乳液复合高强聚丙烯酰胺水凝胶的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝胶作为一种软材料,主要通过人工合成或自然环境中得到,在生物医用及工农业中有着广泛的应用。由于凝胶含有大量水分,通常被认为强度很低。但是动物软骨、肌肉等天然凝胶具有接近橡胶的高强度,使人们重新考虑其力学性能与其结构的关系。因此,探索凝胶强度与其内部结构的关系成为当前国内外一个十分重要的研究热点。
     虽然最近几年高强凝胶如双网络结构凝胶,有机-无机复合凝胶,大分子微球复合凝胶等取得极大的进展,但是其制备过程耗费时间长,或者凝胶性能受到其内部结构缺陷等影响,制备方式方法还需进一步的改进及创新。本文通过设计两种稳定的未聚合乳液组成的交联剂体系,与丙烯酰胺共聚首次制备了一系列乳液复合高强凝胶,并且重点讨论了凝胶力学性能与乳液尺寸及浓度的关系。主要内容如下:
     1.通过纳米二氧化硅与γ-甲基丙烯酰氧基丙基三甲氧基硅烷(TPM)自发形成的乳液,然后与丙烯酰胺单体共聚制备高强凝胶。经过改变纳米SiO2与TPM的比例,制备不同尺寸的乳液颗粒,然后在不同条件下观察乳液的稳定性,并考察制备凝胶各组分对乳液稳定性的影响;通过不同浓度和不同尺寸的乳液与丙烯酰胺单体共聚,制备不同机械性能的高强凝胶。凝胶断裂伸长率在373~757%,拉伸强度在70~148kPa,凝胶可被压缩至80%,压缩强度可在10MPa以上,远远超过小分子交联的聚丙烯酰胺凝胶。
     2.通过纳米四氧化三铁与γ-甲基丙烯酰氧基丙基三甲氧基硅烷(TPM)自发形成的乳液颗粒,与丙烯酰胺单体共聚制备具有磁性的高强凝胶。动态光散射测试表明,乳液颗粒尺寸与两者比例存在密切关系,并考察凝胶中各组分对乳液稳定性的影响;通过不同浓度和不同尺寸的乳液与丙烯酰胺单体共聚,制备了断裂伸长率在301~548%,拉伸强度在140kPa以上,凝胶可被压缩至80%,压缩强度可在15MPa以上。整体力学性能与SiO2/TPM相比有着极大的提升,这主要归因于Fe3O4/TPM乳液体系粒径更小分布更单一,有效交联密度更大。
As a soft material, hydrogels has broad application on the biomedical industry and agriculture, which mainly come from artificial synthetic or natural environment. The strength of hydrogel is usually thought to be low because of large amount of water within it. But strength of natural hydrogels such as animal cartilage, muscle are very high near rubber, to make people reconsider relationship between hydrogel strength and internal structure. Therefore, to explore the relationship between internal structure and hydrogel strength, it is a very important research issue at current home and abroad.
     Material scientists had made great progress on high-strength hydrogel in recent years, such as double-network gel, organic-inorganic nano composite hydrogel, macromolecular microspheres composite hydrogels. But the synthesis process takes a long time, or performance of hydrogel is seriously affected by the defects of the internal structure. The approach of synthesis and the ways to high -strength gel need to be further improvement and innovation. The main purpose of this research is to prepare high -strength gel by designing of a specific cross-linking agent system. The main idea as follows:preparing un-polymeric emulsion through two different tactics, and hydrogel prepared by latex copolymerize with monomer acrylamide.
     1.The high strength hydrogel is prepared by copolymerizing monomer acrylamide and latex; latex comes from emulsions formed spontaneously by nano-silica and y-methacryloxypropyltrimethoxysilane (TPM); and the formation different sizes of emulsion varies with the ratio of nano-SiO2 to TPM. The emulsion stability was then observed under different conditions, and we discuss the function of different components to the pre-gel emulsion stability. High-strength gel was prepared by different concentrations and different sizes of latex with acrylamide monomer, stretching between 373~757%, the tensile strength between 70~148kPa; gel can be compressed to 80%, and compressive strength can be more than 10MPa. All above hydrogel's strength is far more than common chemical polymer hydrogel.
     2. The magnetic high-strength hydrogel is prepared by copolymerizing monomer acrylamide and latex; latex comes from emulsions formed spontaneously by magnetite nanoparticles and y-methacryloxypropyltrimethoxysilane(TPM). Dynamic light scattering tests showed that the emulsion particle size was within 100nm in this research, and there is close relationship between size and the ratio of TPM to Fe3O4 nanoparticles. We discuss the function of different components to the pre-gel emulsion stability. High-strength gel was prepared by different concentrations and different sizes of latex with acrylamide monomer under mild conditions. The gels can be stretching in the range of 300 to 548%, tensile strength more than 140kPa; the gels can be compressed to 80%, and compressive more than 15MPa. Compared to SiO2/TPM/AM composite gels, the overall mechanical properties have greatly improved, mainly due to more effective crosslinking density.
引文
[1]. Chaterji, S.; Kwon, I. K.; Park, K., Smart polymeric gels:Redefining the limits of biomedical devices. Progress in Polymer Science 2007,32 (8-9),1083-1122.
    [2], Kopecek, J.; Yang, J. Y., Revie-Hydrogels as smart biomaterials. Polymer International 2007,56(9),1078-1098.
    [3]. Cushing, M. C.; Anseth, K. S., Hydrogel cell cultures. Science 2007,316 (5828),1133-1134.
    [4]. Calvert, P., Hydrogels for Soft Machines. Advanced Materials 2009,21 (7),743-756.
    [5]. Tanaka, Y.; Gong, J. P.; Osada, Y., Novel hydrogels with excellent mechanical performance. Progress in Polymer Science 2005,30 (1),1-9.
    [6]. Puppi, D.; Chiellini, F.; