硅基多孔纳米材料的功能化及其药物传输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于硅基多孔材料的合成及其在药物传输体系中的应用研究。包括单质硅介孔的合成及其在药物缓释中的应用。利用纳米粒子做药物控制释放的“开关”,制备了一种基于介孔二氧化硅具有pH刺激-响应释放的药物输运载体,考察了该载体在抗癌药物传输上的应用。利用天然矿物埃洛石纳米管,制备了多功能的药物传输载体,并考察了载体的药物释放性能,对阳离子抗癌药物,体系显示了pH响应释放性质。
     介孔单质硅的合成是具有挑战性的课题,本论文中,我们利用镁热还原反应,以特定形貌和孔道结构的介孔二氧化硅为原料,制得了较高比表面积的介孔单质硅材料,考察了不同结构的前驱体对产物的影响,材料显示了良好的药物缓释效果。这一方法可以大量制备介孔单质硅材料,进而有助于开发其在光电、能量存储上的应用。
     基于介孔二氧化硅纳米材料的药物控制释放体系成为近年来的研究热点。我们利用氧化锌纳米粒子为“开关”,通过设计修饰介孔二氧化硅孔道的内外孔壁,成功的将氧化锌纳米粒子“锚定”在孔道口,同时利用氧化锌在生理环境pH环境下稳定存在,而在弱酸条件下可以被溶解这一特点,考察了该体系在不同pH下药物释放性能,在癌细胞弱酸条件下,体系也展示了良好的药物释放性能。另一方面,氧化锌在较高浓度下显示了细胞毒性,文献报道其具有对健康细胞和癌细胞选择性,因此该药物传输体系具有双重功能。
     此外,我们利用具有良好生物相容性的天然矿物埃洛石纳米管为载体,通过简单的化学反应将癌细胞靶向分子和磁性纳米粒子与之复合得到多功能复合纳米药物载体。阳离子抗癌药物与纳米管表面的负电性通过静电作用进行担载,该体系显示了pH响应的药物释放性能。同时由于超顺磁纳米粒子的存在,材料具备超顺磁性,在磁性靶向和磁共振成像(MRI)上有潜在的应用前景。我们期望这种精心设计的体系为制备靶向药物载体提供一种新的思路。
Rapid advances in nanotechnology have provided new opportunities for a variety of disciplines. Nanostructured materials have emerged as novel bioimaging, diagnostic, and therapeutic agents for the future medical field. In the latest decades, the drug delivery system based on nanocarriers has attracted much attention. Nanocarriers can be used to increase local drug concentration by carrying the drug within and control-releasing it when bound to the targets, and then greatly enhancing the therapeutic index of the drugs. The family of nanocarriers includes polymer conjugates, polymeric nanoparticles, lipid-based carriers such as liposomes and micelles, dendrimers, carbon nanotubes, and inorganic nanoparticles etc. Among these nanoscopic therapeutic systems, silicon-based porous materials, have emerged as an innovative nanovectors for drug delivery due to their remarkable biocompatibility, biodcgradability, case of functionalization and many other fascinating features. In this thesis, we designed and prepared kinds of functionalized silicon-based porous materials as nanocarriers of drug delivery.
     In the last two decades, efforts have mainly been focused on the study of porous silica and metal-based compounds; however, porous silicon related materials are rarely investigated. In fact, porous silicon as one of the most important semiconductor has found the significant way in many fields such as microelectronics, photocatalysts, and biological/chemical sensing. In chapter two, we have demonstrated a strategy to prepare mesoporous silicon from parent mesoporous silica via magnesiothermic reduction. The resulted mesoporous silicon possesses uniquemesopores itself. Another feature of as-prepared mesoporous silicon is that they exhibit high surface area, high crystallinity and preserve the same morphology of mesoporous silica precursors. Besides, these materials may hold immense promise in drug delivery system and intrigue interest in studies of semiconductor. Moreover, the present strategy will provide an effective way to the targeted synthesis of mesoporous silicon-based materials for further applications.
     The mesoporous silica have been promising in many fields including catalysis, separation science and sensors due to their unique and advantageous structural properties, such as high surface area and pore volume, stable mesostructure, tunable pore diameter and modifiable morphology. And then this triggered widely research interest on the fabrication of mesoporous silica based drug delivery system as well. Recently, the development of gated stimuli-responsive drug delivery system based on mesoporous silica is a new research field. To date, different gated structures have been reported that contain, which in most of cases use pH, rcdox changes, and light as trigger for uncapping the pores. Out of these applied stimuli, a more effective strategy to accomplish fast-cytoplasmic drug release to cancer cells will be to employ pH responsive nanoparticles as drug vehicles due to the acidic extracellular and intracellular environment of cancer cells. In chapter three, acid-decomposable, luminescent ZnO quantum dots (QDs) have been employed to seal the nanopores of mesoporous silica nanoparticles (MSNs), loaded with antineoplastic drug doxorubicin (DOX), to inhibit the premature drug release. After being internalized into lysosomes of HeLa cells, these ZnO QD lids arc instantly dissolved and in turn the loaded DOX is readily released to the cytosols from the MSNs and resultantly kill the cancer cells. ZnO QDs not only act as a cap but also exhibits synergistic antitumor activity. We anticipate that these unprecedented nanoparticles may prove a significant step towards the development of a pH-sensitive drug delivery system to minimize the drug toxicity.
     Recently, multifunctional nanostructured materials that combinations of various different properties have been applied to multimodal imaging and simultaneous diagnosis and therapy. Halloysite nanotubes (HNTs), a type of aluminosilicate clay mineral, having a hollow tubular structure in the submicron range, are increasingly becoming the focus of investigations. Due to its biocompatibility and very low cytotoxicity as demonstrated in cell growth experiments, hence, HNTs qualified a promising candidate for nanomedicine. In chapter four, we devised a facile strategy to utilize multifunctional halloysitc nanotubes as nanovector for anticancer drug delivery. Tumor cell targeting molecules folic acid (FA, a nonimmunogenic receptor-specific ligand) and magnetic nanopartieles were tethered to the halloysite nanotubes via a facile EDC chemistry. Furthermore, this multifunctional nanoformulation exhibited pH-sensitive drug release behavior due to electrostatic interaction between the drug and HNTs. It is expected that this orchestrated system may provide a more effective tool for targeted cancer therapeutics.
引文
[1]Evans, P.; Matsunaga, H.; Kiguchi, M., Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 2008,3 (10),577-577.
    [2]Banerjee, H. N; Vcrma, M., Application of nanotechnology in cancer. Technol Cancer Res T 2008,7(2),149-154.
    [3]Misra, R.; Acharya, S.; Sahoo, S. K., Cancer nanotechnology:application of nanotechnology in cancer therapy. Drug Discov Today 2010,15 (19-20),842-850.
    [4]Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005,4 (6),435-446.
    [5]Cancer Facts & Figures 2007 (American Cancer Society, Atlanta,2007).
    [6]Tiefenauer, L.; Padeste, C., Micro-and nanotechnology in biosensor research. Chimia 1999,53 (3),62-66.
    [7]Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 2009,38 (2),372-390.
    [8]Chen, J. Y.; Yang, M. X.; Zhang, Q. A.; Cho, E. C.; Cobley, C. M.; Kim, C. Glaus, C.; Wang, L. H. V.; Welch, M. J.; Xia, Y. R., Gold Nanocages:A Novel Class of Multifunctional Nanomaterials for Theranostic Applications. Adv Funct Mater 2010,20(21),3684-3694.
    [9]Lin, W. B., INOR 484-Developing new multifunctional nanomaterials for biomedical applications. Abstr Pap Am Chem S 2008,235,1053.
    [10]Qu, L. T.; Zhao, Y.; Dai, L. M., Carbon microfibcrs sheathed with aligned carbon nanotubes:Towards multidimensional, multicomponent, and multifunctional nanomaterials. Small 2006,2 (8-9),1052-1059.
    [11]Zarrabi, A.; Adeli, M.; Vossoughi, M.; Shokrgozar, M. A., Design and Synthesis of Novel Polyglycerol Hybrid Nanomaterials for Potential Applications in Drug Delivery Systems. Macromol Biosci 2011,11 (3),383-390.
    [12]Strommc, M.; Brohedc, U.; Atluri, R.; Garcia-Bcnnett, A. E., Mcsoporous silica-based nanomaterials for drug delivery:evaluation of structural properties associated with release rate. Wires Nanomed Nanobi 2009,1(1),140-148.
    [13]Beaux, M. R.; Mcllroy, D. N.; Gustin, K. E., Utilization of solid nanomaterials for drug delivery. Expert Opin Drug Del 2008,5 (7),725-735.
    [14]Shiba, K., Functionalization of carbon nanomaterials by evolutionary molecular engineering:Potential application in drug delivery systems.J Drug Target 2006,14(7),512-518.
    [15]Xu, Z. P.; Lu, G. Q., Layered double hydroxide nanomaterials as potential cellular drug delivery agents. Pure Appl Chem 2006,78 (9),1771-1779.
    [16]Liu, J. Q.; Wooley, K. L., Internal and external surface functionalization of a shell crosslinked nanocage:Potential for drug delivery by bioconjugates of polymeric nanomaterials. Abstr Pap Am Chem S 2001,221, U439-U439.
    [17]Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L., Applications of advanced hybrid organic-inorganic nanomaterials:from laboratory to market. Chem Soc Rev 2011,40 (2),696-753.
    [18]McCarthy, J. R.; Bhaumik, J.; Karver, M. R.; Erdem, S. S.; Weissleder, R., Targeted nanoagents for the detection of cancers. Mol Oncol 2010,4 (6),511-528.
    [19]Li, X. H.; Zhang, C.; Le Guyader, L.; Chen, C. Y., "Smart" nanomaterials for cancer therapy. Sci China Chem 2010,53 (11),2241-2249.
    [20]Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Rytwo, G., Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 2010, 20(42),9306-9321.
    [21]Thomas, C. R.; Ferris, D. P.; Lee, J. H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J. S.; Chcon, J.; Zink, J. I., Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticlcs. J Am Chem Soc 2010,132 (31),10623-10625.
