基于稀土配合物Eu(DBM)_3phen的微球及微光纤荧光材料的制备及光谱性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多稀土有机配合物中,三价铕离子β-二酮配合物凭借着自身优良的发光特性、配体的天线效应和来自铕离子f-f电子跃迁,使得其在激光器、荧光粉和基于场致发光或电致发光的光学数据存储器件上都有广泛的应用。然而,由于过程处理能力差、热稳定性低、机械张力低等特点而限制了纯的β-二酮配合物的应用。将β-二酮配合物掺杂到有机、无机或有机/无机杂化材料中可以作为改善β-二酮化合物应用性质的一个可行方案。静电纺丝技术是唯—利用静电力来使聚合物溶液或者熔融体形成细纤维的方法,是可以将稀土配合物掺杂到有机聚合物中的方法。
     本文采用均匀沉淀法制备了稀土配合物Eu(DBM)3phen,运用静电纺丝技术制备了复合荧光纤维Eu(DBM)3phen/PS。通过X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和荧光光谱(PL)等表征手段对样品的物相、形貌和光谱性质进行分析。为了了解Eu3+在稀土配合物和荧光纤维中的荧光性质,利用J-O理论分析了Eu3+在上述两种材料中的光谱性质。
     从稀土聚合物Eu(DBM)3phen的FE-SEM照片中可以看出,我们得到了具有微球结构的稀土配合物Eu(DBM)3phen,这为形成微球激光器中的“回音廊”模型提供了条件。激发光谱中的宽带远强于Eu3+的f-f跃迁,说明配体DBM和Phen对中心Eu3+具有有效的能量传递。通过J-O理论计算得到的光学跃迁强度参数和内在量子效率。通过对光学增益系数的计算得到了g (λ)/N和P值的依赖关系,说明在5D0→7F2跃迁具有较低的激光运转阈值。
     当将稀土配合物Eu(DBM)3phen掺杂到PS溶液中,运用静电纺丝技术纺成复合荧光纤维Eu(DBM)3phen/PS,发现激发光谱发生了变化,激发光谱中没有观察到f-f跃迁,发生了非辐射跃迁猝灭。为了进一步研究Eu3+在复合荧光纤维Eu(DBM)3phen/PS中的光学跃迁性质,我们对Eu(DBM)3phen/PS与Eu(TTA)3phen/PS和Eu(DBM)3phen/PMMA这三组光学跃迁强度参数进行了比较。
Amongst all lanthanide complexes, europiumβ-diketone complexes exhibit illustrious luminescence properties thanks to the antenna effect of ligands and f-f electron transitions of Eu3+, resulting in important applications in laser, phosphor or optical data storage devices based on photoluminescent, electroluminescent and hole-burning spectroscopies. However, the disadvantages of the pureβ-diketones complexes, low processing ability, poor thermal stability, and low mechanical strength, limited the use of them. Adding the complexes into the organic, inorganic, or organic/inorganic hybrid matrixes my be an viable approach to improve the performance of the (3-diketones complexes. Electrospinning, a spinning technique, is a unique approach using electrostatic forces to produce fine fibers from polymer solutions or melts.
     Rare earth complexes Eu(DBM)3phen (DBM=dibenzoylmethide;Phen= 1,10-phenanthroline) and fluorescent fiber Eu(DBM)3phen/PS (PS=polystyrene) were studied in this thesis. Mono-dispersed microspheres of ternary complex Eu(DBM)3Phen were prepared through a facile process. Eu(DBM)3phen/PS, a novel fluorescent fiber, was synthesized through electrospinning technology furtherly. The obtained sample was characterized by means of X-ray powder diffraction (XRD) and Scanning Electron Microscope (SEM). In addition, the luminescence properties of the samples were investigated by spectroscopy and the fluorescence decay. According to J-O theory, the optical transition intensity parameters Q(=2,4 and 6) were obtained. The radiative transition properties of 5D0 level, including transition rates, branch ratios and radiative transition lifetime were calculated. As a potential material for microsphere lasers, the optical gain performance for 5D0→7F2 transition was also evaluated.
