MWCNTs/Ti(C,N)金属陶瓷复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti(C,N)金属陶瓷以其高硬度、耐磨损、耐腐蚀、耐高温等优良性能,在金属加工、高温部件等工业领域中应用前景广阔,但是脆性大制约着其广泛应用。多壁碳纳米管(MWCNTs)的强度和韧性都优于任何纤维材料。因此研究MWCNTs/Ti(C,N)金属陶瓷复合材料的制备及其性能具有重要理论意义和实用价值。
     本文以TiC、TiN为主要原料,以WC、Mo_2C、TaC、Cr_3C_2为硬质添加相,以Ni和Co为金属粘结相,以MWCNTs为纤维增强剂,经过改性,分散,混料,热压烧结制备了MWCNTs/Ti(C,N)金属陶瓷复合材料,研究了不同MWCNTs添加量对Ti(C,N)金属陶瓷组织结构和力学性能的影响,确定了最佳添加量和烧成制度,表征了复合材料的高温抗氧化性能,并探讨了MWCNTs对Ti(C,N)金属陶瓷增韧机理。
     对化学活性低的MWCNTs进行酸化,并利用钛酸四丁酯在其表面负载TiO_2,以改善MWCNTs分散性及其与Ti(C,N)金属陶瓷的相容性,结果显示:MWCNTs在浓硝酸中于80℃浸泡1h可以去除杂质,减少缠绕粘连现象,使其能较稳定、均匀地分散在乙醇溶液中;MWCNTs表面负载纳米TiO_2可增加其在乙醇中分散性能。添加酸化后的MWCNTs到Ti(C,N)金属陶瓷中制备的复合材料具有典型的芯-壳结构:黑芯-灰壳和白芯-灰壳两种,随着MWCNTs添加量的增加,白芯-灰壳结构增多,黑芯和白芯都增大,黑芯结构变得不完整,材料的相对密度先缓慢下降,当加入量达到2.5wt%后急剧下降,复合材料的抗弯强度、硬度和断裂韧性呈现先增加后降低的趋势,在MWCNTs的添加量为1wt%时,材料抗弯强度、维氏硬度和断裂韧性分别为1224.46MPa、20.96GPa和9.85MPa·m~(1/2),比未添加MWCNTs的Ti(C,N)金属陶瓷的各项性能(分别为1090.87MPa、19.01GPa,8.44MPa·m1/2)分别提高了11.33%、10.26%和16.71%。
     通过正交试验确定负载纳米TiO2的MWCNTs在Ti(C,N)金属陶瓷中的添加量为1wt%,烧成温度为1440℃,保温时间为20min,成型压力为25MPa,可获得最佳综合力学性能复合材料S10,其抗弯强度、维氏硬度和断裂韧性分别达到1275.14MPa、22.27GPa和10.60MPa·m~(1/2),比未添加MWCNTs的Ti(C,N)金属陶瓷的各项性能分别提高了16.89%、17.15%和25.59%。MWCNTs对材料的增韧机理主要有MWCNTs的桥联和拔出、裂纹偏转、残余应力以及微孔洞增韧。
     将S10进行高温抗氧化性试验,在SEM电镜下观察样品发现,1100℃保温2h的样品表面致密,断面氧化层厚度为56.3μm,过渡层的厚度为11.12μm,这些致密的氧化过渡层有效地阻止样品的进一步氧化,显示了较好的高温抗氧化性能。
Because of the excellent properties: high hardness, abrasion resistance, corrosion resistance, high temperature resistance etc. Ti(C,N) cermet received special attention in the industry application, such as metalworking and high temperature parts, but its widely using were limited by its brittleness. The mechanical properties of Multiwalled Carbon Nano-Tubes(MWCNTs) were higher than another fiber materials. Therefore, it is an important theoretical significance and practical value to investigate the prepartion and properties of MWCNTs/Ti(C,N) cermet composites.
     In this investigation, MWCNTs/Ti(C, N) cermet composites were prepared by purified, dispersed and vacuum hot pressing sintering, with TiC、TiN as raw materials, WC, Mo2C, TaC, Cr_3C_2 as hard addition phases, Ni and Co as binder phases, and MWCNTs as fiber reinforcing agent, the effects of MWCNTs addition on the microstructure and mechanical properties of Ti(C, N) cermet were investigated. The optimum content of MWCNTs and sintering system were finded, the high temperature oxidation resistance was characterized and the toughening mechanisms of composites were studied.