    [22]Cho, S. J.; Kim, H. J.; Lee, J. H.; Choi, H. W.; Kim, H. G; Chung, H. M.; Do, J. T., Silica coated titania nanotubes for drug delivery system. Mater Lett 2010, 64(15),1664-1667.
    [23]Phillips, M. A.; Gran, M. L.; Peppas, N. A., Targeted nanodelivery of drugs and diagnostics. Nano Today 2010,5 (2),143-159.
    [24]Park, J. H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Cooperative nanomatcrial system to sensitize, target, and treat tumors. P Natl Acacl Sci USA 2010,107 (3),981-986.
    [25]Liu, Y.; Chen, Y.; Zeng, Y. P.; Wang, S. L., A simple solution route to control synthesis of Fc3O4 nanomaterials at low temperature and their magnetic properties. Sci China Ser B 2009,52 (7),916-923.
    [26]Faraji, A. H.; Wipf, P., Nanoparticles in cellular drug delivery. Bioorgan Med Chem 2009,17 (8),2950-2962.
    [27]Dcnkbas, E. B.; Vaseashta, A., Nanotechnology in Medicine and Health Sciences. Nano 2008,3 (4),263-269.
    [28]Jain, K. K., Nanomedicine:Application of nanobiotechnology in medical practice. Med Prin Pract 2008,17(2),89-101.
    [29]Han, H. L.; Wang, C. G; Ma, Z. R.; Su, Z. M., A facile method to produce highly monodispcrscd nanospheres of cystine aggregates. Nanotechnology 2006,17(20),5163-5166.
    [30]Dumortier, H.; Lacottc, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J. P.; Prato, M.; Muller, S.; Bianco, A., Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006,6(7),1522-1528.
    [31]Cui, D. X.; Gao, H. J., Advance and prospect of bionanomaterials. Bioteclmol Progr 2003,19 (3),683-692.
    [32]Knezevic, N. Z.; Trewyn, B. G.; Lin, V. S. Y., Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun 2011,47 (10),2817-2819.
    [33]Zhao, Y. N.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y., Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. J Am Chem Soc 2009,131 (24), 8398-+.
    [34]Trewyn, B. G.; Giri, S.; Slowing,1. I.; Lin, V. S. Y., Mesoporous silica nanoparticle based controlled release, drag delivery, and biosensor systems. Chem Commun 2007, (31),3236-3245.
    [35]Lai, C. Y.; Trewyn, B. G.; Jcftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanospherc-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003,125 (15),4451-4459.
    [36]Martin, C. R.; Kohli, P., The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2003,2(1),29-37.
    [37]Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G. F.; Sousa, A. A.; Masedunskas, A.; Leapman, R. D.; Wcigcrt, R.; Gutkind, J. S.; Rusling, J. F., Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Dirccted Carbon Nanotubc-Based Drug Delivery. Acs Nemo 2009,3 (2),307-316.
    [38]Wang, S. G.; Wang, R. L.; Sellin, P. J.; Chang, S., Carbon Nanotube Based DNA Biosensor for Rapid Detection of Anti-Cancer Drug of Cyclophosphamide. Curr Nanosci 2009, J (3),312-317.
    [39]Gannon, C. J.; Cherukuri, P.; Yakobson, B. L; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A., Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer-Am Cancer Soc 2007,110 (12),2654-2665.
    [40]Chikkavceraiah, B. V.; Bhirde, A.; Malhotra, R.; Patel, V.; Gutkind, J. S.; Rusling, J. F., Single-Wall Carbon Nanotube Forest Arrays for Immunoelectrochemical Measurement of Four Protein Biomarkers for Prostate Cancer. Anal Chem 2009,81 (21),9129-9134.
    [41]Vergaro, V.; Abdullaycv, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S., Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010,11 (3),820-826.
    [42]Rouquerol, J., Recommendations for the characterization of porous solids. PureAppl. Chem.1994,66,1739-1758.
    [43]Flanigen, E. M.; Rabo, J. A., A tribute to Robert Mitchell Milton, zeolite pioneer (1920-2000)-Obituary. Micropor Mesopor Mat 2001,47 (1),120-123.
    [44]Tranchemontagne, D. J.; Mendoza-Cortcs, J. L.; O'Keeffe, M.; Yaghi, O. M., Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev 2009,38 (5),1257-1283.
    [45]Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A., Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc 2008, 730(35),11580-+.
    [46]Shi, Q. H.; Wang, J. F.; Zhang, J. P.; Fan, J.; Stucky, G. D., Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation. Adv Mater 2006,18 (8),1038-+.
    [47]Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y.; Stucky, G. D., High-yield synthesis of periodic mcsoporous silica rods and their replication to mcsoporous carbon rods. Adv Mater 2002,14 (23),1742-+.
    [48]Bartl, M. H.; Boettcher, S. W.; Hu, E. L.; Stucky, G. D., Dye-activated hybrid organic/inorganic mesostructurcd titania waveguides.J Am Chem Soc 2004, 726(35),10826-10827.
    [49]Han, Y. J.; Stucky, G. D.; Butler, A., Mesoporous silicate sequestration and release of proteins. J Am Chem Soc 1999,121 (42),9897-9898.
    [50]Shi, Y. R.; Guo, B. K.; Corr, S. A.; Shi, Q. H.; Hu, Y. S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.; Stucky, G. D., Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity. Nano Lett 2009,9 (12), 4215-4220.
    [51]Wu, Y. Y; Cheng, G. S.; Katsov, K.; Sides, S. W.; Wang, J. F.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D., Composite mesostructures by nano-confinement. Nat Mater 2004,3(11),816-822.
    [52]Wirnsberger, G.; Yang, P. D.; Scott, B. J.; Chmelka, B. F.; Stucky, G. D., Mesostructured materials for optical applications:from low-k dielectrics to sensors and lasers. Spectrochim Acta A 2001,57 (10),2049-2060.
    [53]Trcwyn, B. G; Slowing, I. I.; Giri, S.; Chen, H. T.; Lin, V. S. Y., Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Accounts Chem Res 2007,40 (9),846-853.
    [54]Wang, L. S.; Wu, L. C.; Lu, S. Y.; Chang, L. L.; Teng, I. T.; Yang, C. M.; Ho, J. A. A., Biofunctionalized Phospholipid-Capped Mcsoporous Silica Nanoshuttles for Targeted Drug Delivery:Improved Water Suspensibility and Decreased Nonspecific Protein Binding. Acs Nano 2010,4 (8),4371-4379.
    [55]Marlow, F.; McGehee, M. D.; Zhao, D. Y.; Chmelka, B. F.; Stucky, G. D., Doped mesoporous silica fibers:A new laser material. Adv Mater 1999,11(8),632-+.
    [56]Vettraino, M.; Trudeau, M.; Antonelli, D. M., Synthesis and characterization of a new family of electroactive alkali metal doped mesoporous Nb, Ta, and Ti oxides and evidence for an Anderson transition in reduced mesoporous titanium oxide. Inorg Chem 2001,40 (9),2088-2095.
    [57]Klabunde, K. J.; Medine, G.; Bedilo, A.; Stoimenov, P., Nanocrystalline metal oxides:A new family of mesoporous inorganic materials useful for destructive adsorption of environmental toxins. Abstr Pap Am Chem S 2003,225, U964-U964.
    [58]Nieweg, J. A.; Woldegiorgis, K. L.; Lin, V. S. Y.; Bakac, A., Mesoporous silica-supported metal oxides:Synthesis and catalytic reactivity. Abstr Pap Am Chem 52005,229, U983-U983.
    [59]Morris, S. M.; Fulvio, P. F.; Jaronicc, M., Ordered Mesoporous Alumina-Supported Metal Oxides. J Am Chem Soc 2008,130 (45),15210-15216.
    [60]Luca, V.; Soler-lllia, G. J. A. A.; Angelome, P. C.; Steinberg, P. Y.; Drabarek, E.; Hanlcy, T. L., Striving for order and compositional homogeneity in bulk mesoporous zirconium titanium mixed metal oxides from triblock copolymers and metal chlorides. Micropor Mesopor Mat 2009,118 (1-3),443-452.
    [61]Yamamoto, T.; Kim, S. I.; Chaichanawong, J.; Apiluck, E. U.; Ohmori, T., Removal of aqueous organic pollutants by adsorption-catalytic process using mesoporous carbon beads loaded with metal oxides. Appl Catal B-Environ 2009,88 (3-4),455-461.
    [62]Hakim, S. H.; Shanks, B. H., Manipulation of mesoporous structure and crystallinity in spontaneously self-assembled hierarchical metal oxides. Micropor Mesopor Mat 2010,135 (1-3),105-115.
    [63]Addorisio, V.; Esposito, S.; Sannino, F., Sorption Capacity of Mesoporous Metal Oxides for the Removal of MCPA from Polluted Waters. J Agr Food Chem 2010,55 (8),5011-5016.
    [64]Krcsge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992,359 (6397),710-712.
    [65]Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W., A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1992,114(27),10834-10843.
    [66]Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994,368 (6469),317-321.
    [67]Lu, Y; Ganguli, R.; Drewien, C. A.; Anderson, M. T.; Brinker, C. J.; Gong, W.; Guo, Y.; Soyez, H.; Dunn, B.; Huang, M. H.; Zink, J. I., Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature 1997,389 (6649),364-368.
    [68]Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998,279 (5350),548-552.
    [69]Tian, B. Z.; Liu, X. Y.; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y, Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat Mater 2003,2 (3),159-163.
    [70]Che, S.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T., Synthesis and characterization of chiral mesoporous silica. Nature 2004,429 (6989), 281-284.
    [71]Qiu, H.; Che, S., Chiral mesoporous silica:Chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chein Soc Rev 2011,40(3),1259-1268.
    [72]Gu, J.-Z.; Lu, W.-G.; Jiang, L.; Zhou, H.-C.; Lu, T.-B.,3D Porous Metal-Organic Framework Exhibiting Selective Adsorption of Water over Organic Solvents. Inorg Chem 2007,46 (15),5835-5837.
    [73]林惠明, 介孔材料的合成与应用研究. 吉林大学博士学位论文 2010.
