度和蒸镀角度,可以制备包括二元纳米粒子阵列以及环形和月牙形空穴的金属膜层结构。由于金属具有表面等离子体共振效应,这些金属结构阵列在增强光谱、生物传感、太阳能电池等方面有潜在应用。
Functional nanomaterials have attracted a great deal of interests due to their unique properties and potential applications in optical devices, microelectronics and biosensors, and so forth. A variety of methods have been developed for fabrication of ordered microstructures of different materials including traditional photolithography, scanning e-beam lithography, scanning probe lithography, etc. Each of these methods has their own advantages and shortages in preparing ordered microstructures with respect to the precision, repetition, productivity and cost, etc. Template-assistant strategies have attracted more and more attention as it is simple, productive, and low-cost. Many kinds of periodical structures have been used as templates commonly, such as, the porous anodic aluminum oxide (AAO), colloidal crystals self-assembled from monodispersed colloidal microspheres, and microstructures obtained by microphase-separated of block copolymer, etc. The combination of these periodical structures as masks and deposition, etching, a series of ordered patterns could be fabricated on the substrate. In this paper, we prepared porous polymer films by microcontact printing technique, and investigated the effect of thermal degradation of polymer on pattern morphology. Then, utilizing the porous polymer films as structure-directing template, many ordered microstructures of metal and oxides were fabricated.
     In chapter 2, we prepared PVA porous films with circular openings by microcontact printing technique, and then the as-prepared PVA porous films were annealed at different temperatures. When the temperature is higher than the starting thermal degradation temperature of PVA, the pore morphology changed obviously from circular to noncircular, and finally polymer films with polygonal pore shape were achieved. The pore pattern transformation from circular to noncircular is driven by thermal degradation of PVA. According to the experimental results, we supposed an explanation that when treated at temperatures higher than the initial thermal degradation of PVA, diminishing of polymer content together with volume shrinkage result in the diameter of openings increased, extrusion of the adjacent pores should cause shape transformation from circular to polygonal. By tuning the geometry lattice of the original PVA porous films, square or hexagonal pore shape was achieved. Furthermore, inorganic network structures of functional materials were fabricated using pattern transformation process driven by thermal degradation of PVA. By mixing different decomposable functional precursors with PVA and using polymer matrix as structure-directing agent in the following pyrolysis process. The organic components of hybrid film were removed by calcinations and finally inorganic polygonal networks were left on the substrate.
     In chapter 3, hybrid polymer porous films were prepared by microcontact printing technique by adding HAuCl4 to PVA. The as-prepared hybrid porous polymer films were treated with O2 plasma for several minutes to make the pore throughout to the substrate prior to annealing. This makes the HAuCl4 in the bottom of the pore etched away. Polymer matrix was removed by calcinations and finally gold nanoring arrays were formed on the silicon substrate. Increasing the time of O2 plasma etching, gold network structures were formed. According to the experimental results, ring or network structures depending on the spacing between the adjacent pores of polymer porous films formed. We supposed an explanation to these results, during the process of pyrolysis, decompose of HAuCl4 results in the metal gold generated together with HC1 and Cl2 gase. The phase separate between gold nanoparticles and polymer promote the metal gold nanoparticles acces to the interface between porous films and atmosphere and enrich in there, which make the pore deformation become difficult. With degradating of polymer content, the diameter of pore increased. When the spacing between the adjacent pores larger than the pore expanding, ring structures formed, while the spacing is smaller, the adjacent wall of ring encountered with each other and melted into one, then network structures formed. According to this explaination, we could selectively fabricate the ring structures arrays of different functional materials on the substrate.
     In chapter 4, we prepared porous PVA films by microcontact printing technique and then the porous films were annealed at 325℃for 3 h. Ulitilizing the annealed porous polymer films as masks, gold thin films were evaporated on them and polymer/gold bilayer films formed. Polymer templates were removed via a calcinations process, and finally gold particle arrays were fabricated on the silicon substrate. Decreasing the thickness of gold thin film evaporated, binary particle arrays were obtained, while increasing the thickness of gold thin film evaporated, circular aperture structures in gold films formed. By tuning the titled angle of evaporation of gold, crescent-shaped aperture structures could also be prepared. Due to the localized surface plasmonic resonance, these gold microstructures will find application in the fields of enhanced spectroscopy and biosensors, etc.
引文
[1]Sze, S. M., Semiconductor devices:physics and technology, John Wiley, New York, 1985.
    [2]Moreau, W. M., Semiconductor lithography:principles and materials, Plenum, New York,1988.
    [3]Handbook of Microlithography, Micromachining, and microfabrication (Ed:P. Rai-Choudhury), SPIE Optical Engineering Press, Bellingham, WA,1997.
    [4]Microlithography-Science and Technology (Eds:Sheats, J. R.; Smith, B. W.), Marcel Dekker, New York,1998.
    [5]Menz, W.; Mohr, J.; Paul, O., Microsystem Technology,2nd ed., Wiley-VCH, Weinheim, Germany,2001.
    [6]Madou, M., Fundamentals of Microfabrication:The Science of Miniaturization, 2nd ed., CRC Press, Boca Raton, FL,2001.
    [7]Barrett, C. R., Mater, Res. Soc. Bull.1993,3-10.
    [8]Service, R. F., Meeting briefs-crystallographers pinpoint what goes where, Science, 1996.273,1174-1175.
    [9]Schaller, R. R., Mooe's law:past, present, and future, IEEE Spectrum 1997,53-59.
    [10]Fafard, S.; Hinzer, K.; Raymond, S.; Dion, M.; McCaffrey. J.; Feng, Y.; Charbonneau, S., Red-Emitting Semiconductor Quantum Dot Lasers, Science, 1996,274,1350-1353.
    [11]Faist, J.; Capasso, F.; Sivco, D. L.; Sirtori, C.; Hutchinson, A. L.; Cho, A. Y., Quantum Cascade Laser, Science,1994,264,553-556.
    [12]Devoret, M. H.; Esteve, D.; Urbina, C., Single-electron transfer in metallic nanostructures, Nature,1992,360,547-553.
    [13]Petit, C.; Taleb, A.; Pileni, M.-P., Self-Organization of Magnetic Nanosized Cobalt Particles, Adv. Mater.1998,10,259-261.
    [14]Bell, L. D.; Kaiser, W. J., Observation of Interface Band Structure by Ballistic-Electron-Emission Microscopy, Phys. Rev. Lett.1988,61,2368-2371.
    [15]Hutley, M. C., Diffraction Gratings, Academic Press:New York.1982.
    [16]Heinze, J., Ultramicroelectrodes in Electrochemistry, Angew. Chem. Int. Ed. Engl. 1993,32,1268-1288.
    [17]Bube, R. H., Electrons in Solids. Academic:New York,1981.
    [18]Ingber, D. E., Proc. Natl. Acad. Sci. U. S. A.1990,87,3579.
    [19]Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E., Geometric Control of Cell Life and Death, Science,1997,276,1425-1428.
    [20]Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E., Biotechnol. Prog.1998,14,356.
    [21]Kastner, M. A., Phys. Tody,1993,24.
    [22]Reed, M. A., Sci. Am.1993,118.
    [23]Likharev, K. K.; Claeson, T., Sci. Am.1992,80.
    [24]LiKharev, K. K., Correlated discrete transfer of single electrons in ultrasmall tunnel junctions, IBMJ. RES. Dev.1988,32,144-158.
    [25]Vijayakrishnan, V.; Chainani, A.; Sarma, D. D.; Rao, C. N. R., Metal-insulator transitions in metal clusters:a high-energy spectroscopy study of palladium and silver clusters, J. Phys. Chem.1992,96,8679-8682.
    [26]Rohrer, H., Nanoworld:chances and challenges, The nanoworld:chances and challenges, Microelectron. Eng.1996,32,5-14.
    [27]Tolles, W. M., Nanoscience and nano techno logy in Europe, Nanotechnology,1996, 7,59-105.
    [28]Buot, F. A., Mesoscopic physics and nanoelectronics:nanoscience and nanotechnology, Phys, Rep.1993,243,73-174.
    [29]Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Molecular self-assembly and nanochemistry a chemical strategy for the synthesis of nanostructures, Science, 1991,254,1312-1319.
    [30]Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New Approaches to Nanofabrication:Molding, Printing, and Other Techniques, Chem. Rev.2005,105,1171-1196.
    [31]Hartsuch, P., Chemistry of lithography, Lithographic Technical Foundation, New York,1961.
    [32]Berggren, K. K.; Younkin, R.; Cheung, E.; Prentiss, M.; Black, A. J.; Whitesides, G. M.; Ralph, D. C.; Black, C. T.; Tinkham, M., Demonstration of a nanolithographic technique using a self-assembled monolayer resist for neutral atomic cesium, Adv. Mater.1997,9,52-55.
    [33]Smith, H. I.; Craighead, H. G., Phys. Today 1990,24.
    [34]White, D. L.; Bjorkholm, J. E.; Bokor, J.; Eichner, L.; Freeman, R. R.; Jewell, T. E.; Mansfield, W. M.; Macdowell, a. A.; Szeto, L. H.; Taylor, D. W.; Tennant, D. M.; Wwskiewica, W. K.; Windt, D. L.; Wood, O. R., II, The Effect of Ultrasonic Frequency in Intermetallic Reactivity of Au-Al Bonds, Solid State Technol.1991, 37-38.
    [35]Dunn, P. N., X-rays future-a cloudy picture, Solid State Technol.1994,49-52.
    [36]Cerrina, F.; Marrian, C., Mater. Res. Soc. Bull.1996,56.
    [37]Amirfazli, A.; Hanig, A.; Muller, A.; Neumann, A. W., Measurements of Line Tension for Solid-Liquid-Vapor Systems Using Drop Size Dependence of Contact Angles and Its Correlation with Solid-Liquid Interfacial Tension, Langmuir,2000,16,2024-2031.
