低成本高强韧低合金铸钢组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着铸钢生产技术的迅速发展,高性能铸钢的生产与应用越来越广泛。高性能铸钢与传统铸钢相比,在强度、韧性等方面具有独特的优越性。目前,部分原材料价格呈上涨趋势,为达到低成本高性能的目的,必须考虑材料的成本。
     以ZG35SiMn为研究对象,通过正交实验设计低合金钢的基本化学成分,考察其力学性能和显微组织,分析各元素、热处理工艺对铸造低合金钢组织和性能的影响。运用正交实验直观分析法和回归分析法分别得到低合金钢中四种基本成分的最佳配比以及力学性能与各元素含量之间的关系式。结合一定成本和性能的要求,在正交实验的基础上研究了加入稀土和铌对低合金钢组织和性能的影响,探讨了稀土和铌在钢中的作用机理。通过热力学计算,分析了稀土和铌在钢中的存在形式以及稀土在钢中生成氧化物、硫化物的条件。
     利用光学显微镜、扫描电镜,能谱分析等手段分析了合金的显微组织。结果表明,稀土不仅有脱氧、脱硫的作用,还能控制夹杂物形态。稀土和铌都有细化晶粒的作用。运用错配度和经典电子理论,分析了Ce203和NbC作为基底促进形核相非均质形核的能力,证明了Ce203对6-Fe非均质形核有非常显著效用,对γ-Fe非均质形核效用中等,而NbC对6-Fe和γ-Fe的非均质形核效用都为中等。可认为细化晶粒的主要机理是Ce203和NbC成为初生γ-Fe和6-Fe的异质晶核以及稀土在晶界的偏聚而对晶界的阻碍作用。
     用万能拉伸试验机和布氏硬度计分别进行拉伸试验和宏观硬度测量。结果表明,钢中加入0.03%稀土后,屈服强度由525MPa提高到535MPa,而延伸率则由18%下降到16.1%;在此基础上再加入0.03%铌,屈服强度进一步提高到565MPa,而延伸率则为17%。实验证明,稀土与铌的复合加入,稀土的固溶强化作用增强,碳化铌析出增多,呈弥散状分布于铁素体基体,且颗粒较小。用稀土和铌微合金化复合处理可使低合金钢获得良好的强韧化综合性能。
     低合金钢中复合加入稀土和铌,开发出了正火态屈服强度为565MPa,延伸率为17%的强韧性能良好的低合金钢。低成本实现了低合金钢强度与韧性的协调提升。
Along with cast steel production technology developing rapidly, development and applications of high-performance cast steel also become more and more widly. High-performance steel has unique superiority, with respect to strength and ductility, compared with traditional cast steel. Now, a part of raw materials is getting to rise in price, to reduce cost and improve performance, the cost of materials must be considering.
     This paper focuses on steel of ZG35SiMn, through orthogonal experimental designing elementary composition of low alloy steel, investigating its mechanical property, to analysis the elements and techenology for heating treatment process how to influen on its microscopic structure and property. Orthogonal experimental intuitive analysis and regression analysis are used to get optimum composition, and relationship between mechanical property and content of element. To combine the cost and demand on property, then, on the basis of orthogonal experimental, add rare earth and Nb to liquid steel, to research their influence on low alloy steel's performance and microstructure, and investigate the mechanism of action of rare earth and Nb on steel.The article has analysised what rare earth and Nb to exist in steel, and how oxide and sulphide to be produced, by thermodynamic calculation.
     Metallographic structure is analysised by the optical microscope and scanning electron microscope. It turned out that rare earth is not only with good functions deoxidation and desulfurization, but also controlling the morphology of inclusions. The rare earth and Nb both can promote fine grain size. It has anaysised the capability of nucleation based on Ce2O3 and NbC according to lattice misfit theory and classical electron theory, the result shows that Ce2O3 has the best remarkable capability of nucleation to 8-Fe, and medium toδ-Fe, while NbC has moderate capability of nucleation to 8-Fe and y-Fe. Ce2O3 and NbC to be phases of primary austenite and ferrite, and rare earth gathering to block grain boundary moving, are considered main mechanism of refined grains.
     Tensile and hardness has tested by universal tensile testing machine and Breinell tester. It shows that after adding 0.03%RE to steel, yield strength of it has increaseds from 525MPa to 535MPa while elongation of it has dropped from 18% to 16.6%. Based on the former, adding another 0.03%Nb to steel, yield strength of it has raised to 565MPa while elongation of it also has raised to 17%. So, it's proved that solution strengthening of RE become more effective and dispersive distribution of fine NbC particles separate more out when adding RE and Nb together. Low alloy steel can get well combination property as strengthening-toughening when RE and Nb are used for microalloyed steel.