    [74]Zhang, Z. D.; Yan, X. X.; Tian, B. Z.; Yu, C. Z.; Tu, B.; Zhu, G. S.; Qiu, S. L.; Zhao, D. Y., Synthesis of ordered small pore mesoporous silicates with tailorable pore structures and sizes by polyoxyethylene alkyl amine surfactant. Micropor Mesopor Mat 2006,90 (1-3),23-31.
    [75]Che, S.; Garcia-Bcnnett, A. E.; Yokoi, T.; Sakamoto, K.; Kunieda, H.; Terasaki, O.; Tatsumi, T., A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater 2003,2(12),801-805.
    [76]Attard, G. S.; Glyde, J. C.; Goltner, C. G., Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 1995,375 (6555),366-368.
    [77]Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J Am Chem Soc 1998, 120 (24),6024-6036.
    [78]Beck J., V. J., Roth W., Leonwicz M., Kresge C., Schmitt K., Chu C,; Olson D., S. E., Mccullen S., Higgins J., Schlenker J., J. Am. Chcm.;Soc.1992,10834.
    [79]Firouzi, A.; Kumar, D.; Bull, L.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S.; Zasadzinski, J.; Glinka, C.; Nicol, J.; et, a., Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 1995,267 (5201), 1138-1143.
    [80]Monnicr, A.; Schuth, R.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mcsostructures. Science 1993,261 (5126),1299-1303.
    [81]Inagaki, S.; Fukushima, Y.; Kuroda, K., Synthesis of highly ordered mesoporous materials from a layered polysilicatc. Journal of the Chemical Society, Chemical Communications 1993, (8),680-682.
    [82]Fercy, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005,309 (5743),2040-2042.
    [83]Han, Y.; Zhang, D.; Chng, L. L.; Sun, J.; Zhao, L.; Zou, X.; Ying, J. Y., A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. Nat Chem 2009,1 (2),123-127.
    [84]Liu, S.; Cool, P.; Collart, O.; Van Dcr Voort, P.; Vansant, E. F.; Lebedev, O. I.; Van Tendeloo, G.; Jiang, M., The Influence of the Alcohol Concentration on the Structural Ordering of Mesoporous Silica:Cosurfactant versus Cosolvent. The Journal of Physical Chemistry B 2003,107(38),10405-10411.
    [85]Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E., Synthesis of nanoscalc mesoporous silica spheres with controlled particle size. Chem Mater 2002,14 (11),4721-4728.
    [86]Yu, C. Z.; Tian, B. Z.; Fan, J.; Stucky, G. D.; Zhao, D. Y., Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts. J Am Chem Soc 2002,124 (17),4556-4557.
    [87]Li, Y.; Bi, L. F.; Wang, S. B.; Chen, Y. L.; Li, B. Z.; Zhu, X. L.; Yang, Y. G, Preparation of helical mesoporous cthylene-silica nanofibers with lamellar mesopores on the surfaces. Chem Commun 2010,46 (15),2680-2682.
    [88]Yang, S.; Zhao, L. Z.; Yu, C. Z.; Zhou, X. F.; Tang, J. W.; Yuan, P.; Chen, D. Y.; Zhao, D. Y., On the origin of helical mesostructurcs. J Am Chem Soc 2006,128 (32),10460-10466.
    [89]Han, Y.; Zhao, L.; Ying, J. Y., Entropy-driven helical mesostructure formation with achiral cationic surfactant templates. Adv Mater 2007,19 (18), 2454-+.
    [90]Chen, Y.-W.; Lin, H.-Y., Characteristics of Ti-MCM-41 and its Catalytic Properties in Oxidation of Benzene. J Porous Mat 2002,9 (3),175-184.
    [91]Yuan, Q.; Duan, H.-H.; Li, L.-L.; Li, Z.-X.; Duan, W.-T.; Zhang, L.-S.; Song, W.-G.; Yan, C.-H., Ceria Nanocatalysts:Homogeneously Dispersed Ceria Nanocatalyst Stabilized with Ordered Mesoporous Alumina (Adv. Mater.13/2010). Adv Mater 2010,22 (13), n/a-n/a.
    [92]Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998,395 (6702),583-585.
    [93]Shalom, M.; Dor, S.; Rut hle, S.; Grinis, L.; Zaban, A., Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating. The Journal of Physical Chemistry C 2009,113 (9),3895-3898.
    [94]Wu, Z.; Zhao, D., Ordered mesoporous materials as adsorbents. Chem Comimin 2011,47(12),3332-3338.
    [95]Liu, J. S.; Du, X. Z.; Zhang, X. F., Enzyme-Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica. Chem-Eur J 2011,77(3),810-815.
    [96]Bambrough, C. M.; Washmon, L.; Balkus, K. J., Enzyme immobilization in mesoporous molecular sieves. Abstr Pap Am Chem S 1999,218, U861-U862.
    [97][Anon], Functionalizcd mesoporous silica boosts enzyme activity. Chem Eng News 2002,80 (36),35-35.
    [98]Xu, Q.; Zhu, J. J.; Hu, X. Y., Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction. Anal Chim Acta 2007,597(1),151-156.
    [99]Gryglewicz, G.; Lorenc-Grabowska, E., Mesoporous activated carbons from Ca and Fe exchanged sub-bituminous and bituminous coals. Carbon 2004,42 (3),688-691.
    [100]El Asri, S.; Laghzizil, A.; Coradin, T.; Saoiabi, A.; Alaoui, A.; M'hamedi, R., Conversion of natural phosphate rock into mesoporous hydroxyapatite for heavy metals removal from aqueous solution. Colloid Surface A 2010,362 (1-3),33-38.
    [101]Deng, Y.; Li, X. K.; Li, Q., Effect of Pore Size on the Growth of Hydroxyapatite from Mesoporous CaO-SiO2 Substrate. Ind Eng Chem Res 2009,48 (19),8829-8836.
    [102]Yang, P. P.; Quan, Z. W.; Li, C. X.; Kang, X. J.; Lian, H. Z.; Lin, J., Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 2008,29 (32),4341-4347.
    [103]Peng, Q.; Ming, L.; Jiang, C. X.; Feng, B.; Qu, S. X.; Weng, J., Preparation and characterization of hydroxyapatite microspheres with hollow core and mesoporous shell. Bioceramics 18, Pts I and 22006,309-311,65-68.
    [104]Diaz, A.; Lopez, T.; Manjarrez, J.; Basaldella, E.; Martinez-Blanes, J. M.; Odriozola, J. A., Growth of hydroxyapatite in a biocompatible mesoporous ordered silica. Ada Biomater 2006,2 (2),173-179.
    [105]Vallet-Regi, M., Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem-Eur J 2006,12 (23),5934-5943.
    [106]Stewart, B. W. K., P. World Cancer Report (World Health Organization Press, Geneva,2003).; 2. Cancer Facts & Figures 2007 (American Cancer Society, A.,2007).
    [107]Wu, H. X.; Liu, G.; Zhang, S. J.; Shi, J. L.; Zhang, L. X.; Chen, Y; Chen, F.; Chen, H. R., Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and canccr-cell-spccific ligands. J Mater Chem 2011,21 (9),3037-3045.
    [108]Wang, Z. Y.; Zong, S. F.; Yang, J.; Li, J.; Cui, Y. P., Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 2011,26 (6),2883-2889.
    [109]Lu, J.; Liong, M.; Li, Z. X.; Zink, J.1.; Tamanoi, F., Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small 2010,6 (16),1794-1805.
    [110]Rosenholm, J. M.; Pcuhu, E.; Bate-Eya, L. T.; Eriksson, J. E.; Sahlgren, C; Linden, M., Cancer-Cell-Specific Induction of Apoptosis Using Mesoporous Silica Nanoparticles as Drug-Delivery Vectors. Small 2010, 6 (11),1234-1241.
    [111]Rosenholm, J.; Sahlgrcn, C.; Linden, M., Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. J Mater Chem 2010,20 (14), 2707-2713.
    [112]Fisichclla, M.; Dabboue, H.; Bhattacharyya, S.; Lelong, G.; Saboungi, M. L.; Warmont, F.; Midoux, P.; Pichon, C.; Guerin, M.; Hcvor, T.; Salvctat, J. P., Uptake of Functionalized Mesoporous Silica Nanoparticles by Human Cancer Cells. J Nanosci Nanotechno 2010,10(4),2314-2324.
    [113]Vivero-Escoto, J. L.; Slowing, I.1.; Lin, V. S. Y., Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HcLa. Biomateriah 2010,31(6),1325-1333.
    [114]Chen, A. M.; Zhang, M.; Wei, D. G.; Stucber, D.; Taratula, O.; Minko, T.; He, H. X., Co-delivery of Doxorubicin and Bcl-2 siRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrug-Resistant Cancer Cells. Small 2009,5 (23),2673-2677.
    [115]Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W., Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy:potential cancer theranostics. J Mater Chem 2009,19 (9), 1252-1257.
    [116]Lebrct, V.; Rachm, L.; Durand, J. O.; Smaihi, M.; Werts, M. H. V.; Blanchard-Desce, M.; Methy-Gonnod, D.; Dubernct, C., Surface functionalization of two-photon dye-doped mesoporous silica nanoparticles with folic acid:cytotoxicity studies with HcLa and MCF-7 cancer cells. J Sol-Gel Sci Techn 2008,48 (1-2),32-39.
    [117]Sun, W.; Fang, N.; Trewyn, B. G.; Tsunoda, M.; Slowing, I. I.; Lin, V. S. Y.; Yeung, E. S., Endocytosis of a single mesoporous silica nanoparticlc into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem 2008,391 (6),2119-2125.
    [118]Slowing,1.; Trewyn, B. G; Lin, V. S. Y., Effect of surface functionalization of MCM-41-typc mesoporous silica nanoparticleson the endocytosis by human cancer cells. J Am Chem Soc 2006,128 (46),14792-14793.
    [119]Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Pcrez-Pariente, J., A new property of MCM-41:Drug delivery system. Chem Mater 2001,13 (2),308-311.
    [120]Qu, F.; Zhu, G.; Huang, S.; Li, S.; Qiu, S., Effective Controlled Release of Captopril by Silylation of Mcsoporous MCM-41. Chemphyschem 2006,7 (2), 400-406.