    [38]Levenson, M. D., ibid.1995,38,57.
    [39]Gamo, K., Nanofabrication by FIB, Microelectron. Eng.1996,32,159-171.
    [40]Morita, T.; Kometani, R.; Watanabe, K.; Kanda, K.; Haruyama, Y.; Hoshino, T.; Konso, K.; Kaito, T.; Ichihashi, T.; Fujita, J.; Ishida, M.; Ochiai, Y; Tajima, T.; Matsui, S., Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B,2003,21,2737-2742.
    [41]Prewett, P. D.; Gentili, M.; Maggiora, R.; Mastrogiacomo, L.; Watson, J. G.; Turner, G. S.; Brown, G. W.; Plumb, D.; Leonard, Q.; Cerrina, F., FIB Repair of Clear and Opaque Defects in X-Ray Masks, Microelectron. Eng.1992,17, 249-254.
    [42]Blauner, P. G.; Ro, J. S.; Butt, Y.; Thompson, C. V.; Melngailis, J., Mater. Res. Soc. Symp. Proc.1989,129,483.
    [43]Kubena, R. L., Resolution Limits of Focused-Ion-Beam Resist Patterning, Mater. Res. Soc. Symp. Proc.1993,279,567-576.
    [44]Xia, Y. N.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M., Unconventional Methods for Fabricating and Patterning Nanostructures, Chem. Rev.1999,99,1823-1848.
    [45]Gates, B. D.; Xu, Q. B.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M., New Approaches to Nanofabrication:Molding, Printing, and Other Techniques, Chem. Rev.2005,105,1171-1196.
    [46]Haverkorn van Rijsewijk, H. C.; Legierse, P. E. J.; Thomsa, G. E., Manufacture of laservision video discs by a photopolymerization process, Philips Technol. Rev. 1982,40,287-297.
    [47]Emmelius, M.; Pawlowski, G.; Vollmann, H. W., Materials for Optical Data Storage, Angew. Chem. Int. Ed. Engl.1989,28,1445-1472.
    [48]Chou, S. Y.; Krauss, P. R.; Renstrom, P., Imprint of sub-5 nm vias and trenches in polymers, J. Appl. Phys. Lett.1995,67,3114-3117.
    [49]Geissler M.; Xia, Y N., Principles and Some New Developments, Adv. Mater., 2004,16,1249-1269.
    [50]Guo, L. J., Methods and Material Requirements,Adv. Mater.2007,19,495-513.
    [51]Barton, J. E.; Odom, T. W., Mass-Limited Growth in Zeptoliter Beakers:A General Approach for the Synthesis of Nanocrystals, Nano Lett.2004,4, 1525-1528.
    [52]Schulz, H.; Lyebyedyev, D.; Scheer, H.-C.; Pferffer, K.; Bleidiessel, G.; Grutzner, G.; Ahopelto, J., Master replication into thermosetting polymers for nano imprint ing, J. Vac. Sci. Technol. B,2000,18,3582-3585.
    [53]Kloosterboer, J. G.; Loppits, G. J. M.; Meinders, H. C., Manufacture of laservision video discs by a photopolymerization process, Philips Tech. Rev.1982,40, 198-309.
    [54]Terris, B. D.; Mamin, H. J.; Best, M. E.; Logan, J. A.; Rugar, D., Nanoscale replication for scanning probe data storage, Appl. Phys. Lett.1996,69,4262-4264.
    [55]Zhang, W.; Chou, S. Y., Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels, Appl. Phys. Lett.2003,83,1632-1635.
    [56]Tan, H.; Gelbertson, A.; Chou, S. Y., Roller nanoimprint lithography, J. Vac. Sci. Technol. B 1998,16,3926-3928.
    [57]Li, H.-W.; Huck, W. T. S., Ordered Block-Copolymer Assembly Using Nanoimprint Lithography, Nano Lett.2004,4,1633-1635.
    [58]Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L.; Zhuang, L., Sub-10 nm imprint lithography and applications, J. Vac. Sci. Technol. B 1997,15,2897-2905.
    [59]Masuda, H.; Fukuda, K., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science 1995,268, 1466-1468.
    [60]Wuff, G., Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates—A Way towards Artificial Antibodies, Angew. Chem. Int. Ed.Engl.1995,34,1812.
    [61]Kumar, A.; Whitesides, G. M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching, Appl. Phys. Lett. 1993,63,2002-2005.
    [62]Xia, Y. N.; Whitesides, G. M., Soft Lithography, Angew. Chem. Int. Ed. Engl.1998, 37,550-575.
    [63]Xia, Y. N.; Kim, E.; Zhao, X. M.; Rogers, J. A.; Prentiss, M.; Whitesides, G. M., Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters, Science 1996,273,347-349.
    [64]Zhao, X. M.; Xia, Y. N.; Whitesides, G. M., Fabrication of Three-Dimensional Microstructures:Microtransfer Molding, Adv. Mater.1996,8,837-840.
    [65]Kim, E.; Xia, Y. N.; Whitesides, G. M., Polymer Microstructures. Formed By Molding in Capillaries, Nature 1995,376,581-584.
    [66]Kim, E.; Xia, Y. N.; Zhao, X. M.; Whitesides, G. M., Solvent-assisted microcontact molding:A convenient method for fabricating three-dimensional structures on surfaces of polymers, Adv. Mater.1997,9,651-654.
    [67]Aizenberg, J.; Black, A. J.; Whitesides, G. M., Oriented Growth of Calcite Controlled by Self-Assembled Monolayers of Functionalized Alkanethiols Supported on Gold and Silver, J. Am. Chem. Soc.1999,121,4500-4509.
    [68]Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M., Patterning Proteins and Cells Using Soft Lithography, Biomaterials 1999,20,2363-2367.
    [69]Yan, X.; Yao, J.; Lu, G.; Li, X.; Zhang, J.; Han, K.; Yang, B., Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography, J. Am. Chem. Soc.2005,127,7688-7689.
    [70]Yan, X.; Yao, J.; Lu, G; Chen, X.; Zhang, K.; Yang, B., Microcontact Printing of Colloidal Crystals, J. Am. Chem. Soc.2004,126,10510-10511.
    [71]Suh, K. Y.; Lee, H. H., Capillary force lithography:Large-area patterning, self-organization, and anisotropic dewetting, Adv. Funct. Mater.2002,12, 405-413.
    [72]Bruinink, C. M.; Peter, M.; de Boer, M.; Kuipers, L.; Huskens, J.; Reinhouldt, D. N., Stamps for Submicrometer Soft Lithography Fabricated by Capillary Force Lithography, Adv. Mater.2004,16,1086-1090.
    [73]Marzolin, C.; Smith, S. P.; Prentiss, M.; Whitesides, G. M., Fabrication of Glass Microstructures by Micro-Molding of Sol-Gel Precursors, Adv. Mater.1998,10, 571-574.
    [74]Kim, E.; Xia, Y. N.; Whitesides, G. M., Two-and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries, Adv. Mater.1996,8, 245-247.
    [75]Siegel, A. C.; Bruzewicz, D. A.; Weibel, D. B.; Whitesides, G. M., Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane), Adv. Mater.2007,19,727-733.
    [76]Zhang, Y.; Lo, C.-W.; Taylor, J. A.; Yang, S., Replica Molding of High-Aspect-Ratio Polymeric Nanopillar Arrays with High Fidelity, Langmuir 2006,22,8595-8601.
    [77]Jeon, S.; Menard, E.; Park, J.-U.; Maria, J.; Meitl, M.; Zaumseil, J.; Rogers, J. A., Three-Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks, Adv. Mater.2004,16,1369-1373.
    [78]Kumar, A.; Whitesides, G. M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching, Appl. Phys. Lett. 1993,63,2002-2005.
    [79]Kumar, A.; Biebuyck, H. A.; Whitesides, G. M., Patterning Self-Assembled Monolayers:Applications in Materials Science, Langmuir 1994,10,1498-1511.
    [80]Xia, Y.; Zhao, X.-M.; Kim, E.; Whitesides, G. M., A Selective Etching Solution for Use with Patterned Self-Assembled Monolayers of Alkanethiolates on Gold, Chem. Mater.1995,7,2332-2337.
    [81]Kumar, A.; Abbott, N. L.; Biebuyck, H. A.; Kim, E.; Whitesides, G. M., Patterned Self-Assembled Monolayers and Meso-Scale Phenomena, Acc. Chem. Res.1995, 28,219-226.
    [82]Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M., Micro fabrication by microcontact printing of self-assembled monolayers, Adv. Mater.1994,6, 600-604.
    [83]Delamarche, E.; Geissler, M.; Wolf, H.; Michel, B., Positive Microcontact Printing, J. Am. Chem. Soc.2002,124,3834-3835.
    [84]Love, J. C.; Wolfe, D. B.; Chabinyc, M. L.; Paul, K. E.; Whitesides, G. M., Self-Assembled Monolayers of Alkanethiolates on Palladium Are Good Etch Resists, J. Am. Chem. Soc.2002,124,1576-1577.
    [85]Koide, Y.; Such, M. W.; Basu, R.; Evmenenko, G.; Cui, J.; Dutta, P.; Hersam, M. C; Marks, T. J., Hot Microcontact Printing for Patterning ITO Surfaces. Methodology, Morphology, Microstructure, and OLED Charge Injection Barrier Imaging, Langmuir 2003,19,86.
    [86]Biebuyck, H. A.; Whitesides, G. M., Autophobic Pinning of Drops of Alkanethiols on Gold, Langmuir 1994,10,4581.