     The MWCNTs with lower chemical activities were acidified and purified by concentrated nitric acid, and nano-TiO_2 were supported on its surface by reacted with tetrabutyl titanate, to improve its dispersibility and compatibility in Ti(C, N) cermet, the results showed that: the impurities in MWCNTs were rapidly and effectively removed by concentrated nitric acid at 80℃holding 1h, the issues of winding and adhesion were reduced, the dispersity of disperse liquid were improved in ethanol with MWCNTs purified and supported TiO_2.
     The typical core-rim microstructure existed in acidified MWCNTs/Ti(C,N) cermet composites: black core-gray rim structure and white core-gray rim structure, the volume fraction of white core structure and the size of core structure were increased as MWCNTs addition increased, but the black core were incompleted as its increased, and the densities of cermet were decreased slowly then sharply until MWCNTs addition reached 2.5wt%. The bending strength, hardness and fracture toughness of cermet were trended to increase and then decrease as MWCNTs increasing. bending strength, Vickers hardness and fracture toughness of composites was respectively reached 1224.46MPa, 20.96GPa and 9.85MPa?m1/2,when MWCNTs addition is 1wt%, and respectively 11.33%, 10.26% and 16.71% improved comparing with the mechanism properties (respectively 1090.87MPa, 19.01GPa, 8.44MPa·m~(1/2)) of Ti(C,N) cermet without MWCNTs contented.
     The best comprehensive mechanical properties of sample S10 were reached by adding 1wt% MWCNTs supported TiO2, sintering in 1440℃holding 20min and the molding pressure is 25MPa, which obtained by orthogonal test, the bending strength, Vickers hardness and fracture toughness of S10 was 1275.14MPa、22.27GPa and 10.60MPa·m~(1/2), was respectively 16.89%、17.15% and 25.59% improved comparing with the properties of Ti(C,N) cermet without MWCNTs contented. Bridging and pulling out of MWCNTs, crack deflection, residual stress toughening and micro-voids toughening attributed to fracture toughness of composites.
     High temperature oxidation resistance of S10 were studied, in the section SEM photograph of sample,the sample which put in 1100℃holding 2h with compact surface and content oxide layer and transition layer, the thickness respectively is 56.3μm and 11.12μm, this dense layer of protection were effectly prevent further oxidation of the sample, showed the excellent oxidation resistance.
引文
[1]李荣久主编.陶瓷-金属复合材料[M].北京:冶金工业出版社, 2004:1.
    [2]陈云,杜齐明,董万福等.现代金属切削刀具实用技术[M].北京:化学工业出版社, 2008:66-70.
    [3] P. Ettmayer, W. Lengauer. The story of cermet[J]. Powder Met. Inter., 1989, 21(2): 37-38.
    [4]陆庆忠,张福润,余立新. Ti(C,N)基金属陶瓷的研究现状及发展趋势[J].武汉科技学院报. 2002, 15(5): 43-46.
    [5]曾德麟.粉末冶金材料[M].北京:冶金出版社, 1989:190-210.
    [6] K. J. A. Brookes世界硬质合金指南手册[M].株洲:株洲硬质合金厂情报科译, 1982:3-35.
    [7] E. B. Clark, B. Roebuck. Extending the application areas for titanium carbonitride cermet[J]. Int. J. Refr. Metals & Hard Mater., 1992, 11: 23-33.
    [8]国外硬质合金编写组.国外硬质合金[M].北京:冶金工业出版社, 1976:168-519.
    [9] S. Bolognini, G. Feusier, D. Mari. High temperature mechanical behaviour of Ti(C,N)-Mo-Co cermet [J]. Int. J. Refr. Metals & Hard Mater., 1998, 16: 257-268.
    [10] M. Ehira, A. Egami. Mechanical Properties and Microstructures of Submicron Cermet[J]. Int. J. Refr. Metals & Hard Mater., 1995, 13: 313-319.
    [11] E. Rudy. Boundary phase stability and crtical phenomena in higher order solid solution sustem[J]. J. Less-Commen Metals, 1973, 33(1): 43-70.
    [12] Kieffer R, Ettmayer P, Freudhofmeier M. New sintered nitride and carbonitride hard metals[J]. Metall, 1971, 25(12): 1335-1341.
    [13]刘涛,丰平. Ti(C,N)基金属陶瓷的研究进展[J].江苏陶瓷. 2005, 38(6): 20-23.
    [14] S. Bolognini, G. Feusier. High temperature mechanical behaviour of Ti(C,N)-Mo-Co cermet[J]. RM & HM, 1998, 16: 257-268.
    [15] F. Qi, S. Kang. A study on microstructural changes in Ti(C,N)-NbC-Ni cermet[J]. Meterials Science and Engineering, 1998, A251: 276-285.