    [121]Mal, N. K.; Fujiwara, M.; Tanaka, Y., Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003,421 (6921),350-353.
    [122]Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C. W.; Lin, V. S. Y., Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. J Am Chem Soc 2009,131 (10), 3462-+.
    [123]Gao, W.; Chan, J. M.; Farokhzad, O. C., pH-Responsive Nanoparticles for Drug Delivery. Mol Pharmaceut 2010,7(6),1913-1920.
    [124]Torney, F.; Trewyn, B. G.; Lin, V. S. Y.; Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nano 2007,2 (5),295-300.
    [125]Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. Y., pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker. J Am Chem Soc 2010,132 (5),1500-+.
    [126]Aznar, E.; Coll, C.; Marcos, M. D.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Amoros, P.; Cano, J.; Ruiz, E., Borate-Drivcn Gatelike Scaffolding Using Mesoporous Materials Functionaliscd with Saccharides. Chemistry—A European Journal 2009,15 (28),6877-6888.
    [127]Chen, L. F.; Di, J. C.; Cao, C. Y.; Zhao, Y.; Ma, Y.; Luo, J.; Wen, Y. Q.; Song, W. G.; Song, Y. L.; Jiang, L., A pH-driven DNA nanoswitch for responsive controlled release. Chem Commun 2011,47(10),2850-2852.
    [128]Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. J Am Chem Soc 2003,125 (15), 4451-4459.
    [129]Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y., Stimuli-Responsive Controllcd-Relcasc Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles. Angewandte Chemie International Edition 2005,44 (32),5038-5044.
    [130]Radu, D. R.; Lai, C.-Y.; Jcftinija, K.; Rowe, E. W.; Jcftinija, S.; Lin, V. S. Y., A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphcre-Based Gene Transfection Reagent. J Am Chem Soc 2004,126 (41),13216-13217.
    [131]Zhao, Y.; Sun, X.; Zhang, G.; Trcwyn, B. G.; Slowing, I. I.; Lin, V. S. Y., Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes:Size and Surface Effects. Acs Nemo 2011,5 (2),1366-1375.
    [132]Horn, C.; Lu, J.; Liong, M.; Luo, H.; Li, Z.; Zink, J. I.; Tamanoi, F., Mesoporous Silica Nanoparticles Facilitate Delivery of siRNA to Shutdown Signaling Pathways in Mammalian Cells. Small 2010,6 (11),1185-1190.
    [133]Patel, K.; Angclos, S.; Dichtcl, W. R.; Coskun, A.; Yang, Y.-W.; Zink, J. I.; Stoddart, J., F., Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. J Am Chem Soc 2008,130 (8),2382-2383.
    [134]Bernardos, A.; Mondragon, L.; Aznar, E.; Marcos, M. D.; Martinez-Mancz, R.; Sancenon, F.; Soto, J.; Barat, J. M.; Perez-Paya, E.; Guillem, C.; Amoros, P., Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharidcs". Acs Nano 2010,4 (11), 6353-6368.
    [135]Bernardos, A.; Aznar, E.; Marcos, M. D.; Martinez-Mancz, R.; Sancenon, F.; Soto, J.; Barat, J. M.; Amoros, P., Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angew Chem Int Edit 2009,48 (32),5884-5887.
    [136]Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S. Y., Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. J Am Chem Soc 2009,131 (24), 8398-8400.
    [137]Climent, E.; Bernardos, A.; Martinez-Mafiez, R. n.; Maquieira, A.; Marcos, M. D.; Pastor-Navarro, N.; Puchades, R.; Sancenon, F.1.; Soto, J.; Amoros, P., Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. JAm Chem Soc 2009,131 (39),14075-14080.
    [138]Aznar, E.; Marcos, M. D.; Martinez-Manez, R. n.; Sancenon, F.1.; Soto, J.; Amoros, P.; Guillem, C., pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. J Am Chem Soc 2009,131 (19),6833-6843.
    [139]Chen, C.; Geng, J.; Pu, F.; Yang, X.; Ren, J.; Qu, X., Polyvalent Nucleic Acid/Mcsoporous Silica Nanoparticle Conjugates:Dual Stimuli-Responsive Vehicles for Intracellular Drug Delivery. Angewandte Chemie International Edition 2011,50 (4),882-886.
    [140]Zhao, Y. B.; Qiu, Z. M.; Huang, J. Y., Preparation and analysis of Fe3O4 magnetic nanoparticlcs used as targeted-drug carriers. Chinese J Chem Eng 2008,16 (3),451-455.
    [141]Zhu, Y. F.; Fang, Y.; Kaskel, S., Folatc-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. J Phys Chem C 2010,114(39),16382-16388.
    [142]Smolensky, E. D.; Neary, M. C.; Zhou, Y.; Berquo, T. S.; Pierre, V. C., Fc3O4@organic@Au:core-shell nanocomposites with high saturation magnetisation as magnctoplasmonic MRI contrast agents. Chem Commun 2011,47 (7),2149-2151.
    [143]Wang, L. A.; Neoh, K. G.; Kang, E. T.; Shuter, B., Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomatehals 2011,32 (8),2166-2173.
    [144]Wan, J. Q.; Li, H.; Chen, K. Z., Synthesis and characterization of Fc3O4@ZnO core-shell structured nanoparticles. Mater Chem Phys 2009,114 (1), 30-32.
    [145]Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hycon, T., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewanclte Chemie 2008,120 (44), 8566-8569.
    [146]宋雪原,纳米材料在靶向药物传输及生物分子检测上的应用.《青岛科技大学硕士论文》2010.
    [147]Vivcro-Escoto, J. L.; Slowing, I. I.; Trcwyn, B. G.; Lin, V. S. Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small 2010,6(18),1952-1967.
    [148]He, Q.; Shi, J., Mesoporous silica nanoparticle based nano drug delivery systems:synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 2011.
    [149]Mitchell, D. T.; Lee, S. B.; Trofin, L.; Li, N. C.; Nevanen, T. K.; Soderlund, H.; Martin, C. R., Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 2002,124(40),11864-11865.
    [150]Son, S. J.; Bai, X.; Lee, S. B., Inorganic hollow nanoparticles and nanotubes in nanomedicine:Part 2:Imaging, diagnostic, and therapeutic applications. DnigDiscov Today 2007,12 (15-16),657-663.
    [151]Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nano 2009,4(11),773-780.
    [152]Guo, J. X.; Zhang, X.; Zhang, S. S.; Zhu, Y.; Li, W. X., The different bio-effects of functionalized multi-walled carbon nanotubes on Tctrahymena pyriformis. Curr Nanosci 2008,4 (3),240-245.
    [153]Dong, L. F.; Witkowski, C. M.; Craig, M. M.; Grecnwade, M. M.; Joseph, K. L., Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells. Nanoscale Res Lett 2009,4 (12), 1517-1523.
    [154]Zhang, Y.; Bai, Y. H.; Yan, B., Functionalized carbon nanotubes for potential medicinal applications. DrugDiscov Today 2010,15 (11-12),428-435.
    [155]Li, D.; Xiao, S. J.; Huang, C. Z., Pharmacia and biological functionalities of nutrient broth dispersed multi-walled carbon nanotubes:A novel drug delivery system. Sci China Chem 2010,53 (3),612-618.
    [156]Xu, S. X.; Zhang, X. F.; Wan, T.; Zhang, C. X., A third-generation hydrogen peroxide biosensor based on horseradish peroxidase cross-linked to multi-wall carbon nanotubes. Microchim Ada 2011,172 (1),199-205.
    [157]Wang, G.; Dewilde, A. H.; Zhang, J. P.; Pal, A.; Vashist, M.; Bello, D.; Marx, K. A.; Braunhut, S. J.; Therrien, J. M., A living cell quartz crystal microbalance biosensor for continuous monitoring of cytotoxic responses of macrophages to single-walled carbon nanotubes. Part Fibre Toxicol 2011,8,
    [158]Tran, N. H.; Wilson, M. A.; Milev, A. S.; Bartlett, J. R.; Lamb, R. N.; Martin, D.; Kannangara, G. S. K., Photoemission and absorption spectroscopy of carbon nanotube intcrfacial interaction. Adv Colloidlnterfac 2009,145 (1-2),23-41.
    [159]Banerjee, I.; Mondal, D.; Martin, J.; Kane, R. S., Photoactivated Antimicrobial Activity of Carbon Nanotube-Porphyrin Conjugates. Langmuir 2010, 26(22),17369-17374.
    [160]Aprile, C.; Martin, R.; Alvaro, M.; Garcia, H.; Scaiano, J. C., Covalent Functionalization of Short, Single-Wall Carbon Nanorubcs:Photophysics of 2,4,6-Triphcnylpyrylium Attached to the Nanotube Walls. Chem Mater 2009,21 (5), 884-890.
    [161]Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. P Natl Acad Sci USA 2005,702(33),11600-11605.
    [162]Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H., Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. Acs Nano 2007,7 (1),50-56.
    [163]Du, M. L.; Guo, B. C.; Jia, D. M., Newly emerging applications of halloysite nanotubes:a review. Polym Int 2010,59 (5),574-582.
    [164]Lvov, Y. M.; Shchukin, D. G.; MoLhwald, H.; Price, R. R., Halloysite Clay Nanotubes for Controlled Release of Protective Agents. Acs Nano 2008,2 (5), 814-820.
    [165]Luca, V.; Thomson, S., Intercalation and polymerisation of aniline within a tubular aluminosilicate. J Mater Chem 2000,10 (9),2121-2126.
    [166]Shchukin, D. G.; Sukhorukov, G. B.; Price, R. R.; Lvov, Y. M., Halloysite Nanotubes as Biomimetic Nanorcactors. Small 2005,1 (5),510-513.
    [167]Rong, T.-J.; Xiao, J.-k., The catalytic cracking activity of the kaolin-group minerals. Mater Lett 2002,57 (2),297-301.
    [168]Machado, G. S.; de Freitas Castro, K. A. D.; Wypych, F.; Nakagaki, S., Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. Journal of Molecular Catalysis A: Chemical 2008,283 (1-2),99-107.