    [87]Fenter, P.; Eberhardt, A.; Eisenberger, P., Self-Assembly of n-Alkyl Thiols as Disulfides on Au(111), Science 1994,266,1216-1218.
    [88]Delamarche, E.; Michel, B.; Kang, H.; Gerber, C., Thermal Stability of Self-Assembled Monolayers, Langmuir 1994,10,4103-4108.
    [89]Swalen, J. D., Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem.1992,43,437-463.
    [90]Bishop, A. R.; Nuzzo, R. G., Self-assembled monolayers recent developments in applications, Curr. Opin. Coll. Interf. Sci.1996,1,127-136.
    [91]Biebuyck, H. A.; Larsen, N. B.; Delamarche, E.; Michel, B., Lithography Beyond Light:Microcontact Printing with Mono layer Resists, IBM J. Res. Dev.1997,41, 159-170.
    [92]Feng, C. L.; Vancso, G. J.; Schonherr, H., Fabrication of Robust Biomolecular Patterns by Reactive Microcontact Printing on N-Hydroxysuccinimide Ester-Containing Polymer Films, Adv. Funct. Mater.2006,16,1306-1312.
    [93]Gao, X. F.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J. H.; Yang, B.; Jiang, L., The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography, Adv. Mater.2007,19,2213-2217.
    [94]Xia, Y. N.; Whitesides, G. M., Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontact Printing, J. Am. Chem. Soc.1995,117,3274-3275.
    [95]Jacobs, H. O.; Whitesides, G. M., Submicrometer Patterning of Charge in Thin-Film Electrets, Science 2001,291,1763-1766.
    [96]Hsu, K. H.; Schultz, P. L.; Ferreira, P. M.; Fang, N. X., Electrochemical Nano imprint ing with Solid-State Superionic Stamps, Nano Lett.2007,7, 446-451.
    [97]Rogers, J. A.; Baldwin, K.; Bao, Z.; Dodabalapur, A.; Raju, V. R.; Ewing, J.; Amundson, K., Mater. Res. Soc. Symp. Proc.2001,660, JJ7 1/1.
    [98]Xia, Y.; Qin, D.; Whitesides, G. M., Microcontact printing with a cylindrical rolling stamp:A practical step toward automatic manufacturing of patterns with submicrometer-sized features, Adv. Mater.1996,8,1015-1017.
    [99]Tien, J.; Terfort, A.; Whitesides, G. M., Microfabrication through Electrostatic Self-Assembly, Langmuir 1997,13,5349-5355.
    [100]Rogers, J. A.; Jackman, R. J.; Whitesides, G. M., Microcontact printing and electroplating on curved substrates:Production of free-standing three-dimensional metallic microstructures, Adv. Mater.1997,9,475-477.
    [101]Jackman, R. J.; Wilbur, J. L.; Whitesides, G. M., Fabrication of submicrometer features on curved substrates by microcontact printing, Science 1995,269, 664-666.
    [102]Delamarche, E.; Donzel, C.; Kamounah, F. S.; Wolf, H.; Geissler, M.; Stutz, R.; Schmidt-Winkel, P.; Michel, B.; Mathieu, H. J.; Schaumburg, K., Microcontact Printing Using Poly(dimethylsiloxane) Stamps Hydrophilized by Poly(ethylene oxide) Silanes, Langmuir 2003,19,8749-8758.
    [103]Donzel, C.; Geissler, M.; Bernard, A.; Wolf, H.; Michel, B.; Hilborn, J.; Delamarche, E., Hydrophilic Poly(dimethylsiloxane) Stamps for Microcontact Printing, Adv. Mater.2001,13,1164-1167.
    [104]Hyun, J.; Ma, H.; Zhang, Z.; Beebe, T. P.; Chilkoti, A., Universal Route to Cell Micropatterning Using an Amphiphilic Comb Polymer, Adv. Mater.2003,15, 576-579.
    [105]Kunzler, J.F.; Salamone, J. C. Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.) 2003,44,215.
    [106]Ginger, D. S.; Zhang, H.; Mirkin, C. A., The Evolution of Dip-Pen Nanolithography, Angew. Chem. Int. Ed.2004,43,30-45.
    [107]Kraemer, S.; Fuierer, R. R.; Gorman, C. B., Scanning Probe Lithography Using Self-Assembled Mono layers, Chem. Rev.2003,103,4367-4418.
    [108]Nyffenegger, R. M.; Penner, R. M., Nanometer-Scale Surface Modification Using the Scanning Probe Microscope:Progress since 1991, Chem. Rev.1997,97, 1195-1230.
    [109]Wouters, D.; Schubert, U. S., Nano lithography and Nanochemistry:Probe-Related Patterning Techniques and Chemical Modification for Nanometer-Sized Devices, Angew. Chem. Int. Ed.2004,43,2480-2495.
    [110]Zhang, H.; Chung, S.-W.; Mirkin, C. A., Fabrication of Sub-50-nm Solid-State Nanostructures on the Basis of Dip-Pen Nano lithography, Nano Lett.2003,3, 43-45.
    [111]Rozhok, S.; Piner, R.; Mirkin, C. A., Dip-Pen Nanolithography:What Controls Ink Transport? J. Phys. Chem. B 2003,107,751-757.
    [112]Schwartz, P. V., Molecular Transport from an Atomic Force Microscope Tip:A Comparative Study of Dip-Pen Nanolithography, Langmuir 2002,18,4041-4046.
    [113]Rolandi, M.; Suez, I.; Dai, H.; Frechet, J. M. J., Dendrimer Monolayers as Negative and Positive Tone Resists for Scanning Probe Lithography, Nano Lett. 2004,4,889-893.
    [114]Bouzehouane, K.; fusil, S.; Bibes, M.; Carrey, J.; Blon, T.; du, M. L.; Seneor, P.; Cros, V.; Vila, L., Metallic Nanostructures via Static Plowing Lithography, Nano Lett.2003,3,1043-1047.
    [115]Liu, S.; Maoz, R.; Schmid, G.; Sagiv, J., Template Guided Self-Assembly of [Au55] Clusters on Nanolithographically Defined Monolayer Patterns, Nano Lett,2002,2, 1055-1059.
    [116]Sun, S.; Chong, K. S. L.; Leggett, G. J., Nanoscale Molecular Patterns Fabricated by Using Scanning Near-Field Optical Lithography, J. Am. Chem. Soc.2002,124, 2414-2415.
    [117]Sun, S.; Leggett, G. J., Matching the Resolution of Electron Beam Lithography by Scanning Near-Field Photolithography, Nano Lett.2004,4,1381-1384.
    [118]Henzie, J; Barton, J. E.; Stender, C. L.; and Odom, T. W., Large-Area Nanoscale Patterning:Chemistry Meets Fabrication, Acc. Chem. Res.2006,39,249-257.
    [119]Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; feld, M. S., J. Phys,:Condens. Matter.2002,14, R597.
    [120]Xia, Y.; Halas, N. J., Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures, MRS Bull.2005,30,338-348.
    [121]Woodson, M.; Liu, J., Functional nanostructures from surface chemistry patterning, Phys. Chem. Chem. Phys.2007,9,207-225.
    [122]Maoz, R.; Frydman, E.; Cohen, S. R.; Sagiv, J., Surface Potential Nanopatterning Combining Alkyl and Fluoroalkylsilane Self-Assembled Monolayers Fabricated via Scanning Probe Lithography, Adv. Mater.2002,14,524-526.
    [123]Liu, S.; Maoz, R.; Sagiv, J., Planned Nanostructures of Colloidal Gold via Self-Assembly on Hierarchically Assembled Organic Bilayer Template Patterns with In-situ Generated Terminal Amino Functionality, Nano Lett.2004,4, 845-851.
    [124]Matsumoto, K.; Gotoh, Y.; Maeda, T.; Dagata, J. A.; Harris, J. S., Room-temperature single-electron memory made by pulse-mode atomic force microscopy nano oxidation process on atomically flat a-alumina substrate, Appl. Phys. Lett.2000,76,239-242.
    [125]Salaita, K., Angew. Chem. Int. Ed.2006,45,1480.
    [126]Pfeiffer, L.; West, K. W.; Stormer, H. L.; Eisenstein, J. P.; Baldwin, K. W.; Gershoni, D.; Spector, J., Formation of a high quality two-dimensional electron gas on cleaved GaAs, Appl. Phys. Letts.1990,56,1697-1700.
    [127]Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Baolato, A.; Petroff, P. M.; Heath, J. R., Ultrahigh-Density Nanowire Lattices and Circuits, Science 2003,300, 112-115.
    [128]Aizenberg, J.; Black, A. J.; Whitesides, G. M., Controlling Local Disorder in Self-Assembled Monolayers by Patterning the Topography of their Metallic Supports, Nature 1998,394,868-871.
    [129]Toh, K. K. H.; Dao, G.; Singh, R.; Gaw, H., Chromeless phase-shifted masks:a new approach to phase-shifting masks, Proc. SPIE-Int. Soc. Opt. Eng.1991,1496, 27-53.
    [130]Aizenberg, J.; Black, A. J.; Whitesides, G. M., Control of Crystal Nucleation by Patterned Self-Assembled Monolayers, Nature 1999,398,495-498.
    [131]Flanders, D. C.; White, A. E., Application of %100 Ang-strom linewidth structures fabricated by shadowing techniques, J. Vac. Sci. Technol.1981,19, 892-900.
    [132]Xu, Q.; Gates, B.; Whitesides, G. M., Fabrication of Metal Structures with Nanometer-Scale Lateral Dimensions by Sectioning Using a Microtome, J. Am. Chem. Soc.2004,126,1332-1333.
    [133]Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M., Improved Pattern Transfer in Soft Lithography Using Composite Stamps, Langmuir 2002, 18,5314-5320.