     After adding RE and Nb to cast low alloy steel, yield strength of it has improved to 565MPa, and elongation of it improved to 17%. It comes true that strengthening-toughening is coordinated upgrade with low cost.
引文
[1]Albright D L,Eldis G T. Structure and Mechanical Properties of Mormalized and Aged Mn-Mo-Nb-V Cast Steels [J]. AFSTransations,1982.625-634.
    [2]中国机械工程学会铸造专业学会编.铸造手册·第二卷·铸钢[M].北京:机械工业出版社,1991.
    [3]叶平,沈剑平,王光耀,等.汽车轻量化用高强度钢现状及其发展趋势[J].机械工程材料,2006(3):4-6.
    [4]王祖滨.低合金钢和微合金钢的发展[J].中国冶金,2009,(3):19-23.
    [5]Peter F,Marcus H,Karlis M,et al. World Sieel Dynamics [J]. Global Metallics Crisis,1994:12-14.
    [6]高泽平.低合金高强度钢的强化机理及生产工艺的探讨[J].湖南冶金,2001,(1):17-20.
    [7]侯晶,王飞,赵国英.微合金钢的研究现状及发展趋势[J].材料导报,2007,21(6):91-95.
    [8]王仪康.微合金钢回顾与展望[J].中国工程科学,2000,2(2):77-78.
    [9]马智明,宋红煌,杨华.微合金钢在性能和经济方面的协调[J].河南冶金,2001,5(46)19-22.
    [10]雍岐龙,孙新军,郑磊,等.钢铁材料中第二相的作用[J].科技创新导报,2009,(8):1-3.
    [11]赵路遇.微量稀土元素在铸钢中的应用[J].材料开发与应用,2003,18(3):43-46.
    [12]叶文,郭世宝,林勤.稀土对钢中碳化铌溶解和析出行为的影响.中国稀土学报,1994,(4):340-343.
    [13]余宗森.钢中稀土[M].北京:冶金工业出版社,1982:19-21.
    [14]褚幼义.钢中稀土夹杂物鉴定[M].北京,冶金工业出版社,1985:28-32.
    [15]付俊岩.Nb微合金化和含铌钢的发展及技术进步[J].钢铁,2005,40(8):1-6.
    [16]曹建春,刘清友,雍岐龙,等.铌对高强度低合金钢的组织和强化机制的影响[J].钢铁,2006,41(8):60-63.
    [17]东涛,孟繁茂,王祖滨,等.神奇的Nb—铌在钢铁中的应用[M].北京:中信美国钢铁公司,1996:643-647.
    [18]周兰聚,唐立东,苗钊.稀土微合金化及其对钒铌沉淀相析出规律的影响[J].钢铁研究,2001,4(21):10-13.
    [19]林勤,宋波,郭兴敏,等.钢中稀土微合金化作用与应用前景[J].稀土,2001,22(4):31-36.
    [20]Yoneguchi A,Schaad J. Development of New High Strength Spring Steel and Its Application to Automotive Coil Spring [J]. SAE Technical Paper Series,2000,(1):98-99.
    [21]叶文,郭世宝,林勤.稀土对钢中碳化铌溶解和析出行为的影响[J].中国稀土学报,1994,4(12):340-343.
    [22]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社,2002:9-11.
    [23]刘靖,鹿守理.低碳钢组织与力学性能关系[J].北京科技大学学报,2002,24(2):208-210.
    [24]魏新刚,张英.稀土在钢中的应用与作用[J].内蒙古石油化工,2007,(8):37-38.
    [25]徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2006:37-76.
    [26]齐俊杰,黄运华,张跃.微合金化钢[M].北京:金工业出版社,2006:49-57.
    [27]王龙妹,兰德年,岳丽杰.稀土元素在高强韧钢中的作用及应用前景[J].稀土,2003,24(5):10-12.
    [28]Breyer N. Some Effect of Certain Trace Elements on the Properties of High Strengths Steels [C]. In:Elect Furn Conf Proc[M].1973,31:183-185.
    [29]王龙妹.发展新一代高强韧钢的重要元素—稀土[J].产业前沿,2004,9(130):19-22.
    [30]屈乃琴,陈久录.铌的应用现状及展望[J].世界有色金属,1998,(11):16-19.