    [169]KilisHoglu, A.; Bilgin, B., Adsorption of uranium on halloysite. Radiochim Acta 2002,90 (3_2002),155-160.
    [170]Lvov, Y. M.; Shchukin, D. G.; Mohwald, H.; Price, R. R., Halloysite clay nanotubes for controlled release of protective agents. Acs Nano 2008,2 (5),814-820.
    [1]Dong, S. M.; Chen, X. A.; Gu, L.; Zhou, X. H.; Xu, H. X.; Wang, H. B.; Liu, Z. H.; Han, P. X.; Yao, J. H.; Wang, L.; Cui, G. L.; Chen, L. Q., Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage. Acs Appl Mater Inter 2011,3 (1),93-98.
    [2]Oschatz, M.; Kockrick, E.; Rose, M.; Borchardt, L.; Klein, N.; Senkovska, I.; Freudenberg, T.; Korenblit, Y.; Yushin, G.; Kaskel, S., A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon 2010,48 (14), 3987-3992.
    [3]Xu, M. W.; Jia, W.; Bao, S. J.; Su, Z.; Dong, B., Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage. Electrochim Ada 2010,55 (18),5117-5122.
    [4]Shao, Y. Y.; Wang, X. Q.; Engelhard, M.; Wang, C. M.; Dai, S.; Liu, J.; Yang, Z. G.; Lin, Y. H., Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J Power Sources 2010,195 (13),4375-4379.
    [5]Liu, D. W.; Garcia, B. B.; Zhang, Q. F.; Guo, Q.; Zhang, Y. H.; Sepehri, S.; Cao, G. Z., Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities. Adv Fund Mater 2009,19 (7),1015-1023.
    [6]Park, M. S.; Wang, G. X.; Kang, Y. M.; Kim, S. Y.; Liu, H. K.; Dou, S. X., Mesoporous organo-silica nanoarray for energy storage media. Electrochem Commun 2007,9(1),71-75.
    [7]Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S., The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochem Commun 2006,8 (2),284-288.
    [8]Zhou, H. S.; Li, D. L.; Hibino, M.; Honma, I., A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew Chem Int Edit 2005, 44(5),797-802.
    [9]Zhou, H. S.; Zhu, S. M.; Hibino, M.; Honma,1.; lchihara, M., Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 2003,15 (24),2107-+.
    [10]Wu, S. C.; He, J. P.; Zhou, J. H.; Wang, T.; Guo, Y. X.; Zhao, J. Q.; Ding, X. C., Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFCs. J Mater Chem 2011,21 (9),2852-2854.
    [11]Wang, X. C.; Yu, J. C.; Hou, Y. D.; Fu, X. Z., Three-dimensionally ordered mesoporous molecular-sieve films as solid superacid photo catalysts. Adv Mater 2005,17(1),99-+.
    [12]Huo, Q.; Margolese, D.1.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994,368 (6469),317-321.
    [13]Tian, B. Z.; Liu, X. Y; Tu, B.; Yu, C. Z.; Fan, J.; Wang, L. M.; Xie, S. H.; Stucky, G. D.; Zhao, D. Y., Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat Mater 2003,2 (3),159-163.
    [14]Tian, B. Z.; Yang, H. F.; Liu, X. Y; Xie, S. H.; Yu, C. Z.; Fan, J.; Tu, B.; Zhao, D. Y., Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chem Commun 2002, (17),1824-1825.
    [15]Feng, P.; Bu, X.; Gier, T. E.; Stucky, G. D., Amine-directed syntheses and crystal structures of phosphate-based zeolite analogs. Micropor Mesopor Mat 1998, 23 (3-4),221-229.
    [16]Shin, H. J.; Ryoo, R.; Kruk, M.; Jaroniec, M., Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chem Commun 2001, (4),349-350.
    [17]Hwang, Y. K.; Kwon, T. H.; Park, S. S.; Yoon, Y. J.; Won, Y. S.; Huh, S., Preparation of Mesoporous ZnO/Zn(OH)(2) Spheres and Their Replication to High Surface TiO2 Materials. EurJInorg Chem 2010, (30),4747-4751.
    [18]Giraudet, S.; Zhu, Z. H.; Yao, X. D.; Lu, G. Q., Ordered Mesoporous Carbons Enriched with Nitrogen:Application to Hydrogen Storage. J Phys Chem C 2010,774(18),8639-8645.
    [19]Shu, P.; Ruan, J. F.; Gao, C. B.; Li, H. C.; Che, S. N., Formation of mesoporous Co3O4 replicas of different mesostmctures with different pore sizes. Micropor Mesopor Mat 2009,123 (1-3),314-323.
    [20]Fischer, A.; Jun, Y. S.; Thomas, A.; Antonietti, M., Synthesis of High-Surfacc-Arca TiN/Carbon Composite Materials with Hierarchical Porosity via "Reactive Tcmplating". Chem Mater 2008,20 (24),7383-7389.
    [21]Lai, X. Y.; Wang, H.; Mao, D.; Yang, N. L.; Yao, J. X.; Xing, C. J.; Wang, D.; Li, X. T., Mesoporous indium oxide synthesized via a nanocasting route. Mater Lett 2008,62 (23),3868-3871.
    [22]Lei, Y.; Fournier, C.; Pascal, J. L.; Favier, F., Mesoporous carbon-manganese oxide composite as negative electrode material for supercapacitors. Micropor Mesopor Mat 2008,110(1),167-176.
    [23]Rushton, B.; Mokaya, R., Mesoporous boron nitride and boron-nitride-carbon materials from mesoporous silica templates. J Mater Chem 2008, 18(2),235-241.
    [24]Zhu, K.; Egeblad, K.; Christensen, C. H., Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites. Eur J Inorg Chem 2007, (25),3955-3960.
    [25]Fan, J.; Lei, J.; Yu, C. Z.; Tu, B.; Zhao, D. Y., Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater Chem Phys 2007,103 (2-3),489-493.
    [26]Deng, Y. H.; Liu, C.; Yu, T.; Liu, F.; Zhang, F. Q.; Wan, Y.; Zhang, L. J.; Wang, C. C.; Tu, B.; Webley, P. A.; Wang, H. T.; Zhao, D. Y., Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater 2007,19 (13),3271-3277.
    [27]Rumpleckcr, A.; Kleitz, F.; Salabas, E. L.; Schuth, F., Hard templating pathways for the synthesis of nanostructured porous Co3O4. Chem Mater 2007,19 (3),485-496.
    [28]Dclahaye, E.; Escax, V.; El Hassan, N.; Davidson, A.; Aquino, R.; Dupuis, V.; Perzynski, R.; Raikher, Y. L., "Nanocasting":Using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed gamma-Fe2O3 nanoparticles. J Phys Chem B 2006,110 (51),26001-26011.
    [29]Wan, Y.; Yang, H. F.; Zhao, D. Y., "Host-guest" chemistry in the synthesis of ordered nonsiliccous mesoporous materials. Accounts Chem Res 2006,39 (7),423-432.
    [30]Shi, Y. F.; Mcng, Y.; Chen, D. H.; Cheng, S. J.; Chen, P.; Yang, T. F. Wan, Y.; Zhao, D. Y., Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. Adv Funct Mater 2006,16 (4),561-567.
    [31]Shen, W. H.; Dong, X. P.; Zhu, Y. F.; Chen, H. R.; Shi, J. L., Mesoporous CeO2 and CuO-loaded niesoporous CeO2:Synthesis, characterization, and CO catalytic oxidation property. Micropor Mesopor Mat 2005,85 (1-2),157-162.
    [32]Guo, W. P.; Zhao, X. S., Well-ordered cubic mesoporous carbon with Im3m symmetry. Stud Surf Sci Catal 2005,156,551-556.
    [33]Yang, H. F.; Yan, Y.; Liu, Y.; Zhang, F. Q.; Zhang, R. Y.; Meng, Y.; Li, M.; Xie, S. H.; Tu, B.; Zhao, D. Y., A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches. J Phys Chem B 2004,108 (45),17320-17328.
    [34]Kim, Y.; Kim, P.; Kim, C.; Yi, J., A novel method for synthesis of a Ni/Al2O3 catalyst with a mesoporous structure using stearic acid salts. J Mater Chem 2003,13 (9),2353-2358.
    [35]Yang, H. F.; Shi, Q. H.; Liu, X. Y.; Xie, S. H.; Jiang, D. C.; Zhang, F. Q.; Yu, C. Z.; Tu, B.; Zhao, D. Y., Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chem Commun 2002, (23), 2842-2843.
    [36]Armatas, G. S.; Kanatzidis, M. G., Mesostructured germanium with cubic pore symmetry. Nature 2006,441 (7097),1122-1125.
    [37]Sun, D.; Riley, A. E.; Cadby, A. J.; Richman, E. K.; Korlann, S. D.; Tolbert, S. H., Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters. Nature 2006,441 (7097),1126-1130.
    [38]Armatas, G. S.; Kanatzidis, M. G., Size Dependence in Hexagonal Mesoporous Germanium:Pore Wall Thickness versus Energy Gap and Photoluminescence. Nano Lett 2010,10 (9),3330-3336.
    [39]Armatas, G. S.; Kanatzidis, M. G., Hexagonal mesoporous germanium. Science 2006,313 (5788),817-820.
    [40]Vallett, A. L.; Minassian, S.; Kaszuba, P.; Datta, S.; Redwing, J. M.; Mayer, T. S., Fabrication and Characterization of Axially Doped Silicon Nanowirc Tunnel Field-Effect Transistors. Nano Lett 2010,10 (12),4813-4818.
    [41]Clement, N.; Nishiguchi, K.; Fujiwara, A.; Vuillaume, D., One-by-one trap activation in silicon nanowire transistors. Nat Commun 2010,1,
    [42]Wang, B. M.; Yang, T. M.; Wu, Y. S.; Su, C. J.; Lin, H. C., Effect of Ni residues on the performance and the uniformity of nickel-induced lateral crystallization polycrystalline silicon nanowire thin-film transistors. Mater Chem Phys 2010,124(1),880-883.
