基于基片集成波导技术的背腔式缝辐射天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代通信技术的迅速发展和应用,有力地推动着通信系统向小型化、集成化以及高性能化方向发展。相对于其它部件,天线目前仍存在着集成度低、性能不高等缺点,大大制约了整机的集成化要求。微带缝天线由于其成本低、重量轻、剖面低、相对宽的工作带宽和易于批量生产等优点,因此被广泛应用在微波和毫米波系统中。由于其结构紧凑同时采用微带馈电形式,因此它可以直接和系统其它电路集成,解决了天线难以集成的难题。但是当天线需要安装在某个平台上时,微带缝天线的双向辐射特性会给系统带来非常严重的电磁兼容问题。向着平台的辐射可能影响系统其它电路的性能,同时反射回来的电磁波对天线本身也会有很大的影响,所以常常用金属腔或金属平面来抑制某一个方向的辐射以实现单向辐射。但是金属腔或金属平面的引入使得天线的体积大大增加,损害了微带缝天线的紧凑结构,使得天线与其它电路难以进行单片集成。
     本论文正是针对上述问题,以背腔式缝辐射天线为主要的研究对象,在深入研究缝天线的辐射机理的基础上,引进了新的可集成式腔体来取代金属腔,研究了基于基片集成波导技术(SIW)的宽带背腔式缝辐射天线。主要内容为:
     1.研究了缝隙天线的辐射原理;
     2.研究了基片集成波导的传输特性、基片集成波导与传统金属波导的等效问题;
     3.研究了微带馈电槽辐射天线的带宽展宽技术。通过引入多路谐振大幅度提高天线的工作带宽;
     4.最后研究了SIW腔体用来代替传统金属腔体以抑制后向辐射的设计方法以及天线的最优化设计。
     仿真和实验结果表明,本文设计和制作的毫米波段基于基片集成波导腔体技术的宽带微带馈电缝辐射天线具有结构紧凑、剖面低(只有4%工作波长)、可直接与其它电路集成(整个天线加工和制作在介质基片上,且有SIW腔体来抑制后向辐射)等优点,同时天线还具有宽频段(绝对带宽为10GHz,相对带宽为30.6%)、辐射性能好的良好特性,满足了预期的设计要求。
The rapid development and application of modern communication technology make communication systems develop toward miniaturization, integration and high performance. Compared to other components, the antennas because of the disadvantages of low integration ability and low performance have limited the integration of complete appliance greatly. Microstrip slot antennas, because of the advantages such as low cost, light weight, low profile, relatively broad work bandwidth and ease of mass production, are widely used in microwave and millimeter-wave systems. At the same time, because of the compact configuration and the adoption of microstrip-feeding, microstrip slot antennas can integrate with other circuits in the systems. So the integration problem between antennas and other circuits has been solved. But when the antennas install at a platform, the both-directional radiation characteristic of the slot antennas will bring very grievous electromagnetic compatibility into the system. The energy radiating towards to the platform will possibly affect the performance of other circuit in the system. At the same time, the electromagnetic wave reflected back will affect the antenna’s performance. So metal cavity or metal plane is usually used for suppressing the radiation of one side to get a unidirectional radiation pattern. However, the import of both metal cavity and metal plane will increase the antenna’s volume greatly and destroy the compact structure of slot antennas. At that time, it is difficult to integrate the slot antennas with other circuits on one chip.
     For solving the above problems, we will take the cavity-backed slot antenna as the main study object in this paper. After exploring the radiation mechanism of the slot antennas, we introduced a new integratable cavity to replace the metal cavity and designed a wideband cavity-backed slot antenna based on substrate integrated waveguide (SIW) technology. The main contents are:
     1. researches on the radiation mechanism of slot antenna;
     2. researches on the transmission characteristic of the substrate integrated waveguide, the equivalence between the substrate integrated waveguide and traditional metal waveguide;
     3. researches on the bandwidth increasing technology of microstrip-fed slot antenna. The work bandwidth of this antenna has increased greatly by introducing muti-resonance technology;
     4. researches on the design method of taking the SIW cavity to replace the traditional metal cavity for suppressing back radiation.