     From the FE-SEM image, it can be seen that the prepared sample consists of mono-dispersed microspheres. It should be mentioned that the broad band in the near ultraviolet region is extremely stronger than the f-f transitions of Eu3+. This fact means that the energy transfer from Phen and DBM to Eu3+ is very efficient. According to J-O theory, the optical transition intensity parametersΩ(=2,4 and 6) were obtained to be 20.99×10-20,0.98×10-20 and 1.79×10-20 cm2, respectively. The obtained internal quantum efficiency is around 70%, which is relatively high. The optical gain parameter g(λ)/N depends on the P value. P changes from 0 to 1.0 with a step size of 0.1. It can be seen that the positive gain appears when P gets such a small value around 0.1, thus implying that the pumping threshold for achieving the lasing operation upon 5D0→7F2 transition would be low. This may make the Eu(DBM)3phen a promising material for realizing microsphere lasers.
     The excitation spectrum of novel fluorescent fiber Eu(DBM)3phen/PS was different from the spectrum of the rare earth complex Eu(DBM)3phen. The optical transition intensity parameters of the Eu(DBM)3phen/PS were compared with Eu(TTA)3phen/PS and Eu(DBM)3phen/PMMA system.
引文
[1]郭用猷.物质结构基本原理.北京:高等教育出版社,1987.
    [2]熊必琳.树立和落实科学发展观,实现稀土工业可持续发展,稀土信息,2004.
    [3]http://atmsp.whut.edu.cn/resource/doc/11334.doc.
    [4]李烨.稀土三元及稀土掺杂配合物的合成及发光性能的研究.南京航空航天大学2009.
    [5]彭夷安.(LbO)3O3中Eu3+和Sm3+的光致发光.光谱学与光谱分析,1996,16(2)9-14.
    [6]Weissman S I. J Chem. Phys.,1942,10:214.
    [7]Flockhart B D. Pure Appl Chem.,1987,29:915.
    [8]Jin Y, Yang Y S, Lei H Y. Chin J Inorg. Chem.,1993,9(3):233.
    [9]Li Y Y, Gong M L, Yang Y S. Chin J Inorg. Chem.,1990,6(3):249.
    [10]王娟,光致发光稀土配合物的合成、荧光性能及理论研究.南开大学,2009.
    [11]张国斌,陈彪,戚泽明等.Eu3+掺杂的PMMA络合物体系的发光性能[J].发光学报,2003,24(6):617-619.
    [12]朱德钦,生瑜,章文贡等.铕(Ⅲ)-二苯甲酰甲烷-聚丙烯酸/聚(苯乙烯-丙烯酸)配合物及其性质研究[J].光谱学与光谱分析,2003,23(5):907-912.
    [13]G Mie,Annadlnder Physik,1908,330:377-445.
    [14]Kalser W, Garrett C G B, Wood D L. Fluorescence and optical maser effects in CaF2:Sm2+. Phys. Rev,1961,123:766-776.
    [15]赵伯林.微球激光器.国外激光,2004,346(10):6-10.
    [16]黄娆,刘之景,王克逸等.微球激光的最新研究进展.强激光与粒子束,2004,16(8):957-959.
    [17]参考文献[14]及其文后的参考文献.
    [18]王冬梅,赵强,周俐军等.含稀土配合物的聚合物微球的制备及性质研究,2008,6(27):38.
    [19]Qing Yan, Wei Su, Yilong Cheng. Luminescence and structure of Eu (DBM) 3Phen-doped vesicles composed ofamphiphilic PNIPAM-b-PazoM. Chemistry 2008,200:101-105.
    [20]刘建勇.时域有限差分方法在复杂目标散射和光学微腔中的应用.西安电子科技大学,2008.