    [43]Koto, M.; Marshall, A. F.; Goldthorpe, I. A.; Mclntyre, P. C., Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon. Small 2010, 6(9),1032-1037.
    [44]Martinez, R. V.; Martinez, J.; Garcia, R., Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 2010,21 (24),
    [45]Zwancnburg, F. A.; van Rijmenam, C. E. W. M.; Fang, Y.; Lieber, C. M.; Kouwenhovcn, L. P., Spin States of the First Four Holes in a Silicon Nanowire Quantum Dot. Nano Lett 2009,9 (3),1071-1079.
    [46]Martin, C.; Alias, M.; Christien, F.; Crosnier, O.; Belanger, D.; Brousse, T., Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-Ion Batteries. Adv Mater 2009,21 (46),4735-+.
    [47]Teki, R.; Datta, M. K.; Krishnan, R.; Parker, T. C.; Lu, T. M.; Kumta, P. N.; Koratkar, N., Nanostructurcd Silicon Anodes for Lithium Ion Rechargeable Batteries. Small 2009,5 (20),2236-2242.
    [48]Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Lett 2009,9 (9),3370-3374.
    [49]Esmanski, A.; Ozin, G. A., Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries. Adv Fund Mater 2009,19 (12),1999-2010.
    [50]Cakan, R. D.; Titirici, M. M.; Antonietti, M.; Cui, G. L.; Maier, J.; Hu, Y. S., Hydrothermal carbon spheres containing silicon nanoparticles:synthesis and lithium storage performance. Chem Comnnm 2008, (32),3759-3761.
    [51]Ma, H.; Cheng, F. Y.; Chen, J.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J., Ncst-likc silicon nanosphcres for high-capacity lithium storage. Adv Mater 2007,19 (22),4067-+.
    [52]Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D., Single Crystalline Mesoporous Silicon Nanowires. Nano Lett 2009,9 (10),3550-3554.
    [53]Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 2009,8 (4),331-336.
    [54]Bao, Z. H.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. T.; Abernathy, H. W.; Summers, C. J.; Liu, M. L.; Sandhage, K. H., Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007,446(7132),172-175.
    [55]Lin, C. L.; Pang, Y. S.; Chao, M. C.; Chen, B. C.; Lin, H. P.; Tang, C. Y.; Lin, C. Y., Synthesis of SBA-16 and SBA-15 mesoporous silica crystals templated with neutral block copolymer surfactants. J Phys Chem Solids 2008,69 (2-3), 415-419.
    [56]Stevens, W. J. J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E. F., Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials. J Phys Chem B 2006,110 (18),9183-9187.
    [57]Zhu, R.; Chen, H. R.; Shi, J. L.; Yan, D. S., Synthesis and characterization of SBA-15 and SBA-16 templated by block copolymcrs. J Inorg Mater 2003,18 (4),855-860.
    [58]Xu, D. S.; Guo, G. L.; Gui, L. L.; Tang, Y. Q.; Qin, G. G., Optical absorption property of oxidized free-standing porous silicon films. Pure Appl Chem 2000,72(1-2),237-243.
    [59]Ohmukai, M.; Uehara, N.; Ymasaki, T.; Tsutsumi, Y., The effects of chemical etching of porous silicon on Raman spectra. Czech J Phys 2004,54 (7), 781-784.
    [I]Meng, H. A.; Liong, M.; Xia, T. A.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E., Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. Acs Nano 2010,4(8),4539-4550.
    [2]Couzin, J., Cancer research-Nanoparticles cut tumors supply lines. Science 2002,296 (5577),2314-2315.
    [3]Petri-Fink, A.; Chastellain, M.; Juillerat-Jeanneret, L.; Ferrari, A.; Hofmann, H., Development of functionalized superparamagnctic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005,26 (15),2685-2694.
    [4]Jain, R. K.; Stylianopoulos, T., Delivering nanomedicinc to solid tumors. Nat Rev Clin Oncol 2010,7(11),653-664.
    [5]Liu, Y.; Sun, J.; Han, J. H.; He, Z. G., Long-circulating Targeted Nanoparticles for Cancer Therapy. Curr Nanosci 2010,6 (4),347-354.
    [6]Sunderland, C. J.; Stciert, M.; Talmadge, J. E.; Derfus, A. M.; Barry, S. E., Targeted nanoparticles for detecting and treating cancer. Drug Develop Res 2006,67 (1),70-93.
    [7]Alexiou, C.; Schmid, R. J.; Jurgons, R.; Kremer, M.; Wanner, G.; Bergemann, C.; Huenges, E.; Nawroth, T.; Arnold, W.; Parak, F. G., Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J Biophy 2006,35 (5),446-450.
    [8]Sealy, C, Nanoparticles target cancer cells in vivo. Nano Today 2006,1 (2), 9-9.
    [9]Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Au nanoparticles target cancer. Nano Today 2007,2(1),18-29.
    [10]Zhao, W. A.; Karp, J. M., Nanoantennas heat up. Nat Mater 2009,8 (6), 453-454.
    [11]Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007,2 (12),751-760.
    [12]Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C., Nanoparticles in medicine:Therapeutic applications and developments. Clin Pharmacol Ther 2008,83 (5),761-769.
    [13]Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics:an emerging treatment modality for cancer. Nat Rev Drug Discov 2008,7 (9),771-782.
    [14]Shi, X. G.; Wang, S. H.; Meshinchi, S.; Van Antwerp, M. E.; Bi, X. D.; Lee, I. H.; Baker, J. R., Dendrimcr-entrapped gold nanoparticles as a platform for cancer-cell targeting and Imaging. Small 2007,3 (7),1245-1252.
    [15]Zhang, L. Y.; Guo, R.; Yang, M.; Jiang, X. Q.; Liu, B. R., Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv Mater 2007,19 (19),2988-+.
    [16]Lee, S. B., Focus on nanoparticles for cancer diagnosis and therapeutics. Nanomedicine-Uk 2007,2 (5),647-648.
    [17]Gould, P., Multitasking nanoparticles target cancer-Nanomedicine. Nemo Today 2008,3 (1-2),9-9.
    [18]Al-Jamal, W. T.; Al-Jamal, K. T.; Bomans, P. H.; Frederik, P. M.; Kostarelos, K., Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 2008,4 (9),1406-1415.
    [19]Kim, T. W.; Chung, P. W.; Slowing,1. I.; Tsunoda, M.; Yeung, E. S.; Lin, V. S. Y., Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembranc Delivery Vehicle in Human Cancer Cells. Nano Lett 2008,5(11),3724-3727.
    [20]Sealy, C., Hybrid nanoparticles could diagnose and target cancer. Nano Today 2009,4(1),5-5.
    [21][Anon], Delivering therapeutic DNA to cancer cells using targeted nanoparticles. Nanomedicine-Uk 2009,4 (2),127-127.
    [22]Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y., Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Fund Mater 2007, 17(8),1225-1236.
    [23]Tsai, C. P.; Chen, C. Y.; Hung, Y.; Chang, F. H.; Mou, C. Y., Monoclonal antibody-functionalizcd mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem 2009,19 (32),5737-5743.
    [24]Slowing,1.; Trewyn, B. G.; Lin, V. S. Y., Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticleson the endocytosis by human cancer cells. J Am Chem Soc 2006,128 (46),14792-14793.
    [25]Gu, J. L.; Su, S. S.; Li, Y. S.; He, Q. J.; Shi, J. L., Hydrophilic mesoporous carbon nanoparticlcs as carriers for sustained release of hydrophobic anti-cancer drugs. Chem Commun 2011,47 (7),2101-2103.
    [26]Zhu, Y. C.; Liu, H. J.; Li, F.; Ruan, Q. C.; Wang, H.; Fujiwara, M.; Wang, L. Z.; Lu, G. Q., Dipolar Molecules as Impellers Achieving Electric-Field-Stimulated Release. J Am Chem Soc 2010,132 (5),1450-+.
    [27]Zhao, Y. L.; Li, Z. X.; Kabehie, S.; Botros, Y. Y.; Stoddart, J. F.; Zink, J. I., pH-Operated Nanopistons on the Surfaces of Mesoporous Silica Nanoparticlcs. J Am Chem Soc 2010,132(37),13016-13025.
    [28]Vivero-Escoto, J. L.; Slowing,1. I.; Wu, C. W.; Lin, V. S. Y., Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere. J Am Chem Soc 2009,131 (10), 3462-+.
    [29]Thomas, C. R.; Ferris, D. P.; Lee, J. H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J. S.; Cheon, J.; Zink, J. I., Noninvasivc Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles. J Am Chem Soc 2010,132 (31),10623-10625.
    [30]Mai, N. K.; Fujiwara, M.; Tanaka, Y., Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003,421 (6921),350-353.
    [31]Aznar, E.; Marcos, M. D.; Martinez-Manez, R.; Sancenon, F.; Soto, J.; Amoros, P.; Guillem, C., pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. J Am Chem Soc 2009,131 (19),6833-6843.
    [32]Liu, R.; Zhao, X.; Wu, T.; Feng, P. Y., Tunable Redox-Responsive Hybrid Nanogated Ensembles. J Am Chem Soc 2008,130 (44),14418-+.
    [33]Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H. J.; Kim, C., Glutathione-Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers. Adv Mater 2010,22 (38),4280-+.
    [34]Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y., Stimuli-responsive controllcd-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Edit 2005,44 (32), 5038-5044.
    [35]Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mcsoporous silica nanosphcrc-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of ncurotransmittcrs and drug molecules. J Am Chem Soc 2003,125 (15),4451-4459.
    [36]Popovici, R. F.; Scftel, E. M.; Mihai, G. D.; Popovici, E.; Voicu, V. A., Controlled Drug Delivery System Based on Ordered Mesoporous Silica Matrices of Captopril as Angiotensin-Converting Enzyme Inhibitor Drug. J Pharm Sci-Us 2011, 100(2),704-714.
    [37]Schlossbaucr, A.; Kecht, J.; Bein, T., Biotin-Avidin as a Protease-Responsivc Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angew Chem lnt Edit 2009,48 (17),3092-3095.
    [38]Patel, K.; Angclos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F., Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 2008,130 (8),2382-2383.