     Simulated and experimental results indicated that the designed and fabricated millimeter-wave wide-band microstip-feeding slot antenna based on SIW technology has the advantages of compact configuration, low profile (only 4% work wavelength), wide work bandwidth (absolute bandwidth of 10GHz and relative bandwidth of 30.6%) and good radiation performance. Because the whole antenna is fabricated on substrates, it can integrate with other circuit directly. The expected design goals are satisfied.
引文
[1]巫正中,钟先信,李晓毅,余文革.用于移动通信中的新型微机械贴片天线.光学精密工程, 2003,3:239-244
    [2]薛睿峰,钟顺时.微带天线小型化技术.电子技术, 2002,3:60-62
    [3] Y. Yoshimura. A microstripline slot antenna. IEEE Trans. Microwave Theory Tech., Nov. 1972, vol. 20, No. 11:760–762
    [4] D. M. Pozar. A reciprocity method of analysis for printed slot and slot coupled microstrip antennas. IEEE Trans. Antennas Propag., Dec. 1986, vol. 34, No.12:1439–1446
    [5] H. G. Akhavan and D. Mirshekar-Syahkal. Approximate model for microstrip fed slot antennas. Electron. Lett., Nov.1994, vol.30, No.23:1902–1903
    [6] J. Galejs. Admittance of a rectangular slot which is backed by a rectangular cavity. IEEE Trans. Antennas Propag., Mar.1963, vol.11, No.2:119-126
    [7] C. R. Cockrell. The input admittance of the rectangular cavity-backed slot radiator. IEEE Trans. Antennas Propag., May 1976, vol. 24, No.3:288–294
    [8] Q. Li, Z. Shen and P. T. Teo. Microstrip-fed cavity-backed slot antennas. Microwave Opt. Technol. Lett., May 2002, vol.33, No.4:229–233
    [9] J Hirokawa and M Ando. Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Transactions on Antennas Propagation, 1998, Vol.46:625-630
    [10] H Uchimura, T Takenoshita and M Fujii. Development of a laminated waveguide. IEEE Transactions on Microwave Theory and Techniques, 1998, Vol.46, No.12: 2438-2443
    [11] D. Deslandes and K. Wu. Single-substrate integration technique of planar circuits and Waveguide Filters. IEEE Transactions on Microwave Theory and Techniques, Feb. 2003, vol.51, No.21:593-596
    [12] F. Xu and K. Wu. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 2005, Vol.53, No.1:66-73
    [13] H. Li, W. Hong and T. J. Cui, et al. Propagation characteristics of substrate integrated waveguides: numerical simulations and experimental results. IEEE MTT-S Microwave Symposium Digest, Philadelphia, USA, 2003,vol.3:2049-2052
    [14] Y. L. Zhang, W. Hong, F. Xu, K. Wu and T. J. Cui. Analysis of guided-wave problems insubstrate integrated waveguides-numerical simulations and experimental results. IEEE MTT-S International Microwave Symposium Digest, USA, 2003 vol.3:2028-2031
    [15] F. Xu, Y. L. Zhang and W Hong, et al. Finite difference frequency domain algorithm for modeling guided-wave properties of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 2003,vol.51, no.1l:2221-2227
    [16] L. Yan and W. Hong. Investigations on the propagation characteristics of the Substrate Integrated Waveguide based on the Method of Lines. IEE Proceedings-H: Microwaves, Antennas and Propagation, 2005,vol.152, no.1
    [17] Y. L. Zhang, W. Hong, K. Wu, J. X. Chen and H. J. Tang. Novel substrate integrated waveguide cavity filter with defected ground structure. IEEE Trans. on Microwave Theory and Techniques, Apr. 2005, vol.53, No.4:1280-1287
    [18] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui, Multilayered substrate integrated waveguide (MSIW) elliptic filter, IEEE Microwave Wireless Compon. Lett, 2005, vol.15, No.2:95-97