    [16] J. Zackrisson, H. O. Andrén. Effect of carbon content on the microstructure and mechanical properties of (Ti,W,Ta,Mo)(C,N)-(Co,Ni) cermet[J]. Int. J. Refr. Metals & Hard Mater, 1999, 17: 265-273.
    [17]蔡威,刘宁.第二相碳化物对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金. 2008, 25(2): 126-130.
    [18] S. Chao, N. Liu, Y. P. Yuan et al. Microstructure and mechanical properties of ultrafine Ti(C,N)-based cermet fabricated from nano/submicro starting powders[J]. Ceram. Inter., 2005, 31: 851-862.
    [19]刘宁. Ti(C,N)基金属陶瓷的组织性能及发展[J].硬质合金. 1992, 9(3): 166-171.
    [20]周泽华,丁培道. Ti(C,N)基金属陶瓷的添加成份研究现状[J].材料导报. 2000, 4: 21-22.
    [21] L. George, D. Kaplan Wayne, B. M. Structure refinement of titanium carbonitride(TiCN)[J]. Materials Letters, 1998, 35(5-6): 344-350.
    [22]陈森凤,卢迪芬,刘富德等. Ti(C_(0.12)N_(0.88))粉末的高温合成[J].中国陶瓷. 2000, 36(5): 4-5.
    [23] Frederic Monteverde, Valentina Medri, Alida Bellosi. Synthesis of ultrafine titanium carbonitride powders [J]. Applied Organometallic Chemistry, 2001, 15: 421-429.
    [24]康志君,李明怡,白淑珍等. Ti(CxN1-x)粉末SHS工艺研究[J].硬质合金. 1996, 13(2): 82-85.
    [25]黄向东,葛昌纯,夏元洛.氨解法制备的Ti(C、N)粉末及其性能[J].耐火材料. 1998, 32(2): 63-65.
    [26]向军辉,肖汉宁.溶胶-凝胶工艺合成Ti(C,N)超细粉末[J].无机材料学报. 1998(5): 739-744.
    [27]曾达权,胡肃端,罗琼琼等.等离子体法合成超细碳氮化钛固溶体微粉[J].化学学报. 1991(49): 1103-1106.
    [28] Feng Xin, Yishi Li. Novel chemical metathesis route to prepare TiCN nanocrystallites at low temperature[J]. Materials Chemistry And Physics, 2005, 94: 58-61.
    [29] Guozhen Shen, Kaibin Tang, Changhua An et al. A simple route to prepare nanocrystalline titanium carbonitride[J]. Materials Research Bulletin, 2002, 37: 1207-1211.
    [30]武宏让. TiC-TiN陶瓷体系的机械合金化[J].粉末冶金技术. 1998, 16(1): 41-44.
    [31]冯成建,张建树.采用攀钢高炉渣制取碳化钛的试验研究[J].矿产综合利用. 1997(6): 34-41.
    [32] Weham. Ormation of nabometric hard materials by cold milling[J]. Journal of European Ceramic Society, 1999, 19(16): 2833-2841.
    [33] P. R. Taylor. Reactive Plasma spray synthesis of titanium carbide[C]. Warrendale. PA USA: TMS Minerals, Metals & Materials Soc, 1998. 767-775.
    [34]李少峰. Ti(C,N)基金属陶瓷的显微结构和力学性能研究[D].景德镇:景德镇陶瓷学院, 2010.
    [35]胡巍巍,李冠晓,刘宁等.球磨工艺对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金. 2010(6): 358-364.
    [36]熊剑飞. SBS新型成型剂的开发与应用研究[J].硬质合金. 1999(3): 142-146.
    [37]谢志鹏,黄勇.凝胶铸技术在陶瓷成型应用中的新发展[J].陶瓷学报. 2001(3): 142-146.
    [38]刘维良主编.先进陶瓷工艺学[M].武汉:武汉理工大学出版社, 2004:107-131.
    [39]张菁. Ti(C,N)基金属陶瓷的高温力学性能[J].硬质合金. 1995, 12: 187-189.
    [40]刘宁,赵兴中,刘灿楼等.添加碳对Ti(C,N)基金属陶瓷组织和性能的影响[M].理化检验(物理分册). 1995(2): 13-15.
    [41]周泽华,丁培道. Ti(C,N)基金属陶瓷的添加成份研究现状[J].材料导报. 2000(4): 21-22.
    [42]熊惟皓,胡镇华,崔崑. Ti(C,N)基金属陶瓷中碳化物的界面行为[J].材料导报. 1998, 12(2): 14-16.
    [43]贺从训,夏志华,汪有明等. Ti(C,N)基金属陶瓷的研究[J].稀有金属. 1999, 23(1): 4-12.