    [39]Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. Y., pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker. J Am Chem Soc 2010,132 (5),1500-+.
    [40]Lin, Q. N.; Huang, Q.; Li, C. Y.; Bao, C. Y.; Liu, Z. Z.; Li, F. Y.; Zhu, L. Y., Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. J Am Chem Soc 2010,132 (31), 10645-10647.
    [41]Ferris, D. P.; Zhao, Y. L.; Khashab, N. M.; Khatib, H. A.; Stoddart, J. F.; Zink, J. I., Light-Operated Mechanized Nanoparticles. J Am Chem Soc 2009,131 (5), 1686-+.
    [42]Bernardos, A.; Aznar, E.; Marcos, M. D.; Martincz-Manez, R.; Sancenon, F.; Soto, J.; Barat, J. M.; Amoros, P., Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angew Chem Int Edit 2009,48 (32),5884-5887.
    [43]Angclos, S.; Yang, Y. W.; Patel, K.; Stoddart, J. F.; Zink, J.I., pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew Chem Int Edit 2008,47 (12),2222-2226.
    [44]Holopaincn, J. M.; Jarvela,1.; Kinnunen, P. K. J.; Saarikoski, J.; Elleder, M., Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs) cells. Mol Biol Cell 2000,11,140a-140a.
    [45]Brayner, R.; Dahoumane, S. A.; Yepremian, C.; Djcdiat, C.; Meyer, M.; Coute, A.; Fievet, F., ZnO Nanoparticles:Synthesis, Characterization, and Ecotoxicological Studies. Langmuir 2010,26 (9),6522-6528.
    [46]Yan, W. J.; Mechau, N.; Hahn, H.; Krupkc, R., Ultraviolet photodetector arrays assembled by dielcctrophoresis of ZnO nanoparticles. Nanotechnology 2010, 21 (11),
    [47]Turgeman, R.; Tirosh, S.; Gedankcn, A., Growing ZnO crystals on magnetite nanoparticles. Chem-Eur J 2004,10(7),1845-1850.
    [48]Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Herrera, R.; Anastasiadis, S. H.; Petridis, D.; Giannelis, E. P., Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small 2006,2 (4), 513-516.
    [49]Le Garrec, D.; Taillefer, J.; Van Lier, J. E.; Lenacrts, V.; Lcroux, J. C Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target 2002,10 (5),429-437.
    [50]Das, M.; Mardyani, S.; Chan, W. C. W.; Kumacheva, E., Biofunctionalized pH-responsive microgcls for cancer cell targeting:Rational design. Adv Mater 2006,18(1),80-83.
    [51][Anon], Toxicity of ZnO Nanoparticles. Atla-Altern Lab Anim 2010,38 (2),94-94.
    [52]Hanley, C.; Layne, J.; Punnoose, A.; Reddy, K. M.; Coombs, I.; Coombs, A.; Feris, K.; Wingett, D., Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 2008,19 (29),-
    [53]Ostrovsky, S.; Kazimirsky, G.; Gedanken, A.; Brodie, C., Selective Cytotoxic Effect of ZnO Nanoparticles on Glioma Cells. Nano Res 2009,2 (11), 882-890.
    [1]Li, L.; Tsung, C. K.; Ming, T.; Sun, Z. H.; Ni, W. H.; Shi, Q. H.; Stucky, G. D.; Wang, J. F., Multifunctional Mesostructured Silica Microspheres from an Ultrasonic Aerosol Spray. Adv Fund Mater 2008,18 (19),2956-2962.
    [2]Suh, W. H.; Suh, Y. H.; Stucky, G. D., Multifunctional nanosystems at the interface of physical and life sciences. Nano Today 2009,4 (1),27-36.
    [3]Sawant, R. M.; Hurley, J. P.; Salmaso, S.; Kale, A.; Tolcheva, E.; Levchenko, T. S.; Torchilin, V. P., "SMART" drug delivery systems:Double-targeted pH-rcsponsive pharmaceutical nanocarriers. Bioconjugate Chem 2006,17 (4), 943-949.
    [4]Guo, M. A.; Quc, C. L.; Wang, C. H.; Liu, X. Z.; Yan, H. S.; Liu, K. L. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 2011, 32(1),185-194.
    [5]Uchida, M.; Flennikcn, M. L.; Allen, M.; Willits, D. A.; Crowley, B. E.; Brumfield, S.; Willis, A. F.; Jackiw, L.; Jutila, M.; Young, M. J.; Douglas, T., Targeting of cancer cells with fcrrimagnetic ferritin cage nanoparticles. J Am Chem Soc 2006,125(51),16626-16633.
    [6]Kim, J. S.; Rieter, W. J.; Taylor, K. M. L.; An, H.; Lin, W. L.; Lin, W. B., Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc 2007,129 (29),8962-+.
    [7]Cho, K. J.; Wang, X.; Nie, S. M.; Chen, Z.; Shin, D. M., Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008,14 (5),1310-1316.
    [8]Patra, C. R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P., Application of gold nanoparticles for targeted therapy in cancer. J Biomed Nanotechnol 2008,4 (2),99-132.
    [9]Park, K.; Lee, S.; Kang, E.; Kim, K.; Choi, K.; Kwon,I. C., New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Adv Funct Mater 2009,19(10),1553-1566.
    [10]Cheng, F. Y.; Su, C. H.; Wu, P. C.; Yeh, C. S., Multifunctional polymeric nanoparticles for combined chemotherapcutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem Commun 2010,46 (18), 3167-3169.
    [11]Maeng, J. H.; Lee, D. H.; Jung, K. H.; Bae, Y. H.; Park, I. S.; Jeong, S.; Jeon, Y. S.; Shim, C. K.; Kim, W.; Kim, J.; Lee, J.; Lee, Y. M.; Kim, J. H.; Kim, W. H.; Hong, S. S., Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 2010,31 (18),4995-5006.
    [12]Wang, M.; Thanou, M., Targeting nanoparticles to cancer. Pharmacol Res 2010,62 (2),90-99.
    [13]Day, E. S.; Bickford, L. R.; Slater, J. H.; Riggall, N. S.; Drezek, R. A.; West, J. L., Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. Int J Nanomed 2010,5,445-454.
    [14]Wang, L. A.; Neoh, K. G.; Kang, E. T.; Shuter, B., Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials 2011,32 (8),2166-2173.
    [15]Di Corato, R.; Bigall, N. C.; Ragusa, A.; Dorfs, D.; Genovese, A.; Marotta, R.; Manna, L.; Pellegrino, T., Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles:Synthesis and Cancer Cell Targeting and Sorting. Acs Nano 2011, 5 (2),1109-1121.
    [16]Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 2009, 38 (2),372-390.
    [17]Ferrari, M., Cancer nanotechnology:Opportunities and challenges. Nat Rev Cancer 2005,5 (3),161-171.
    [18]Bhirde, A. A.; Patel, S.; Sousa, A. A.; Patel, V.; Molinolo, A. A.; Ji, Y. M.; Leapman, R. D.; Gutkind, J. S.; Rusling, J. F., Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine-Uk 2010, 5 (10),1535-1546.
    [19]Panczyk, T.; Warzocha, T. P.; Camp, P. J., A Magnetically Controlled Molecular Nanocontainer as a Drug Delivery System:The Effects of Carbon Nanotube and Magnetic Nanoparticle Parameters from Monte Carlo Simulations. J Phys Chem C 2010,114 (49),21299-21308.
    [20]Wu, J.; Paudel, K. S.; Strasinger, C.; Hammell, D.; Stinchcomb, A. L.; Hinds, B. J., Programmable transdcrmal drug delivery of nicotine using carbon nanotube membranes. P Natl Acad Sci USA 2010,107 (26),11698-11702.
    [21]Majumder, M.; Stinchcomb, A.; Hinds, B. J., Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery. Life Sci 2010,86 (15-16),563-568.
    [22]Riggio, C.; Ciofani, G.; Raffa, V.; Cuschieri, A.; Micera, S., Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level. Nanoscale Res Lett 2009,4 (7),668-673.
    [23]Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G. F.; Sousa, A. A.; Mascdunskas, A.; Leapman, R. D.; Wcigert, R.; Gutkind, J. S.; Rusling, J. F., Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Bascd Drug Delivery. Acs Nano 2009,3 (2),307-316.
    [24]Klingclcr, R.; Hampcl, S.; Buchner, B., Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperther 2008,24 (6),496-505.
    [25]Yang, F.; Jin, C.; Long, J.; Xu, J.; Yang, D.; Wang, C.; Yu, X.; Fu, D.; Ni, Q., Magnetic Carbon Nanotube as a Drug Carrier and Its Application in Lymphatic Targeting Chemotherapy for Pancreatic Cancer. Pancreas 2009,38 (8), 1063-1063.
    [26]Wang, S. G.; Wang, R. L.; Scllin, P. J.; Chang, S., Carbon Nanotube Based DNA Biosensor for Rapid Detection of Anti-Cancer Drug of Cyclophosphamidc. Curr Nanosci 2009,5 (3),312-317.
    [27]Chikkaveeraiah, B. V.; Bhirde, A.; Malhotra, R.; Patel, V.; Gutkind, J. S.; Rusling, J. F., Single-Wall Carbon Nanotube Forest Arrays for Immunoclectrochcmical Measurement of Four Protein Biomarkers for Prostate Cancer. Anal Chem 2009,81 (21),9129-9134.
    [28]Ali-Boucetta, H.; Al-Jamal, K. T.; McCarthy, D.; Prato, M.; Bianco, A.; Kostarelos, K., Multiwallcd carbon nanotube-doxorabicin supramolecular complexes for cancer therapeutics. Chem Commun 2008, (4),459-461.
    [29]Mitchell, D. T.; Lee, S. B.; Trofm, L.; Li, N. C.; Nevanen, T. K. Soderlund, H.; Martin, C. R., Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 2002,124 (40),11864-11865.
    [30]Chen, C. C.; Liu, Y. C.; Wu, C. H.; Ych, C. C.; Su, M. T.; Wu, Y. C., Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv Mater 2005,17(4),404-+.
    [31]Son, S. J.; Reichel, J.; He, B.; Schuchman, M.; Lee, S. B., Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 2005,127(20),7316-7317.