    [21]Matthew Pelton, Yoshihisa Yamamoto, Ultralow threshold laser using a single quantum dot and a microsphere cavity.1999, (59):3.
    [22]Sun W X, Xu Y Z, Liu X X et al. Spectroscopy and Spectral Analysis,2001,21(2): 204.
    [23]张思远,毕宪章,稀土光谱理论.吉林科技出版社,1991.
    [24]朱琴玉,张勇,戴洁等二硝酸根二4,5-二氮-9-(4,5-二(硫乙基)-1,3-二硫杂环戊烯-2-叶立德)-芴合镉的合成、结构及光谱性质.2006,7:1171-1174.
    [25]唐怀军,汤昊,张志国等.含有载流子传输功能基团咔唑和嗯二唑的有机铕(Ⅲ)配合物的合成及其发光性能.2008,29:871-875.
    [26]郭倩玲,朱文祥.稀土(Ⅲ)-三氟乙酰丙酮-4-皮考林-N-氧化物混配配合物的合成与表征.2001,9:138-142.
    [27]Okamoto Y, Ueba Y. Dzhanibekov N F et al. Macromolecules.1981,14:17.
    [28]赵婧,高保娇,高学超.在聚合物微球GMA/MMA表面同步合成与固载卟啉及固载化金属卟啉的催化氧化性能,2010,31:126-132.
    [29]许传杰.Eu3+荧光共聚物及聚合物基复合材料的制备与性能研究五.扬州大学,2010
    [30]张小萍.静电纺丝法制备稀土聚合物发光纳米纤维复合材料及其结构与性能的研究.北京化工大学,2010.
    [31]Formhals A. Process and apparatus for preparing artificial threads:US, [P].1934,10:2.
    [32]Simons H L, Process and apparatus for producing patterned nonwoven fabrics:US,3280229 [P],1966.
    [33]覃小红,王新威,胡祖明等.静电纺丝聚丙烯腈纳米纤维工艺参数与纤维直径关系的研究[J].东华大学学报,2005,31(6):16-21
    [34]黄美荣,李新贵,曾剑峰.导电聚合物纳米纤维的成型[J].现代化工,2002,22(12):10-13
    [35]赵敏丽,隋刚,邓旭亮等.静电纺丝法纺制聚乳酸纳米纤维无纺毡[J].合成纤维工业,2006,29(1):5-7
    [36]张锡玮,夏禾,徐纪刚等.静电纺丝法纺制纳米级聚丙烯腈纤维毡[J].塑料,2000,29(2):16-19
    [37]Ki M Y, Christopher J H, Yasuko M, et al. Nanoparticle filtration by electrospun polymer fibers [J]. Chemical Engineering Science,2007,62:4751-4759.
    [38]Wang X, Fang D, Yoon Ketal. High performance ultra filtration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinylal cohol) scaffold [J].Membrane Scicence,2006,278:261-268.
    [39]Seungsin Lee, S Kay Obendorf. Developing Protective Textile Materials as Barriers to Liquid Penetrati on Using Melt-Electrospinning[J] J Appl Polym Sci, 2006,102 (4):3430-3437.
    [40]Jen Taut Yeh, Chi Lai Chen, Huang K S et al. Synthesis/Characterizati on and App licati on of PVP/Chitosan Blended Polymers [J] J Appl Polym Sci,2006,101(2): 885-891.
    [41]Shao Ping Zhong, Wee Eong Teo, Xiao Zhu et al.Development of a Novel Collagen-GAG Nanofibrous Scaffold via Electrospinning [J] Mat Sci Eng C,2007, 27 (2):262-266.
    [42]Sun B, Duan B, Yuan X. Preparati on of Core/Shell PVP/PLA Ultrafine Fibers by Coaxial Electrospinning [J] J Appl Polym Sci,2006,102(1):39-45.