    [44] J. M. Barranco, R. A. Warenchak. Liquid phase sintering of carbides using a nikel-molubdenum alloy[J]. Int. J. Refr. Metals & Hard Mater., 1989, 4: 1-2.
    [45] V. A. Tracey. Nickel in Hardmetals[J]. Int. J. Refr. Metals & Hard Mater., 1992, 11: 137-149.
    [46]丰平.超细晶粒Ti(C,N)基金属陶瓷的研究[D].武汉:华中科技大学, 2004.
    [47] D. Mari, S. Bolognini, T. Viatte et al. Study of the mechanical properties of TiCN-WC-Co hardmetals by the internal friction[J]. Int. J. Refr. Metals & Hard Mater., 2001, 19: 257-265.
    [48] P. Ettmayer, U. Rolander, H. O. Andren. Atom-probe analysis of the binder phase in TiC-TiN-Mo2C-(Ni,Co) cermet[J]. Int. J. Refr. Metals & Hard Mater., 1994, 12: 115-119.
    [49]刘宁,崔昆,胡镇华.添加AIN对Ti(C,N)基金属陶瓷力学性能和显微组织的影响[M].理化检验—物理分册, 1997: 15-17.
    [50] P. Lindah, P. Gustafson, U. Rolander et al. Micmstructure of model cermet with high Mo or W content[J]. Int. J. Refr. Metals & Hard Mater., 1999, 17: 411-421.
    [51] F. Qi, S. Kang. A study on microstructural changes in Ti(C,N)-NbC-Ni cermet[J]. Materials Science and Engineering, 1998, A251: 276-281.
    [52] S. Ahn, S. Kang. Effect of various carbides on the dissolution behavior of Ti(C0.7N0.3) in a Ti(C0.7N0.3)-30Ni system[J]. Int. J. Refr. Metals & Hard Mater., 2001, 19: 539-545.
    [53] Won Tae Kwona, June Seuk Park, Seong-Won Kimb et al. Effect of WC and groupIV cabides on the cutting performance of Ti(C,N) cermet tools[J]. Int. J. Refr. Metals & Hard Mater., 2004, 44: 341-346.
    [54] Ning Liu, Yudong Xu, Zhenhong Li et al. Influence of molybdenum addition on the microstructure and mechanical properties of TiC-based cermet with nano–TiN modification Ceramics[J]. International, 2003, 29: 919-923.
    [55]刘宁,吕庆荣,姜勇等.化学成份对Ti(C,N)基金属陶瓷力学性能的影响[J].硬质合金. 1999(11): 206-210.
    [56]贺从训,夏至华,汪有明等. Ti(C,N)基金属陶瓷的研究[J].稀有金属. 1999, 23(1): 4-12.
    [57]刘宁,胡镇华,崔昆. Mo在颗粒型复合材料金属陶瓷中的作用[J].稀有金属材料与工程. 1994(6): 45-50.
    [58] Jung Jinkwan, Kang, Shinhoo. Effect of ultra-fine powders on the microstructure of Ti(C,N)-xWC-Ni cermet[J]. Acta Materialia, 2004, 52: 1379-1384.
    [59]何林,黄传真,孙静等. Cr_3C_2含量对Ti(C,N)基金属陶瓷力学性能的影响[J].材料工程. 2003(7): 7-9.
    [60]詹斌,刘宁. VC对纳米TiN改性Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金. 2010(4): 214-220.
    [61]李鹏,胡耀波,熊惟皓等.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金. 2000, 17(2): 65-68.
    [62]刘宁,胡镇华,崔昆等.钇对金属陶瓷力学性能和组织的影响[J].中国稀土学报. 1997, 15(1): 80-82.
    [63]刘宁,黄新民,周杰等. Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报. 2000, (1): 72-76.
    [64] Sumio Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.
    [65] Sumio Iijima, Hideki Ichihashi. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993(363): 603-605.
    [66] Bthune Ds, Kiang Ch, De Vries MS et al. Cobalt-catalysed growth of cabon nanotubes with single-atomic-layer walls[J]. Nature, 1993(363): 605-607.
    [67]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社, 2003:137-139.
    [68] T. W. Ebbesen, H. J. Lezec, Hiura H et al. Electrical structure and growth mechanism of carbon nanotubules[J]. Nature, 1996, 382(6586): 54-56.
    [69] R. Satio, M. Fujita, G. Dresselhaus et al. Electrical structure and growth mechanism of carbon tubules[J]. Materials Science and Engineering B, 1993, 19: 185-191.