    [32]Qi, R. L.; Guo, R.; Shen, M. W.; Cao, X. Y.; Zhang, L. Q.; Xu, J. J.; Yu, J. Y.; Shi, X. Y., Electrospun poly(lactic-co-glycolicacid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem 2010,20(47),10622-10629.
    [33]Liu, M. X.; Jia, Z. X.; Liu, F.; Jia, D. M.; Guo, B. C., Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interf Sci 2010,350(1),186-193.
    [34]Xing, B.; Yin, X. B., Electrochemiluminescence from hydrophilic thin film Ru(bpy)(3)(2+)-modified electrode prepared using natural halloysite nanotubes and polyacrylamide gel. Biosens Bioelectron 2009,24 (9),2939-2942.
    [35]Liu, M. X.; Guo, B. C.; Du, M. L.; Cai, X. J.; Jia, D. M., Properties of halloysite nanotubc-epoxy resin hybrids and the intcrfacial reactions in the systems. Nanotechnology 2007,18 (45),
    [36]De Oliveira, M. T. G.; Furtado, S. M. A.; Formoso, M. L. L.; Eggleton, R. A.; Dani, N., Coexistence of halloysite and kaolinite-a study on the genesis of kaolin clays of Campo Alegre Basin, Santa Catarina State, Brazil. An Acad Bras Cienc 2007,79 (4),665-681.
    [37][Anon], Halloysite nanotubes for increased strength. Am Ceram Soc Bull 2007,86(4),A19-A19.
    [38]Papoulis, D.; IComarneni, S.; Nikolopoulou, A.; Tsolis-Katagas, P.; Panagiotaras, D.; Kacandes, H. G.; Zhang, P.; Yin, S.; Sato, T.; Katsuki, H., Palygorskitc- and Halloysite-TiO2 nanocomposites:Synthesis and photocatalytic activity. Appl Clay Sci 2010,50 (1),118-124.
    [39]Wan, C. Y.; Li, M.; Bai, X.; Zhang, Y., Synthesis and Characterization of Photoluminescent Eu(Ⅲ) Coordination Halloysite Nanotube-Based Nanohybrids. J Phys Chem C 2009, 113 (36),16238-16246.
    [40]Du, M. L.; Guo, B. C.; Jia, D. M., Newly emerging applications of halloysite nanotubes:a review. Polym Int 2010,59 (5),574-582.
    [41]Li, C. P.; Liu, J. G.; Cu, X. Z.; Yang, Z. Z., A General Synthesis Approach toward Halloysite-Based Composite Nanotube. J Appl Polym Sci 2009,112 (5),2647-2655.
    [42]Liu, M. X.; Guo, B. C.; Du, M. L.; Chen, F.; Jia, D. M., Halloysite nanotubes as a novel beta-nucleating agent for isotactic polypropylene. Polymer 2009, 50(13),3022-3030.
    [43]Vergaro, V.; Abdullayev, E.; Lvov, Y. M.; Zeitoun, A.; Cingolani, R.; Rinaldi, R.; Leporatti, S., Cytocompatibility and Uptake of Halloysite Clay Nanotubes. Biomacromolecules 2010,11(3),820-826.
    [44]Ward, C. J.; Song, S.; Davis, E. W., Controlled Release of Tetracycline-HCl from Halloysite-Polymer Composite Films. J Nanosci Nanotechno 2010,10(10),6641-6649.
    [45]Zhai, R.; Zhang, B.; Liu, L.; Xic, Y. D.; Zhang, H. Q.; Liu, J. D., Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal Commun 2010,12 (4),259-263.
    [46]Zhou, W. Y.; Guo, B. C.; Liu, M. X.; Liao, R. J.; Rabie, A. B. M.; Jia, D. M., Poly(vinyl alcohol)/Halloysite nanotubes bionanocomposite films:Properties and in vitro ostcoblasts and fibroblasts response. J Biomed Mater Res A 2010,93A (4), 1574-1587.
    [47]Zheng, Y. A.; Wang, A. Q., Enhanced Adsorption of Ammonium Using Hydrogel Composites Based on Chitosan and Halloysite. J Macromol Sci A 2010,47 (1),33-38.
    [48]Zhao, Y. F.; Zhang, B.; Zhang, Y. W.; Wang, J. H.; Liu, J. D.; Chen, R. F., Removal of Ammonium from Wastewatcr by Pure Form Low-Silica Zeolite Y Synthesized from Halloysite Mineral. Sep Sci Technol 2010,45 (8),1066-1075.
    [49]Yang, C.; Liu, P.; Zhao, Y. Q., Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage. Electrochim Acta 2010,55 (22),6857-6864.
    [50]Wang, J. H.; Zhang, X. A.; Zhang, B.; Zhao, Y. F.; Zhai, R.; Liu, J. D.; Chen, R. F., Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination 2010,259 (1-3),22-28.
    [51]Tierrablanca, E.; Romero-Garcia, J.; Roman, P.; Cruz-Silva, R., Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes. Appl Catal a-Gen 2010,381 (1-2),267-273.
    [52]Shamsi, M. H.; Luqman, M.; Basarir, F.; Kim, J. S.; Yoon, T. H.; Geckeler, K. E., Plasma-modified halloysite nanocomposites:effect of plasma modification on the structure and dynamic mechanical properties of halloysite-polystyrenc nanocomposites. Polym Int 2010,59 (11),1492-1498.
    [53]Pasbakhsh, P.; Ismail, H.; Fauzi, M. N. A.; Abu Bakar, A., EPDM/modified halloysite nanocomposites. Appl Clay Sci 2010,48 (3),405-413.
    [54]Luo, P.; Zhao, Y. F.; Zhang, B.; Liu, J. D.; Yang, Y.; Liu, J. F., Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 2010,44 (5),1489-1497.
    [55]Duan, J. M.; Wang, J. H.; Zhang, B.; Zhao, Y. F.; Liu, J. D., Cr(Vi) Adsorption on Mercaptopropyl-Functionalizcd Halloysite Nanotubes. Fresen Environ Bull 2010,19 (12),2783-2787.
    [56]Abdullayev, E.; Price, R.; Shchukin, D.; Lvov, Y., Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole. Acs Appl Mater Inter 2009,1 (7),1437-1443.
    [57]Zhao, M. F.; Liu, P., Adsorption behavior of mcthylene blue on halloysite nanotubes. Micropor Mesopor Mat 2008,112 (1-3),419-424.
    [58]Zhang, L.; Wang, T.; Liu, P., Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization. Appl Surf Sci 2008,255 (5),2091-2097.
    [59]Saylc, D. C.; Seal, S.; Wang, Z.; Mangili, B. C.; Price, D. W.; Karakoti, A. S.; Kuchibhatla, S. V. T. N.; Hao, Q.; Mobus, G.; Xu, X.; Sayle, T. X. T., Mapping nanostructure:A systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions. Acs Nano 2008,2 (6),1237-1251.
    [60]Lvov, Y. M.; Shchukin, D. G.; Mohwald, H.; Price, R. R., Halloysite clay nanotubes for controlled release of protective agents. Acs Nano 2008,2 (5), 814-820.
    [61]Shchukin, D. G.; Sukhorukov, G. B.; Price, R. R.; Lvov, Y. M., Halloysite nanotubes as biomimetic nanoreactors. Small 2005,1 (5),510-513.
    [62]Price, R. R.; Gaber, B. P.; Lvov, Y., In-vitro release characteristics of tetracycline HC1, khellin and nicotinamide adenine dineculcotide from halloysite; a cylindrical mineral. J Microencapsul 2001,18 (6),713-722.
    [63]Cheng, K.; Peng, S.; Xu, C. J.; Sun, S. H., Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin. J Am Chem Soc 2009,131 (30),10637-10644.
    [64]Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wang, Y. S.; Chen, Y. S., Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 2009,19 (18),2710-2714.
    [65]Zhao, Y. B.; Qiu, Z. M.; Huang, J. Y., Preparation and analysis of Fe3O4 magnetic nanoparticles used as targetcd-drug carriers. Chinese J Chem Eng 2008,16 (3),451-455.
    [66]Tian, Y.; Yu, B. B.; Li, X.; Li, K., Facile solvothcrmal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J Mater Chem 2011,21 (8),2476-2481.
    [67]Smolensky, E. D.; Neary, M. C.; Zhou, Y.; Berquo, T. S.; Pierre, V. C., Fe3O4@organic@Au:core-shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. Chem Com/mm 2011,47 (7),2149-2151.
    [68]Hong, R. Y.; Feng, B.; Chen, L. L.; Liu, G. H.; Li, H. Z.; Zheng, Y.; Wei, D. G., Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 2008,42 (3),290-300.
    [69]Zhang, Y.; Liu, J. Y.; Ma, S.; Zhang, Y. J.; Zhao, X.; Zhang, X. D.; Zhang, Z. D., Synthesis of PVP-coatcd ultra-small Fc3O4 nanoparticles as a MRI contrast agent. J Mater Sci-Mater M 2010,21 (4),1205-1210.
    [70]Zhu, Y. F.; Fang, Y.; Kaskel, S., Folate-Conjugated Fe3O4@SiO2 Hollow Mcsoporous Spheres for Targeted Anticancer Drug Delivery. J Phys Chem C 2010,114(39),16382-16388.
    [71]Xia, W.; Low, P. S., Folate-Targeted Therapies for Cancer. J Med Chem 2010,53(19),6811-6824.
    [72]Setua, S.; Menon, D.; Asok, A.; Nair, S.; Koyakutty, M., Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials 2010,31 (4),714-729.
    [73]Low, P. S.; Kularatne, S. A., Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 2009,13 (3),256-262.
    [74]Sun, Y.; Chen, L. B.; Yu, J.; Zhi, X. L.; Tang, S. X.; Zhou, P.; Wang, C. C, Folate-bearing doxorubicin-loaded magnetic poly(N-isopropylacrylamide) microsphcres as a new strategy for cancer therapy. Anti-Cancer Drug 2009,20 (7), 607-615.
    [75]Pan, J.; Feng, S. S., Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 2009,30 (6),1176-1183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700