    [134]Love, J. C.; Paul, K. E.; Whitesides, G. M, Fabrication of Nanometer-Scale Features by Controlled Isotropic Wet Chemical Etching, Adv. Mater.2001,12, 604-607.
    [135]Cherniavskaya, O.; Adzic, A.; Knutson, C.; Gross, B. J.; Zang, L.; Liu, R.; Adams, D. M., Edge Transfer Lithography of Molecular and Nanoparticle Materials, Langmuir 2002,18,7029-7034.
    [136]Zach, M. P.; Ng, K. H.; Penner, R. M., Molybdenum Nanowires by Electrodeposition, Science 2000,290,2120-2123.
    [137]Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Mono layers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev.2005,105,1103-1169.
    [138]Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Single-Crystal Colloidal Multilayers of Controlled Thickness, Chem. Mater.1999,11,2132-2140.
    [139]Jiang, P.; Ostojic, G. N.; Narat, R.; Mittleman, D. M.; Colvin, V. L., The Fabrication and Bandgap Engineering of Photonic Multilayers, Adv. Mater.2001, 13,389-393.
    [140]Chen, X.; Chen, Z. M.; Fu, N.; Lu, G; Yang, B., Versatile Nanopatterned Surfaces Generated via Three-Dimensional Colloidal Crystals, Adv. Mater.2003,15, 1413-1417.
    [141]Yokoyama, H.; Mates, T. E.; Kramer, E. J., Structure of Asymmetric Diblock Copolymers in Thin Films, Macromolecules 2000,33,1888-1898.
    [142]Guarini, K. W; Black C. T.; Yeung, S. H. I., Optimization of Diblock Copolymer Thin Film Self Assembly, Adv. Mater.2002,144,1290-1294.
    [143]Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J., Ordering and Melting of Block Copolymer Spherical Domains in 2 and 3 Dimensions, Macromolecules 2003,36,3272-3288.
    [144]Segalman, R. A.; Schaefer, K. E.; Fredrickson, G. H.; Framer, R. J.; Magonov, S., Topographic Templating of Islands and Holes in Highly Asymmetric Block Copolymer Films, Macromolecules 2003,36,4498-4506.
    [145]Birnkrant, M. J.; Li, C. Y., Layer-in-layer hierarchical nanostructures fabricated by combining holographic polymerization and block copolymer self-assembly, Nano Lett.2007,7,3128-3133.
    [146]Kiely, C. L.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J., Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature 1998,396, 444-446.
    [147]Zhou, W. L.; He, J. H.; Fang, J. Y; Huynh, T. A.; Kennedy, T. J.; Stokes, K. L. O'Connor, C. J., Self-assembly of FePt nanoparticles into nanorings, Journal of applied physics 2003,93,7340-7342.
    [148]Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin,B.; Zhang, M.; Yu, S. H., High Yield Synthesis of Bracelet-like Hydrophilic Ni-Co Magnetic AlloyFlux-Closure Nanorings, J. Am. Chem. Soc.2008,130,11606-11607.
    [149]Jeoung, E.; Galow, T. H.; Schotter, J.; Bal, M.; Ursache, A.; Russell, T. P.; Rotello, V. M., Fabrication and Characterization of Nanoelectrode Arrays Formed via Block Copolymer Self-Assembly, Langmuir 2001,17,6396-6398.
    [150]McFarland, A. D.; Van Duyne, R. P., Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity, Nano Lett.2003,3,1057-1062.
    [151]Suematsu, N. J.; Ogawa, Y. M.; Yamamoto, Y.; Yamaguchi, T., Dewetting sele-assembly of nanoparticles into hexagonal array of nanorings, Journal of Colloid and Interface Science 2007,310,648-652.
    [152]Chen, J. X.; Liao, W. S.; Chen, X.; Yang, T. L.; Wark, S. E.; Son, D. H.; Batteas, J. D.; Cremer, P. S., Evaporation-Induced Assembly of Quantum Dots into Nanorings, ACS Nano 2009,3,173-180.
    [153]Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography:A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics, J. Phys. Chem.B 2001,105,5599-5611.
    [154]Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K., Nanomachining by Colloidal Lithography, Small 2006,2,458.
    [155]Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P., Nanosphere Lithography:Size-Tunable Silver Nanoparticle and Surface Cluster Arrays, J. Phys. Chem. B 1999,103,3854-3863.
    [156]Haynes, C. L.; McFarland, A. D.; Smith, M. T.; Hulteen, J. C.; Van Duyne, R. P., Angle-Resolved Nanosphere Lithography:Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing, J. Phys. Chem. B 2002,106,1898-1902.
    [157]Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography:A Versatile Nano fabrication Tool for Studies of Size-Dependent Nanoparticle Optics, J. Phys. Chem. B 2001,105,5599-5611.
    [158]Tan, B. J. Y.; Sow, C. H.; Koh, T. S.; Chin, K. C.; Ong, C. K., Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing, J. Phys. Chem. B 2005,109,11100-11109.
    [159]Wang, X. D.; Summers, C. J.; Wang, Z. L., Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett.2004,4,423-426.
    [160]Kempa, K,; Kimball, B.; Rybczynski, J.; Huang, Z. P.; Wu, P. F.; Steeves, D.; Sennett, M.; Giersig, M.; Rao, D. V. G. L. N.; Camahan, D. L.; Wang, D. Z.; Lao, J. Y.; Li, W. Z.; Ren, Z. F., Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes, Nano Lett.2003,3,13-18.
    [161]Choi, D. G.; Kim, S.; Jang, S. G.; Yang, S. M.; Jeong, J. R.; Shin, S. C., Nanopatterned Magnetic Metal via Colloidal Lithography with Reactive Ion Etching, Chem. Mater.2004,16,4208-4211.
    [162]Zheng, Y. B.; Juluri, B. K.; Mao, X. L.; Walker, T. R.; Huang, T. J., Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays, Journal of Applied Physics 2008,103,014308 (9pp).
    [163]Hanarp, P.; Kall, M.; Sutherland, D. S., Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography, J. Phys. Chem.B 2003,107,5768-5772.
    [164]Yi, D. K.; Kim, D. Y, Polymer nanosphere lithography:fabrication of an ordered trigonal polymeric nanostructure, Chem. Commun.2003,982-983.
    [165]Xu, M. J.; Lu, N.; Xu, H. B.; Qi, D. P.; Wang, Y. D.; Chi, L. F., Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography, Langmuir 2009,25, 11216-11220.
    [166]Liu, J. B.; Dong, H.; Li, Y. M.; Zhan, P.; Zhu, M. W.; Wang, Z. L., A Facile Route to Synthesis of Ordered Arrays of Metal Nanoshells with a Controllable Morphology, Japanese Journal of Applied Physics 2006,45,582-584.
    [167]Sun, Z. Q.; Li, Y.; Zhang, J. H.; Li, Y. F.; Zhao, Z. H.; Zhang, K.; Zhang, G.; Guo, J. R.; Yang, B., A Universal Approach to Fabricate Various Nanoring Arrays Based on a Colloidal-Crystal-Assisted-Lithography Strategy, Adv. Funct. Mater. 2008,18,4036-4042.
    [168]Bayati, M.; Patoka, P.; Giersig, M.; Savinova, E. R., An approach to fabrication of metal nanoring arrays, Langmuir 2010,26,3549-3554.
    [169]Sun, F. Q.; Yu, J. C.; Wang, X. C., Construction of size-controllable hierarchical nanoporous TiO2 ring arrays and their modifications, Chem. Mater.2006,18, 3774-3779.
    [170]Yan, F.; Goedel, W. A., The preparation of mesoscopic rings in colloidal crystal templates, Angew. Chem. Int. Ed.2005,44,2084-2088.
    [171]Zheng, Y. B.; Wang, S. J.; Huan, A. C. H.; Wang, Y. H., Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors, Journal of Non-Crystalline Solids 2006,352,2532-2535.
    [172]Shumaker-Parry, J. S.; Rochholz, H.; Kreiter, M., Fabrication of Crescent-Shaped Optical Antennas, Adv. Mater.2005,17,2131-2134.
    [173]Zhang, G.; Wang, D. Y.; Molhwald, H., Fabrication of Multiplex Quasi-Three-Dimensional Grids of One-Dimensional Nanostructures via Stepwise Colloidal Lithography, Nano Lett.2007,7,3410-3413.
    [174]Zhang, G.; Wang, D. Y.; Molhwald, H., Ordered Binary Arrays of Au Nanoparticles Derived from Colloidal Lithography, Nano Lett.2007,7,127-132.
    [175]Jang, S. G.; Yu, H. K.; Choi, D. G.; Yang, S. M., Controlled fabrication of hollow metal pillar arrays using colloidal masks, Chem. Mater.2006,18,6103-6105.
    [176]Okuyama, Suguru.; Matsushita, S. I.; Fujishima, A., Periodic Submicrocylinder Diamond Surfaces Using Two-Dimensional Fine Particle Arrays, Langmuir 2002, 18,8282-8287.
    [177]Wang, B. Z.; Zhao, W.; Chen, A.; Chua, S. J., Formation of nano imprinting mould through use of nanosphere lithography, Journal of Crystal Growth 2006,288, 200-204.
    [178]Finkel, N. H.; Prevo, B. G.; Velev, O. D.; He, L., Ordered Silicon Nanocavity Arrays in Surface-Assisted Desorption/Ionization Mass Spectrometry, Anal. Chem. 2005,77,1088-1095.
    [179]Whitney, A. V.; Myers, B. D.; Van Duyne, R. P., Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography, Nano Lett.2004,4 1507-1511.
    [180]Tan, B. J. Y.; Sow, C. H.; Lim, K. Y.; Cheong, F. C.; Chong, G. L.; Wee, A. T. S.; Ong, C. K., Fabrication of a Two-Dimensional Periodic Non-Close-Packed Array of Polystyrene Particles, J. Phys. Chem. B 2004,108,18575-18579.