    [43]刘娜,杨建忠.静电纳米纤维的研究及应用进展[J]合成纤维工业,2006,29(3):46-49.
    [44]Jayesh Doshi,Reneker D H. Electrospinnning process and applications of electrospun fibers [J]. J Elect rostatics,1995,35:151.
    [45]Shin Y M, Hohman M M. Experimental characterization of electrospinning:the electrically forced jet and instabilities, Polymer,2001,42:9955-9967.
    [46]Chen Chao, Yu Yang, Xue Gang et al. Prearation and Photocatalysis of TiO2 Nanoparticle, enviromental science and management,2009,03:1673-1212.
    [47]Gao Qiang, Zhu Xinsheng, Ju Haitao et al. Effect of M n on PS electrospinning process and tensile properties of PS fiber membrane. China Synthetic fiber industry,2009,32(1):19.
    [48]Choi J S, Lee S W et al. Effect of organosoluble salts on the nanpgibroud structure of electrospun poly (3-hydroxybutyrate-co-3hydroxyvalerate) [J], J Bio Macrom,2004,34(2-3):249-256.
    [49]B Kim, H PaIk. Poly(acrylic acid) nanofibers by electrospinning,Maer Lett, 2005,59(7):829-832.
    [50]Megelski S, Stephens JS. Chase DB et al. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002;35:8456-66.
    [51]Yordem QS,Paplia M, Mencelo et al. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter:An investigation by response surface methodology. Materials and design,2008,29:34-44
    [52]Casper CL, Stephens JS, Tassi NG, etal. Controlling surface morphology of electrospun polystyrene fibers:effect of humidity andmolecular weight in the electrospinning process. Macromolecules 2004,37:573-578.
    [53]Mit-uppathamC, NithitanakulM, Supaphol P. Ultrafine electrospun polyamide-6 fibers:effect of solution conditions on morphology and average fiber diameter. Macromo Chem Phys 2004;205:2327-38.
    [54]Bragg W H, W L Bragg. The reflection of X-rays by Crystals, Proceedings of the royal society,1913,88:428-438.
    [55]房喻,王辉,荧光寿命测定的现代方法与应用,10(2001)631.
    [56]Zhang Qingli, He Wei, Sun Duenlu, etal. Judd-Ofelt Spectral Theory,2005,25(3): 329-333.
    [57]Riseberg I A, Woos H W, Partlow W D. Multiphonon relaxation in laser materials and applications to the design of quantumelectronic devices [J].J. Quantum Electron,1968,4:609-612.
    [58]JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev, 1962,127:750-759.
    [59]Ofelt G S. J. Chem. Phys,1962,37(3):511.
    [60]Kornienko A A, Dunina E B. Phys. Sta. Sol,1990,157:267.
    [61]Chen Baojiu, Wang Haiyu, E Shulin. Obtaioning of J-0 Parameters (Ω(?), Ω4)from emission spectra of Eu3+. Chinese journal of luminescence,2001,22 (2):139-142.
    [62]Luo Y H, Yan Q, Wu S et al. Inter-and intra-molecular energy transfer during sensitization of Eu (DBM) 3Phen luminescence by Tb (DBM) 3Phen in PMMA, J. Photochem. Photobiol., A. Chem.2007,197:91.
    [63]Yan Q., Su W, Cheng Y L et al. Luminescence and structure of Eu (DBM)3Phen-doped vesicles composed of amphiphilic PNIPAM-b-PazoM, J. Photochem. Photobiol., A. Chem.2008, (200):101
    [64]Liu H G, Lee Y, Feng X S et al. Influences of compositions and ligands on photoluminescent properties of Eu(Ⅲ) ions in composite europium complex/PMMA systems. J. Lumin.2007,172:307.
    [65]Liang H, Xie F, Xu J et al. Judd-Ofelt treatment on luminescence of europium complexes with β-diketoneandbis(β-diketone),Physical B,2009,404:1957.