    [70] Y. Murakami, T. Shibata, K. Okuyama et al. Structural, magaetic and superconducting properities of graphite nanotubes and their encapsulationIV cabides on the cutting performance of Ti(C,N) cermet tools[J]. Int. J. Refr. Metals & Hard Mater., 2004, 44: 341-346.
    [54] Ning Liu, Yudong Xu, Zhenhong Li et al. Influence of molybdenum addition on the microstructure and mechanical properties of TiC-based cermet with nano–TiN modification Ceramics[J]. International, 2003, 29: 919-923.
    [55]刘宁,吕庆荣,姜勇等.化学成份对Ti(C,N)基金属陶瓷力学性能的影响[J].硬质合金. 1999(11): 206-210.
    [56]贺从训,夏至华,汪有明等. Ti(C,N)基金属陶瓷的研究[J].稀有金属. 1999, 23(1): 4-12.
    [57]刘宁,胡镇华,崔昆. Mo在颗粒型复合材料金属陶瓷中的作用[J].稀有金属材料与工程. 1994(6): 45-50.
    [58] Jung Jinkwan, Kang, Shinhoo. Effect of ultra-fine powders on the microstructure of Ti(C,N)-xWC-Ni cermet[J]. Acta Materialia, 2004, 52: 1379-1384.
    [59]何林,黄传真,孙静等. Cr_3C_2含量对Ti(C,N)基金属陶瓷力学性能的影响[J].材料工程. 2003(7): 7-9.
    [60]詹斌,刘宁. VC对纳米TiN改性Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金. 2010(4): 214-220.
    [61]李鹏,胡耀波,熊惟皓等.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金. 2000, 17(2): 65-68.
    [62]刘宁,胡镇华,崔昆等.钇对金属陶瓷力学性能和组织的影响[J].中国稀土学报. 1997, 15(1): 80-82.
    [63]刘宁,黄新民,周杰等. Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报. 2000, (1): 72-76.
    [64] Sumio Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.
    [65] Sumio Iijima, Hideki Ichihashi. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993(363): 603-605.
    [66] Bthune Ds, Kiang Ch, De Vries MS et al. Cobalt-catalysed growth of cabon nanotubes with single-atomic-layer walls[J]. Nature, 1993(363): 605-607.
    [67]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社, 2003:137-139.
    [68] T. W. Ebbesen, H. J. Lezec, Hiura H et al. Electrical structure and growth mechanism of carbon nanotubules[J]. Nature, 1996, 382(6586): 54-56.
    [69] R. Satio, M. Fujita, G. Dresselhaus et al. Electrical structure and growth mechanism of carbon tubules[J]. Materials Science and Engineering B, 1993, 19: 185-191.
    [70] Y. Murakami, T. Shibata, K. Okuyama et al. Structural, magaetic and superconducting properities of graphite nanotubes and their encapsulation
    [87]范锦鹏,赵大庆.多壁碳纳米管-氧化铝复合材料的制备及增韧机理研究[J].纳米技术与精密工程. 2004(3): 182-186.
    [88]吴希俊,谭国龙.纳米碳化钨-钴-碳化钒硬质合金的制备方法及设备[P].中国专利, 1240639. [2000.01.19].
    [89] Y. Morisada, Y. Miyamoto. SiC-coated Carbon Nanotubes and Their Application as Reinforcements for Cemented Carbides[J]. Materials Science and Engineering, 2004, A381: 57-61.
    [90] G. L. Tan, X. J. Wu, Z. Q. Li. Preparation and Mechanical Properties of Nanostructured Tungsten Carbide Alloys Strengthened by Carbon Nanotubes Continus Nanophase and Nanostructured Materials Symposium[J]. Materials Research Society Symposium Proceeding, 2004, 788: 449-452.
    [91]李少峰,刘维良,彭牛生. Ti(C,N)基金属陶瓷的显微结构和力学性能研究[J].陶瓷学报. 2009, 30(4): 495-498.
    [92]松山芳治,三谷裕康,铃木寿等.粉末冶金学[M].周安山,高一平,王颖译:科学出版社, 1978:320-325.
    [93]冬连红,丁克强,曹萌.二氧化钛/碳纳米管复合纳米材料的制备和表征[J].河北师范大学学报(自然科学版). 2008, 32(3): 367-369.
    [94]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社, 1995:263-284.
    [95]穆柏春.陶瓷材料的韧化[M].北京:冶金工业出版社, 2002:33-37.
    [96] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptional high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381(678-679).
    [97] J. L. Bobet, J. Lamon. Study of Thermal Residual Stresses in Ceramic Matrix Composites[J]. Journal of Alloys and Compounds, 1997, 259(1-2): 260-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700