    [181]Choi, D. G.; Jang, S. G.; Kim, S.; Lee, E.; Han, C. S.; Yang, S. M., Multifaceted and Nanobored Particle Arrays Sculpted Using Colloidal Lithography, Adv. Funct. Mater.2006,16,33-40.
    [182]Choi, D. G.; Kim, S.; Lee, E.; Yang, S. M., Particle Arrays with Patterned Pores by Nanomachining with Colloidal Masks, J. Am. Chem. Soc.2005,127,1636-1637.
    [183]Ozin, G. A.; Yang, S. M., The race for the photonic chip:colloidal crystal assembly in silicon wafers, Adv. Funct. Mater.2001,11,95-104.
    [184]Gates, B.; Qin, D.; Xia, Y., Assembly of Nanoparticles into Opaline Structures over Large Areas, Adv. Mater.1999,11,466-469.
    [185]Kosiorek, A.; Glaczynska, H.; Giersig, M., Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks, Small 2005,1,439-444.
    [186]Perrier, S., Developments in polymer architecture and design applicable to surface coatings, Surface Coating International Part B-Coatings Transactions 2004,87, 235-240.
    [187]Nishikawa, T.; Nishida, J.; Ookura, R.; Nishimura, S. I.; Karino, T.; Shimomura, M., Mesoscopic patterning of cell adhesive substrates as novel biofunctional interfaces, Mater. Sci. Eng. C, Biomim. Mater. Sens. Syst.1999,10,141-146.
    [188]D'lorio, M., Molecular materials for micro-electronics, Canadian Journal of Physics 2000,78,231-241.
    [189]Jagur-Grodzinski, J. Polymers for Advanced Technologies 2006,17,395.
    [190]Fernandes, E. G.; Pietrini, M.; Chiellini, E., Bio-Based Polymeric Composites Comprising Wood Flour as Filler, Biomacromolecules 2004,1200-1206.
    [191]Wang, Q.; Wang, L. M.; Yu, L. P., Development of fully functionalized photorefractive polymers, Macromol. Rap. Comm.2000,21,723-745.
    [192]Geissler M.; Xia, Y., Patterning:Principles and Some New Developments, Adv. Mater.2004,16,1249-1269.
    [193]Forster, S.; Antonietti, M., Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids, Adv. Mater.1998,10,195-217.
    [194]Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, February,32.
    [195]Fasolka, M. J.; Meyes, A. M., Block Copolymer Thin Films:Physics and Applications, Annu. Rev. Mater. Res.2001,31,323-355.
    [196]Yokoyama, H.; Mates, T. E.; Kramer, E. J., Structure of Asymmetric Diblock Copolymers in Thin Films, Macromolecules 2000,33,1888-1898.
    [197]Guarini, K. W.; Black C. T.; Yeung, S. H. I., Optimization of Diblock Copolymer Thin Film Self Assembly, Adv. Mater.2002,144,1290-1294.
    [198]Segalman, R. A.; Hexemer, A.; Hayward, R. C.; Kramer, E. J., Ordering and Melting of Block Copolymer Spherical Domains in 2 and 3 Dimensions, Macromolecules 2003,36,3272-3288.
    [199]Segalman, R. A.; Schaefer, K. E.; Fredrickson, G. H.; Framer, R. J.; Magonov, S., Topographic templating of islands and holes in highly asymmetric block copolymer films, Macromolecules 2003,36,4498-4506.
    [200]Lopes, W. A.; Jaeger, H. M., Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds, Nature 2001,414,735-738.
    [201]Fisher, A.; Kuemmel, M.; Jarn, M.; Linden, M.; Boissiere, C.; Nicole, L.; Sanchez, C; Grosso, D., Surface nanopatterning by organic/inorganic self-assembly and selective local functionalization, Small 2006,2,569-574.
    [202]Park, M.; Harrison, C.; Chailin, P. M.; Register, R. A.; Adamson, D. H., Block copolymer lithography:periodic arrays of-1011 holes in 1 square centimeter, Science 1997,276,1401-1404.
    [203]Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N., Nanolithographic templates from diblock copolymer thin films, Appl. Phys. Lett. 1996,68,2586-2589.
    [204]Li, R. P.; Dapkus, P. D.; Thompson, M. E.; Jeong, W. G.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography, Appl. Phys. Lett.2000,76,1689-1672.
    [205]Kim, H.-C.; Jia, X.; Stafford, C. M.; Kim, D. H.; McCarthy, T. J.; Tuominen, M.; Hawker, C. J.; Russell, T. P., A Route to Nanoscopic SiO2 Posts via Block Copolymer Templates, Adv. Mater.2001,13,795-797.
    [206]Wang, L.; Montagne, F.; Hoffmann, P.; Pugin, R., Gold nanoring arrays from responsive block copolymer templates, Chem. Commun.2009,3798-3800.
    [207]Xihong Zu, X. H.; Hu, X. B.; Andrew Lyon, L.; Deng, Y. L., In situ fabrication of ordered nanoring arrays via the reconstruction of patterned block copolymer thin films, Chem. Commun.2010,46,7927-7929.
    [208]Ryu, J. H.; Park, S.; Kim, B.; Klaikherd, A.; Russell, T. P.; Thayumanavan, S., Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface, J. Am. Chem. Soc.2009,131,9870-9871.
    [209]Okuyama, Suguru.; Matsushita, S. I.; Fujishima, A., Periodic Submicrocylinder Diamond Surfaces Using Two-Dimensional Fine Particle Arrays, Langmuir 2002, 18,8282-8287.
    [210]Wang, B. Z.; Zhao, W.; Chen, A.; Chua, S. J., Formation of nanoimprinting mould through use of nanosphere lithography, Journal of Crystal Growth 2006,288, 200-204.
    [211]Bunz, U. H. F., Breath Figures as a Dynamic Templating Method for Polymers and Nano materials, Adv. Mater.2006,18,973-989.
    [212]Li, J.; Peng, J.; Huang, W. H.; Wu, Y.; Fu, J.; Cong, Y.; Xue, L. J.; Han, Y. C., Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology:from circle to ellipse, Langmuir 2005,21,2017-2021.
    [213]Li, W.; Nie, Y. R.; Zhang, J. H.; Zhu, D. F.; Yu, K.; Yang, B., Formation of ordered two-dimensional polymer latticeworks with polygonal meshes by self-organized anisotropic mass transfer, Macromol. Chem. Phys.2008,209,247-257.
    [214]Yi, D. K.; Kim, D. Y., Novel approach to the fabrication of macroporous polymers and their use as a template for crystalline titania nanorings, Nano Lett.2003,3, 207-211.
    [215]Chen, X.; Sun, Z.; Zhang, L.; Chen, Z.; Wang, Y; Fu, N.; Zhang, K.; Yan, X.; Liu, H.; Jiang, L.; Yang, B., Adv. Mater.2004,16,1632.
    [216]Yan, F.; Goedel, W. A., Preparation of mesoscopic gold rings using particle imprinted templates, Nano Lett.2004,4,1193-1196.
    [217]Xu, H.; Goedel, W. A., Mesoscopic rings by controlled wetting of particle imprinted templates, Angew. Chem. Int. Ed.2003,42,4696-4700.
    [218]Wang, Y. F.; Zhang, J. H.; Chen, X. L.; Li, X.; Sun, Z. Q.; Zhang, K.; Wang, D. Y.; Yang, B., Morphology-controlled fabrication of polygonal ZnO nanobowls template from spherical polymeric nanowell arrays, Journal of Colloid and Interface Science 2008,322,327-332.
    [219]Wang, Y. F.; Chen, X. L.; Zhang, J. H.; Sun, Z. Q.; Li, Y. F.; Zhang, K.; Yang, B., Fabrication of surface-patterned and free-standing ZnO nanobowls, Colloids and Surfaces A:Physicochem. Eng. Aspects 2008,329,184-189.
    [220]Stewart, M. E.; Mack, N. H.; Malyarchuk, V.; Soares, J.; Lee, T. W.; Gray, S. K.; Nuzzo, R. G.; Rogers, J. A., Quantitative multispectral biosensing and ID imaging using quasi-3D plasmonic crystals, PANS.2006,103,17143-17148.
    [221]Malyarchuk, V.; Hua, F.; Mack, N. H.; Velasquez, V. T.; White, J. O.; Nuzzo, R. G.; Rogers, J. A., High performance plasmonic crystal sensor formed by soft nanoimprint lithography, Opt. Express.2005,5699-5675.
    [1]Shastri, V. P.; Martin, I.; Langer, R., Macroporous polymer foams by hydrocarbon templating, Proc. Natl. Acad. Sci. U. S. A.2000,97,1970-1975.
    [2]Nishikawa, T.; Nishida, J.; Ookura, R.; Nishimura, S. I.; Wada. S.; Karino, T. Shimomura, M., Mesoscopic patterning of cell adhesive substrates as novel bio functional interfaces, Mater. Sci. Eng. C, Biomim. Mater. Sens. Syst.1999,10, 141-146.
    [3]Wijnhoven, J. E. G. J.; Vos, W. L., Preparation of Photonic Crystals Made of Air Spheres in Titania, Science 1998,281,802-804.
    [4]Imada, M.; Noda, S.; Chutinan, A.; Tokuda, T.; Murata, M.; Sasaki, G., Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,Appl. Phys. Lett.1999,75,316-318.
    [5]Boker, A.; Lin, K.; Chiapperini, K.; Horowitz, R.; Thompson, M.; Carreon, V.; Xu, T.; Abetz, C.; Skaff, H.; Dinsmore, A. D.; Emrick, T.; Russell. T. P., Hierarchical nanoparticle assemblies formed by decorating breath figures, Nat. Mater.2004,3, 302-306.