    [31]姜茂发,王荣,李春龙.钢中稀土与妮、钒、钦等微合金元素的相互作用[J].稀土,2003,24(5):1-2.
    [32]Lin Qin,Yie Wen. Behaviour of Rare Earthsis Soild Soluting in Steel [J]. Chin J Met Sci, 1990,6(6):45.
    [33]付俊岩.Nb微合金化技术在特钢长型材中的应用[J].中国特殊钢年会2005论文集,2005,113-124.
    [34]董寅生,苏华钦,梅建平.中碳铸钢微合金化的研究[J].东南大学学报,1997,27(5):138-141.
    [35]候华兴,杨颖,刘明.Nb在我国及鞍钢工程机械钢中的应用技术[J].第七届(2009)中国钢铁年会论文,153-160.
    [36]王龙妹,杜挺,卢先利.微量稀土元素在钢中的作用机理及应用研究[J].稀土,2001,22(4):37-40.
    [37]周宏,崔蓖,孙培祯.稀土在钢中的作用及加入方法[J].钢铁研究,1994,78(3):46-50.
    [38]李代钟,王泽玉,王星世等.钢中稀土夹杂物形成和变化的某些规律[J].钢铁,1980,8(15):34-39.
    [39]李春龙.稀土在钢中的应用及需注意的一些问题[J].稀土,2001,22(4):1-5.
    [40]胡汉起.金属凝固[M].北京:冶金工业出版社,1985:84-86.
    [41]Tiller W,Takahashi T. The Electrostatic contribution in Hetergeneous Nucleation Theory:Pure Liquids [J]. Acta Metall,1969,17(4):483-486.
    [42]余瑞磺.固体与分子经验电子理论[J].科学通报,1978,23(4):217-219.
    [43]余瑞磺.固体与分子经验电子理论—等效价电子理论[J].科学通报,1981,26(4):206-208.
    [44]梁高飞,许振明,瞿迪柯,等.奥氏体钢非平衡凝固异质核心触媒效用的价电子判据[J].上海交通大学学报,2005,39(7):1073-1075.
    [45]梁高飞,宋长江,刘向阳,等.Au液异质形核价电子模型与基底触媒效用[J].稀有金属材料与工程,2005,34(10):1558-1560.
    [46]潘宁,宋波,翟启杰.固态化合物对钢液非均质形核的触媒作用[J].金属学报,2009,45(12):1441-1445.
    [47]Bramfitt B. The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron [J]. Metall Trans,1970,1(7):1987-1991.
    [48]Nakajima K,Hasegwa H,Khumkoa S,et al. Effect of a Catalyst on Heterogeneous in Puer Fe and Fe-Ni alloys [J]. Metall Mater Trans,2003,34B:539-541.
    [49]Suzuki T,Inoue J,Koseki T. Solidification of Iron and Steel on Single Crystal Oxide [J]. ISIJ International,2007,47(6):847-488.
    [50]Lu L,Dahle A K,StJohn D H.. Grain Refinement Efficiency and Mechanism of Aluminium Carbide in Mg-Al Alloys [J]. Scripta Materialia,2005,(53):517-522.
    [51]雍歧龙,马鸣图,吴宝榕.微合金钢-物理和化学冶金[M].北京:机械工业出版社,1989:12-105.
    [52]陈明香,胡儒卓,李润洪.微合金钢的开发与研究[J].钢管,2002,34(4):14-16.
    [53]东涛,孟繁茂,王祖滨,等.神奇的Nb—铌在钢铁中的应用[M].北京:中信美国钢铁公司,1996:643-647.
    [54]Meyer L,Heisterkamp H, Heisterkamp W. Columbian Titanium and Vanadium in Normalised, Thermomechanically Treated and Cold Rolled Steels [J]. Union Carbide Corporation,1977,(75):153-167.
    [55]Kyung-Tae Park. Effect of Treatment on Microstructures and Tensile Properties of Ultrafine Grained C-Mn Steelcontaining 0.34V [J]. ISIJ Int,2004,44(6):1057-1059.
    [56]Ali Reza Khodabandeh, Mohammad Jahazl, Steve Yue. Impact Toughness and Tensile Properties Improvement Through Microstructure Control in Hot Forged Nb-V Microalloyed Steel [J]. ISIJ Int,2005,45(2):272-274.
    [57]Rainforth W M. Precipitation of NbC in a Model Auste-nitic Steel [J]. Acta Mater,2002,50:735-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700