    [66]Scotognella F, Meinardi F, Ottonelli M et al. Photophysical analysis of the organic complex [Eu(Cl2H8N2)23 (NO3)3. J. Lumin.2009,129:746.
    [67]Liu H G, Feng X S, Jang K W et al. Influences of compositions and ligands on photoluminescent properties of Eu(Ⅲ) ions in composite europium complex/PMMA systems. J. Lumin.2007,127;308.
    [68]Jin T, Tsutsumi S, Deguchi Y et al. Preparation and luminescence characteristics of the europium and terbium complexes incorporated into a silica matrix using a sol-gel method. J. Alloys Compd.,1997,252:59
    [69]Luo Y H, Chen B, Wu W X et al. Judd-Ofelt treatment on luminescence of europium complexes with β-diketoneandbis (β-diketone), J. Lumin.2009,129:1309.
    [70]Gameiro C G, da Silva Jr E F, Alves Jr S et al. Lanthanide complexes dispersed in enamel:a promising new material for photonic devices, J. Alloys Compd.2001, 323:820-823
    [71]Zheng Z Q, Liang H, Ming H et al. Optical transition probability of the Er3+ion in Er(DBM)3phen-doped poly(methyl methacrylate). Opt. Commun,2004,233:149.
    [72]NBhardwaj, Kundu S C, Electrospinning:A fascinating fiber fabrication technique. Biotechnol.Adv.2010,28:325-347.
    [73]Liu W, Wang C, Preparation and characterization of the lanthanide complex Eu (TTA)3phen/vinylpyrrolidone luminescent nanofiber by electrospinning. Indian J. Chem.,2007,46:1951.
    [74]Liang H, Zheng Z, Zhang Q et al. Radiative properties of Eu (DBM)3Phen-doped poly (Methyl methacrylate). J. Mater. Res.2003,18:1895-1899.
    [75]Pelton M, Yamamoto Y, Ultralow threshold laser using a single quantum dot and a microsphere cavity. Phys. Rev. A,1999,59:2418-2421.
    [76]Liu H G, Lee Y, Feng X S et al. Studies on photoluminescent properties of Eu(Ⅲ) ions in composite europium complex/polymer systems. Colloids Surf., A. Physicochem. Eng. Aspects,2005,301:257-258.
    [77]R Sosa F, M. Flores H., R. Rodriguez T et al. Optical properties and Judd-Ofelt intensity parameters of Eu " in PMMA:PAAc copolymer samples. Rev. Mexica. Fisi. 2005,49 (6):519-520
    [78]Jayasankar C K, Ramanjaneya Setty K, Babu P, High-pressure luminescence study of Eu3+ in lithium borate glass. Phy. Rev., B.2004,69(4):214.
    [79]Zheng Z Q., Ming H, Sun X H. et al. J. Opt. Soc. Am. B,2005,22:820-824.
    [80]Brito H F, Malt 0 L, Menezes J F S, Uminescent properties of diketonates of trivalent europium with dimethyl sulfoxide. Journal of Alloys and Compounds, 2000,303-304:336-339.
    [81]Zhang H, Song H W, Yu H Q et al. Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning. Appl. Phys. Lett.,2007,90(10):103103.
    [82]Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett.,2004,4(5):933.
    [83]Nandana Bhardwaj, Subhas C. Kundu, Electrospinning:A fascinating fiber "fabrication technique. Biotechnology Advances,-2010,28:325-347.
    [84]Kathleen M. Leonard, Development of a fiber-optic chemical sensor for multicontaminant monitoring of environmental systems. Sensors and Actuators B, 1995,24-25:458-461.
    [85]Katarzyna Wygladacz, Eric Bakker, Imaging fiber microarray fluorescent ion sensors based on bulk optode microspheres, Analytica Chimica Acta 2005,532:61-69.