    [6]Park, S. H.; Xia, Y. N., Fabrication of Three-Dimensional Macroporous Membranes with Assemblies of Microspheres as Templates, Chem. Mater.1998, 10,1745-1747.
    [7]Chen, X.; Chen, Z. M.; Fu, N.; Lu, G.; Yang, B., Versatile nanopatterned surfaces generated via three-dimensional colloidal crystals, Adv. Mater.2003,15, 1413-1417.
    [8]Vinu, A., Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content, Adv. Funct. Mater.2008,18,816-827.
    [9]Li, Y.; Cai, W. P.; Duan, G. T., Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals, Chem. Mater.2008,20,615-624.
    [10]Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin, V. L. Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids, J. Am. Chem.Soc.1999,121,11630-11637.
    [11]Widawski, G.; Rawiso, M.; Francois, B., Self-Organized Honeycomb Morphology of Star-Polymer Polystyrene Films, Nature 1994,369,387-389.
    [12]Bunz, U. H. F., Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials, Adv. Mater.2006,18,973-989.
    [13]Stenzel, M. H.; Barner-Kowollik, C.; Davis, T. P., Formation of honeycomb-structured, porous films via breath figures with different polymer architectures, J. Polym. Sci. Part A.2006,44,2363-2375.
    [14]Ma, H. M.; Hao, J. C., Evaporation-Induced Ordered Honeycomb Structures of Gold Nanoparticles at the Air/Water Interface, Chem. Eur. J.2010,16,655-660.
    [15]Li, L.; Zhong, Y. W.; Li, J.; Chen, C. K.; Zhang, A. J.; Xu, J.; Ma, Z., Thermally stable and solvent resistant honeycomb structured polystyrene films via photochemical cross-linking, J. Mater. Chem.2009,19,7222-7227.
    [16]Li, L.; Li, J.; Zhong, Y. W.; Chen, C. K.; Ben,Y.; Gong, J. L.; Ma, Z., Formation of ceramic microstructures:honeycomb patterned films as structure-directing agent, J. Mater. Chem.2010,20,5446-5453.
    [17]Imhof, A.; Pine, D. J., Ordered macroporous materials by emulsion templating, Nature 1997,389,948-951.
    [18]Kresge, C. T.; Leonowicz, M. E.; Roth,W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992,359,710-712.
    [19]Jeong, U.; Kim, H. C.; Rodriguez, R. L.; Tsai, I. Y.; Stafford, C. M.; Kim, J. K. Hawker, C. J.; Russell, T. P., Asymmetric Block Copolymers with Homopolymers: Routes to Multiple Length Scale Nanostructures, Adv. Mater.2002,14,274-276.
    [20]Mansky, P.; Harrison, C. K.; Chaikin, P. M., Nanolithographic templates from diblock copolymer thin films, Appl. Phys. Lett.1996,68,2586-2588.
    [21]Li, J.; Peng, J.; Huang, W. H.; Wu, Y.; Fu, J.; Cong, Y.; Xue, L. J.; Han,Y .C., Ordered Honeycomb-Structured Gold Nanoparticle Films with Changeable Pore Morphology:From Circle to Ellipse, Langmuir 2005,21,2017-2021.
    [22]Parekh, V. A.; Ruiz, A.; Ruchhoeft, P.; Brankovic, S.; Litvinov, D., Close-Packed Noncircular Nanodevice Pattern Generation by Self-Limiting Ion-Mill Process, Nano. Lett.2007,7,3246-3248.
    [23]Xiao, Z. Y.; Wang, A. J.; Kim, D. P.,3D macroporous SiCN ceramic patterns tailored by thermal-induced deformation of template, J. Mater. Chem.2010,20, 2853-2857.
    [24]Li, W.; Nie, Y. R.; Zhang, J. H.; Zhu, D, F.; Li, X.; Sun, H. Z.; Yu, K.; Yang, B., Formation of Ordered Two-Dimensional Polymer Latticeworks With Polygonal Meshes by Self-Organized Anisotropic Mass Transfer, Macromol. Chem. Phys. 2008,209,247-257.
    [25]Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Nanostructured Plasmonic Sensors, Chem. Rev.2008,108, 494-521.
    [26]Doron-Mor, I.; Barkay, Z.; Filip-Granit, N.; Vaskevich, A.; Rubinstein, I., Ultrathin Gold Island Films on Silanized Glass:Morphology and Optical Properties, Chem. Mater.2004,16,3476-3483.
    [27]Ruach-Nir, I.; Bendikov, T. A.; Doron-Mor, I.; Barkay, Z.; Vaskevich, A.; Rubinstein, I., Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing, J. Am. Chem. Soc.2007,129,84-92.
    [28]Willets, K. A.; Van Duyne, R. P., Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annu. Rev. Phys. Chem.2007,58,267-297.
    [29]Whitney, A. V; Elam, J. W; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G.C.; Van Duyne, R. P., Localized Surface Plasmon Resonance Nanosensor:A High-Resolution Distance-Dependence Study Using Atomic Layer Deposition, J. Phys. Chem. B 2005,109,20522-20528.
    [30]Dahlin, A.; Zach, M.; Rindzevicius, T.; Kall, M.; Sutherland, D. S.; Hook, F., Localized Surface Plasmon Resonance Sensing of Lipid-Membrane-Mediated Biorecognition Events, J. Am. Chem. Soc.2005,127,5043-5048.
    [31]Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kail, M.; Bryant, G. W.; Garcia de Abajo, F., Optical Properties of Gold Nanorings, J. Phys. ReV. Lett.2003,90, 057401-057404.
    [32]Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Hoeoek, F.; Sutherland, D. S.; Kaell, M., Plasmonic Sensing Characteristics of Single Nanometric Holes, Nano Lett. 2005,5,2335-2339.
    [33]Mitsuishi, M.; Koishikawa, Y.; Tanaka, H.; Sato, E.; Mikayama, T.; Matsui, J.; Miyashita, T., Nanoscale Actuation of Thermoreversible Polymer Brushes Coupled with Localized Surface Plasmon Resonance of Gold Nanoparticles, Langmuir 2007,23,7472-7474.
    [34]Lin, H. Y.; Chen, C. T.; Chen, Y. C., Detection of Phosphopeptides by Localized Surface Plasma Resonance of Titania-Coated Gold Nanoparticles Immobilized on Glass Substrates, Anal. Chem.2006,78,6873-6878.
    [35]Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci.1968,26,62-69.
    [36]Yan, X.; Yao, J.; Lu, G.; Li, X.; Zhang, J. H.; Han, K.; Yang, B., Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography, J. Am. Chem. Soc.2005,127,7688-7689.
    [37]Shie, J.; Chen, Y H.; Chang, C. Y.; Lin, J. P.; Lee, D. J.; Wu, C. H., Thermal Pyrolysis of Poly(vinyl alcohol) and Its Major Products, Energy & Fuels 2002,16, 109-118.
    [38]Pileni, M. P., Self-Assembly of Inorganic Nanocrystals:Fabrication and Collective Intrinsic Properties, Acc. Chem. Res.2007,40,685-693.
    [39]Szunerits, S.; Praig, V. G.; Manesse, M.; Boukherroub, R., Gold island films on indium tin oxide for localized surface plasmon sensing, Nanotechnology 2008,19, 195712(7pp).
    [40]Ferry, V. E.; Sweatlock, L. A.; Pacifici, D.; Pacifici, D.; Atwater, H. A., Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells, Nano Lett. 2008,8,4391-4397.
    [41]Ferreira, J.; Santos, M. L.; Rahman, M. M.; Brolo, A. G.; Gordon, R.; Sinton, D.; Girotto, E. M., Attomolar Protein Detection Using in-Hole Surface Plasmon Resonance, J. Am. Chem. Soc.2009,131,436-437.
    [42]Mullin, T.; Deschanel, S.; Bertoldi, K.; Boyce, M. C, Pattern Transformation Triggered by Deformation, Phys. Rev. Lett.2007,99,084301 (4pp).
    [43]Bertoldi, K.; Boyce, M. C., Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures, Phys. Rev. B 2008,77,052105 (4pp).
    [44]Zhang, Y.; Matsumoto, E. A.; Peter, A.; Lin, P. C.; Kamien, R. D.; Yang, S., One-Step Nanoscale Assembly of Complex Structures via Harnessing of an Elastic Instability, Nano Lett.2008,8,1192-1196.
    [45]Singamaneni, S.; Bertoldi, K.; Chang, S.; Jang, J. H.; Thomas, E. L.; Boyce, M. C.; Tsukruk, V. V., Instabilities and Pattern Transformation in Periodic Porous Elastoplastic Solid Coatings, ACS Appl. Mater. Interfaces 2009,1,42-47.
    [46]Singamaneni, S.; Bertoldi, K.; Chang, S.; Jang, J. H.; Young, S.; Thomas, E. L.; Boyce, M. C.; Tsukruk, V. V., Bifurcated Mechanical Behavior of Deformed Periodic Porous Solids, Adv. Funct. Mater.2009,19,1426-1436.
    [1]Warburton, R.; Schaflein, C.; Haft, D.; Bickel, F.; Lorke, A.; Karrai, K.; Garcia, J.; Schoenfeld, W.; Petroff, P., Optical emission from a charge-tunable quantum ring, Nature 2000,405,926-929.
    [2]Rabaud, W.; Saminadayar, L.; Mailly, D.; Hasselbach, K.; Benoit, A.; Etienne, B., Persistent Currents in Mesoscopic Connected Rings, Phys. Rev. Lett.2001,86, 3124-3127.