    [19] Z. C. Hao, W. Hong, J. Chen, X. P. Chen, K.Wu. Compact Super-Wide Band-Pass Substrate Integrated Waveguide (SIW) Filters. IEEE Transactions on Microwave Theory and Techniques, 2004,vol.53:2968-2977
    [20] X. P Chen and W. Hong et al. Planar asymmetric dual-mode filters based on substrate integrated waveguide (SIW). IEEE MITT-S International Microwave Symposium Digest, Long Beach, California, USA, June 12-17, 2005
    [21] Z. C. Hao, W. Hong, H. Li, H. Zhang, and K. Wu. A broadband substrate integrated waveguide (SIW) Filter. IEEE International Symposium on Antennas and Propagation, Washington, DC, USA, July 3-8, 2005
    [22] Z. C. Hao, W. Hong, J. X. Chen, X. P. Chen, and K. Wu. A planar diplexer for microwave integrated circuits. IEE Proc. Microwaves, Antennas and Propagation,Dec.2005, vol.152, No.6:455-459
    [23] H. Li, A. D. Chen, W. Hong et al. Simulation and experiment of SIW directional couplers. Jour. Of-Microwaves (in Chinese), 2004,Vol.20:54-56
    [24] Y.L.Zhang, W.Hong, K.Wu, and L.Yan. H-plane SIW hybrid-ring directional couplers. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies (MAPE2005), Aug.8-12, Beijing, 2005
    [25] S.Germain, D. Deslandes and K.Wu. Development of substrate integrated waveguide powerDividers. Canadian Conference on Electrical and Computer Engineering, 2003, Vol.3: 1921-1924
    [26] L. Yan, W. Hong and K. Wu, et al. Simulation and experiment on SIW slot array antennas. IEEE Microwave and Wireless Components Letters, September, 2004, Vol.14:446-448
    [27] L. Yan, W. Hong, G. Hua, J. X. Chen, K. Wu and T. J. Cui. Simulation and experiment on SIW slot array antennas. IEEE Microwave and Wireless Components Letters, Sep. 2004, vol. 14:446-448
    [28] L. Yan, W. Hong, K. Wu. Substrate integrated waveguide monopulse antenna. IEEE Int. Symposium on Antenna and Propagation, USA, 2005
    [29] Zi. C. Hao, W. Hong, J. X. Chen, X. P. Chen and K. Wu. A novel feeding technique for antipodal linearly tapered Slot Antenna Array. IEEE MITT-S 2005 International Microwave Symposium, Long Beach, California, June 12-17,2005
    [30] W. Che, K. Deng, Y. L. Chow. Equivalence between waveguides with side walls of cylinders (SIW) and of regular solid sheets. 2005 Asia-Pacific Microwave Conference. Dee.4-7, 2005, Suzhou, China:296-299
    [31] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro. Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave Wireless Compon. Lett., Feb. 2002, vol. 12, No. 2:333–335
    [32]谢处方,邱文杰.天线原理与设计.西安:西北电讯工程学院出版社,1985
    [33] John.D.Kruas,Ronald J.Marhefka著,章文勋译. Antennas: for All Applications.天线(美).北京:电子工业出版社,2004
    [34]许福永,赵克玉.电磁场与电磁波.北京:科学出版社,2005
    [35]刘克成,宋学诚.天线原理,长沙:国防科技大学出版社,1985
    [36]康行健.天线原理与应用.北京:北京理工大学出版社,1993
    [37]任朗.天线理论基础.北京:人民邮电出版社,1979
    [38]钟顺时.微带天线理论与应用.西安:西安电子科技大学出版社,1991
    [39] L. Zhu, R. Fu, and K. Wu. A novel broadband microstrip-fed wide slot antenna with double rejection zeros. IEEE antennas and wireless propagation letters, 2003, vol.2:194–196
    [40]龙云亮等.新型微带馈电线缝隙天线阵的设计.中山大学学报(自然科学版),2002.5,Vol.41,No.3
    [41] B. Zheng, and Z. Shen. Effect of a finite ground plane on microstrip-fed cavity-backed slot antennas. IEEE Trans. Antennas Propag. Feb.2005, vol.53, No.2: 862–865

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700