    [86]P. Aiestaran, V. Dominguez, J. Arrue, etal. A fluorescent linear optical fiber position sensor。Optical Materials,2009,31:1101-1104.
    [87]Masahiro Miura, Taketune Miyahara, Masaru Kato et al. Development of a new fluorescent probe for transition metal cations based upon fluorescence resonance energy transfer, Analytica Chimica Acta 2004,501:45-54.
    [88]Marcello Leopoldo, Enza Lacivita, Francesco Berardi. Developments in fluorescent probes for receptor research, Elsevier Ltd 2009,06:1359-6446.
    [89]Huaishan Wang, Guodong Qian, Zhiyu Wang et al. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates, Spectrochimica Acta Part A 2005,62:146-152.
    [90]Hao Liang, Fang Xie, Jie Xu et al. Luminescence of a europium (Ⅲ) complex containing 4-n-octyloxydibenzoylmethane ligands doped poly(methylmethacrylate). Physica B 2009,404:1957-1960.
    [91]Yanhua Luo, Qing Yan, Si Wu et al. Inter and intra molecular energy transfer during sensitization of Eu(DBM)3 Phen luminescence by Tb(DBM)3 Phen in PMMA. Journal of Photochemistry and Photobiology A:Chemistry 2007,191:91-96.
    [92]Hong Guo Liu, Xu Sheng Feng, Kiwan Jang et al. Influences of compositions and ligands on photoluminescent properties.2009.
    [93]Gao Qiang, Zhu Xinsheng, Ju Haitao et al. Effect of M n on PS electrospinning process and tensile properties of PS fiber membrane. China synthetic fiber industry,2009,32(1):19.
    [94]Simon C Baker, Neil Atkinb, Paul A et al. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006,27:3136-3146.
    [95]Jayesh Doshi, Darrell H Reneker, Electrospinning Process and Applications of Electrospun-Fibers.Journal of Electrostatics1995,35:151-160.
    [96]Seong-Il Um, The synthesis and properties of benzoxazole fluorescent brighteners for application to polyester fibers. Dyes and Pigments,2007,75:185-188.
    [97]Christopher J. Buchko, Loui C. Chen, Yu Shen et al. Processing and microstructural characterization of porous biocompatibleprotein polymer thin films. Polymer,1999,40:7397-7407.
    [98]deS G F, Malta 0 L, deMello C et al. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews,200,196:165-195.
    [99]Luo Y H, Yan Q, Wu S et al. Inter- and intra-molecular energy transfer during sensitization of Eu (DBM) 3Phen luminescence by Tb (DBM) 3Phen in PMMA. J. Photochem. Photobiol., A. Chem.2007,191:91.
    [100]Biao Chen, Yanhua Luo, Hao Liang et al. Optical properties of a tetradentate bis((?)diketonate) europium(Ⅲ) complex. Spectrochimica Acta Part A2008,70:1203-1207.
    [101]Miranda P, Zukerman-Schpector J, Isolani P C et al. Synthesis and structure of lanthanide picrates with trans-1,3-dithiane-1,3-dioxide. J. Alloys Compd.2002,343:143.
    [102]Tanabe S, Ohyagi T, Soga N et al. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses.1992,42:3305-3310.
    [103]Zhang Xiaoping, Wen Shipeng, Hu Shui et al. Electrospinning preparation and luminescence properties of Eu(TTA)3phen/polystyrene composite nanofibers. Journal of Rare Earths,2010,28(3):333.
    [104]Zhaogang Nie, Heungyeol Lee, Hyunkwon Shin et al. Optical properties and spectroscope parameters of Sm(DBM)3Phen-doped poly (methyl methacrylate).Spectrochimica Acta Part A 2009,72:554-560.
    [105]Zhiqiang Zheng, Hai Ming, Xiaohong Sunet al. Study of Eu (DBM) 3phen-doped optical polymer waveguides. J. Opt. Soc. Am. B 2005,4:820-825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700