    [3]Rothman, J.; Klaui, M.; Lopez-Diaz, L.; Vaz, C. A. F.; Bleloch, A.; Bland, J. A. C.; Cui, Z.; Speaks, R., Observation of a Bi-Domain State and Nucleation Free Switching in Mesoscopic Ring Magnets, Phys. Rev. Lett.2001,86,1098-1101.
    [4]Li, S. P.; Peyrade, D.; Natali, M.; Lebib, A.; Chen, Y.; Ebels, U.; Buda, L. D.; Ounadjela, K., Flux Closure Structures in Cobalt Rings, Phys. Rev. Lett.2001,86, 1102-1105.
    [5]Prabhakaran, K.; Meneau,F.; Sankar, G.; Sumitomo, K.; Murashita, T.; Homma, Y.; Greaves, G. N.; Ogino, T., Luminescent Nanoring Structures on Silicon, Adv. Mater.2003,18,1522-1526.
    [6]Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kall, M.; Bryant, G. W.; Garcia de Abajo, F. J., Optical Properties of Gold Nanorings, Phys. Rev. Lett.2003,90, 057401(4pp).
    [7]Choi, H. W.; Jeon, C. W.; Liu, C.; Watson, I. M.; Dawson, M. D.; Edwards, P. R.; Martin, R. W.; Tripathy, S.; Chua, S. J., InGaN nano-ring structures for high-efficiency light emitting diodes, Appl. Phys. Lett.2005,86,021101(3pp).
    [8]Hong, S. W.; Jeong, W.; Ko, H.; Kessler, M. R.; Tsukruk, V. V.; Lin, Z. Q., Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings, Adv. Fund. Mater.2008,18,2114-2122.
    [9]Sun, F. Q.; Yu, J. C.; Wang, X. C., Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications, Chem. Mater.2006,18, 3774-3779.
    [10]Hu, X. L.; Yu, J. C.; Gong, J. M.; Li, Q.; Li, G. S., Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties, Adv. Mater.2007,19,2324-2329.
    [11]Levy, L. P.; Dolan, G.; Dunsmuir, J.; Bouchiat, H., Magnetization of mesoscopic copper rings:Evidence for persistent currents, Phys. Rev. Lett.1990,64, 2074-2077.
    [12]Mailly, D.; Chapelier, C.; Benoit, A., Experimental observation of persistent currents in GaAs-AlGaAs single loop, Phys. Rev. Lett.1993,70,2020-2023.
    [13]Lorke, A.; Luyken, R. J.; Govorov, A. O.; Kotthaus, J. P.; Garcia, J. M.; Petroff, P. M., Spectroscopy of Nanoscopic Semiconductor Rings, Phys. Rev. Lett.2000,84, 2223-2226.
    [14]Jariwala, E. M. Q.; Mohanty, P.; Ketchen, M. B.; Webb, R. A., Diamagnetic Persistent Current in Diffusive Normal-Metal Rings, Phys. Rev. Lett.2001,86, 1594-1597.
    [15]Matveev, K. A.; Larkin, A. I.; Glazman, L. I., Persistent Current in Superconducting Nanorings, Phys. Rev. Lett.2002,89,096802(4pp)
    [16]Bagci, V. M. K.; Gulseren, O.; Yildirim, T.; Gedik, Z.; Ciraci, S., Metal nanoring and tube formation on carbon nanotubes, Phys. Rev. B 2002,66,045409(5pp).
    [17]Winzer, M.; Kleiber, M.; Dix, N.; Wiesendanger, R., Fabrication of nano-dot-and nano-ring-arrays by nanosphere lithography, Appl. Phys. A 1996,63,617-619.
    [18]Larsson, E. M.; Alegret, J.; Kall, M.; Sutherland, D. S., Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors, Nano Lett.2007,7,1256-1263.
    [19]Nielsch, K.; Hertel, R.; Wehrspohn, R. B.; Barthel, J.; Kirschner, J.; Gosele, U.; Fischer, S. F.; Kronmuller, H., Switching behavior of single nanowires inside dense nickel nanowire arrays, IEEE Trans. Magnet.2002,38,2571-2573.
    [20]Zhu, J.; Zheng, Y.; Prinz, G., Ultrahigh density vertical magnetoresistive random acess memory, J. Appl. Phys.2000,87,6668-6673.
    [21]Torres-Heredia, J. J.; Lopez-Urias, F.; Munoz-Sandoval, E., Micro magnetic simulations of 200-nm-diameter cobalt nanorings using a Reuleaux triangular geometry, J. Magn. Magn. Mater.2006,305,133-140.
    [22]Yoo, Y. G.; Klaui, M.; Vaz, C. A. F.; Heyderman, L. J.; Bland, J. A. C., Switching field phase diagram of Co nanoring magnets, Appl. Phys. Lett.2003,82, 2470-2472.
    [23]Ganados, D.; Garcia, J. M., In(Ga)As self-assembled quantum ring formation by molecular beam epitaxy, Appl. Phys. Lett.2003,82,2401-2403.
    [24]Voigtlander, B.; Kawamura, M.; Paul, N.; Cherepanov, V., Fabrication of Si/Ge nanoring structures by MBE, Thin Solid Films,2004,464/465,185-189.
    [25]Zhu, F. Q.; Fan, D.; Zhu, X.; Zhu, J. G.; Cammarata, R. C., Ultrahigh-density Arrays of ferromagnetic nanorings on macroscopic areas, Adv. Mater.2004,16, 2155-2159.
    [26]Hobbs, K. L.; Larson, P. R.; Lian, G. D.; Keay, J. C.; Johnson, M. B., Fabrication of nanoring arrays by sputter redeposition using porous alumina templates, Nano Lett.2004,4,167-171.
    [27]Ji, R.; Lee, W.; Scholz, R.; Gosele, U.; Nielsch, K., Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition, Adv. Mater.2006,18,2593-2596.
    [28]Kim, C.; Park, J. B.; Jee, H. G.; Lee, S. B.; Boo, J. H.; Kim, S. K.; Yoo, J. B.; Lee, J. S.; Lee, H., Formation of Au nanostructures through an alumina mask by laser-assisted deposition, J. Nanosci. Nanotechnology 2005,5,306-312.
    [29]Zhao, S.; Roberge, H.; Yelon, A.; Veres, T.; New application of AAO template:a mold for nanoring and nanocone arrays, J. Am. Chem. Soc.2006,128, 12352-12353.
    [30]Wang, S.; Yu, G. J.; Gong, J. L.; Li, Q. T.; Xu, H. J.; Zhu, D. Z.; Zhu, Z, Y., Large-area fabrication of periodic Fe nanorings with controllable aspect ratios in porous alumina templates, Nanotechnology 2006,17,1594-1598.
    [31]Mclellan, J. M.; Geissler, M.; Xia, Y. N., Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings, J. Am. Chem. Soc.2004,126,10830-10831.
    [32]Yan, F.; Goedel, W. A., The preparation of mesoscopic rings in colloidal crystal templates. Angew. Chem. Int. Ed.2005,44,2084-2088.
    [33]Zheng, Y. B.; Wang, S. J.; Huan, A. C. H.; Wang, Y. H., Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors, J. Non-Cryst. Solids 2006,352,2532-2535.
    [34]Sun, Z. Q.; Li, Y; Zhang, J. H.; Li, Y. F.; Zhao, Z. H.; Zhang, K.; Zhang, G.; Guo, J. R.; Yang, B., A universal approach to fabricate various nanoring arrays based on a colloidal-crystal-assisted-lithography strategy, Adv. Fund. Mater.2008,18, 4036-4042.
    [35]Bayati, M.; Patoka, P.; Giersig, M.; Savinova, E. R., An approach to fabrication of metal nanoring arrays, Langmuir 2010,26,3549-3554.
    [36]Cui, B.; Veres, T., Fabrication of metal nanoring array by nanoimprintlithography (NIL) and reactive ion etching, Microelectornic Engineering 2007,84, 1544-1547.
    [37]Lee, S. Y.; Jeong, J. R.; Kim, S. H.; Kim, S.; Yang, S. M., Arrays of ferromagnetic nanorings with variable thickness fabricated by capillary force lithography, Langmuir 2009,25,12535-12540.
    [38]Chen, J. X.; Liao, W. S.; Chen, X.; Yang, T. L.; Wark, S. E.; Son, D. H.; Batteas, J. D.; Cremer, P. S., Evaporation-Induced assembly of quantum dots into nanorings, ACS NANO 2009,3,173-180.
    [39]Yan, F.; Goedel, W. A., Preparation of mesoscopic gold rings using particle imprinted templates, Nano Lett.2004,4,1193-1196.
    [40]Xu, C. Y.; Liu, Y. Z.; Zhen, L.; Wang, Z. L., Disket-nanorings of K2Ti6O13 formed by self-spiraling of a nanobelt, J. Phys. Chem. C 2008,112,7547-7551.
    [41]Yuan, Z. H.; Zhou, W.; Duan, Y. Q.; Bie, L. J., A simple approach for large-area fabrication of Ag nanorings, Nanotechnology 2008,19,075608(5pp).
    [42]Zu, X. H.; Hu, X. B.; Andrew Lyon, L.; Deng, Y. L., In situ fabrication of ordered nanoring arrays via the reconstruction of patterned block copolymer thin films, Chem. Commun.2010,46,7927-7929.
    [43]Wang, L.; Montagne, F.; Hoffmann, P.; Pugin, R., Gold nanoring arrays from responsive block copolymer templates, Chem. Commun.2009,3798-3800.
    [44]Yi, D. K.; Kim, D. Y, Novel Approach to the Fabrication of Macroporous Polymers and Their Use as a Template for Crystalline Titania Nanorings, Nano Lett.2003,3,207-211.
    [45]Xu, H.; Goedel, W. A., Mesoscopic rings by controlled wetting of particle imprinted templates, Angew. Chem. Int. Ed.2003,42,4696-4700.
    [1]Kreibig, U.; Vollmer, M., Optical properties of metal clusters, Springer-Verlag: Berlin,1995.
    [2]Bohren, C. F.; Huffman, D. R., Absorption and scattering of light by small particles, Wiley:New York,1983.
    [3]Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering, Chem. Soc. Rev.1998,27,241-250.
    [4]Schatz, G. C.; Van Duyne, R. P., Electromagnetic mechanism of surface-enhanced spectroscopy, John Wiley and Sons Ltd.:Chichester, U. K.2002.
    [5]Coe, J. V.; Heer, J. M.; Teeters-Kennedy, S.; Tian, H.; Rodriguez, K. R., Extraordinary transmission of metal films with array of subwavelength holes, Annu. Rev. Phys. Chem.2008,59,179-202.
    [6]Schwartzberg, A. M.; Zhang, J. Z., Novel optical properties and emerging applications of metal nanostructures, J. Phys. Chem. C 2008,112,10323-10337.
    [7]Kneipp, J.; Kneipp, H.; Kneipp, K., SERS-a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev.2008,37,1052-1060.
    [8]Fan, J. G.; Zhao, Y. P., Gold-coated nanorod arrays as highly sensitive substrates for surface-enhanced raman spectroscopy, Langmuir 2008,24,14172-14175.
    [9]Lakowicz, J. R.; Geddes, C. D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Asian, K.; Lukomska, J.; Matveeva, E.; Zhang, J.; Badugu, R.; Huang, J., Advanced in surface-enhanced fluorescence,J. Fluoresc.2004,14,425-441.
    [10]Cole, J. R.; Halas, N. J., Optimized plamonicnanoparticloe distributions for solar spectrum harvesting, Appl. Phys. Lett.2006,89,153120(3pp).
    [11]Ferry, V. E.; Sweatlock, L. A.; Pacifici, D.; Atwater, H. A., Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells, Nano Lett. 2008,12,4391-4397.
    [12]Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 1997,277, 1078-1081.
    [13]McFarland, A. D.; Van Duyne, R. P., Single silver nanoparticles as Real-Time optical sensors with zeptomole sensitivity, Nano Lett.2003,3,1057-1062.
    [14]Mock, J. J.; Smith, D. R.; Schultz, S., Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles, Nano Lett.2003,3, 485-491.
    [15]Haes, A. J.; Hall, W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P., A localized surface Plasmon resonance biosensor:first steps toward an assay for Alzheimer's disease, Nano Lett.2004,4,1029-1034.
    [16]Rindzevicius, T.; Alaverdyan, Y.; Kall, M.; Muray, W. A.; Barnes, W. L. Long-range refractive index sensing using plasmonic nanostructures, J. Phys. Chem. C 2007,111,11806-11810.
    [17]Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Stone, J. W.; Sisco, P. N.; Alkilany, A.; Kinard, B. E.; Hankins, P., Chemical sensing and imaging with metallic nanorods, Chem. Commun.2008,5,544-557.
    [18]Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H., A Label-Free Immunoassay Based Upon Localized Surface Plasmon Resonance of Gold Nanorods, ACS Nano 2008,2,687-692.
    [19]Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonicnanosensors, Nat. Mater.2008,7,442-453.
    [20]Huang, X. H.; Jain, P. K.; EI-Sayed, I. H.; EI-Sayed, M. A., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy, Nanomedicine 2007,2,681-693.
    [21]Vasseur, J. O.; Akjouj, A.; Dobrzynski, L.; Djafari-Rouhani, B.; El Boudouti, E. H., Photon, electron, magnon, phonon and plasmon mono-mode circuits, Surf. Sci. Rep.2004,54,1-156.
    [22]Ozbay, E., Plasmonics:Merging Photonics and Electronics at Nanoscale Dimensions, Science 2006,311,189-193.
    [23]Juluri, B. K.; Zheng, Y. B.; Ahmed, D.; Jensen, L.; Huang, T. J., Effects of Geometry and Composition on Charge-Induced Plasmonic Shifts in Gold Nanoparticles, J. Phys. Chem. C 2008,112,7309-7317.
    [24]Hsiao, V. K. S.; Zheng, Y. B.; Juluri, B. K.; Huang, T. J., Light-Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals, Adv. Mater.2008,20,3528-3532.
    [25]Srituravanich, W.; Fang, N.; Sun, C.; Luo, Q.; Zhang, X., Plasmonic nanolithography, Nano Lett.2004,4,1085-1088.
    [26]Shao, D. B.; Chen, S. C., Direct Patterning of Three-Dimensional Periodic Nanostructures by Surface-Plasmon-Assisted Nanolithography, Nano Lett.2006,6, 2279-2283.
    [27]Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K., Metamaterials and Negative Refractive Index, Science 2004,305,788-792.
    [28]Chen, H. T.; Padilla, W. J.; Zide, J. M. O.; Gossard, A. C.; Taylor, A. J.; Averitt, R. D., Active terahertz metamaterial devices, Nature 2006,444,597-600.
    [29]Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A., Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography:determination of active medal surface area, J. Phys. Chem. B 2002, 106,11463-11468.
    [30]Grand, J.; Adam, P. M.; Grimault, A. S.; Vial, A.; de la Chapelle, M. L.; Bijeon, J. L.; Kostcheev, S.; Royer, P., Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles:Experiments and Theory, Plasmonics 2006,1,135-140.
    [31]Buckmaster, R.; Hanada, T.; Kawazoe, Y.; Cho, M. W.; Yao, T.; Urushihara, N.; Yamamoto, A., Novel method for site-controlled surface nanodot fabrication by ion beam synthesis, Nano Lett.2005,5,771-776.
    [32]Brolo, A. G.; Gordon, R.; Leathern, B.; Kavanagh, K. L., Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films, Langmuir 2004,20,4813-4815.
    [33]Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography:A Versatile Nano fabrication Tool for Studies of Size-Dependent Nanoparticle Optics, J. Phys. Chem.B 2001,105,5599-5611.
    [34]Malinsky, M. D.; Kelly, K. L.; Schatz, G. C.; Van Duyne, R. P., Nanosphere Lithography:Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles, J. Phys. Chem. B 2001,105,2343-2350.
    [35]Tan, B. J. Y.; Sow, C. H.; Koh, T. S.; Chin, K. C.; Wee, A. T. S.; Ong, C. K.; Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing, J. Phys. Chem. B 2005,109, 11100-11109.
    [36]Henzie, J.; Lee, J.; Lee, M. H.; Hasan, W.; Odom, T.W., Nanofabrication of Plasmonic Structures, Ann. Rev. Phys. Chem.2009,60,147-165.
    [37]Xu, M. J.; Lu, N.; Xu, H. B.; Qi, D. P.; Wang, Y. D.; Chi, L.F., Fabrication of functional silver nanobowl arrays via sphere lithography, Langmuir 2009,25, 11216-11220.
    [38]Riboh, J. C.; Haes, A. J.; McFarland, A. D.; Yonzon, C. R.; Van Duyne, R. P., A Nanoscale Optical Biosensor:Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion, J. Phys. Chem. B 2003,107, 1772-1780.
    [39]Schmidt, J. P.; Cross, S. E.; Buratto, S. K., Surface-enhanced raman scattering from ordered Ag nanocluster arrays, J. Chem. Phys.2004,121,10657-10659.
    [40]Haynes, C. L.; Van Duyne, R. P., Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy, J. Phys. Chem. B 2003,107,7426-7433.
    [41]Haes, A. J.; Hall. W. P.; Chang, L.; Klein, W. L.; Van Duyne, R. P., A Localized Surface Plasmon Resonance Biosensor:First Steps toward an Assay for Alzheimer's Disease, Nano Lett.2004,4,1029-1034.
    [42]Chen, T. H.; Tsai, T. Y.; Hsieh, K. C.; Chang, S. C.; Tai, N. H.; Chen, H. L. Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes, Nanotechnology 2008,19, 465303(6pp).
    [43]Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P., Silver Hierarchical Bowl-Like Array:Synthesis, Superhydrophobicity,and Optical Properties, Langmuir 2007,23,9802-9807.
    [44]Sakamoto, S.; Philippe, L.; Bechelany, M.; Michler, J.; Asoh, H.; Ono, S., Ordered hexagonal array of Au nanodots on Si substrate based on colloidal crystal templating, Nanotechnology 2008,19,405304 (6pp).
    [45]Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Hoeoek, F.; Sutherland, D. S.; Kaell, M., Plasmonic Sensing Characteristics of Single Nanometric Holes, Nano Lett. 2005,5,2335-2339.
    [46]Behrens, S.; Habicht, W.; Wagner, K.; Unger, E., Assembly of Nano particle Ring Structures Based on Protein Templates, Adv. Mater.2006,18,284-289.
    [47]Hanarp, P.; Kall, M.; Sutherland, D. S., Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography, J. Phys. Chem. B 2003,107,5678-5772.
    [48]Li, K. B.; Clime, L. V.; Cui, B.; Veres, T., Surface enhanced raman scattering on long-range ordered nobel-metal nanocrescent arrays, Nanotechnology 2008,19, 145305 (7pp).
    [49]Li, J. R.; Garno, J. C., Nanostructures of Octadecyltrisiloxane Self-Assembled Monolayers Produced on Au (111) Using Particle Lithography, ACS Appl. Mater. Interfaces 2009,1,969-976.
    [50]Sun, F. Q.; Yu, J. C.; Wang, X. C., Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications, Chem. Mater.2006,18, 3774-3779.
    [51]Yao, J. M.; Stewart, M. E.; Maria, J.; Lee, T. W.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Seeing molecules by eye:surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity, Angew. Chem. Int. Ed.2008,47,5013-5017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700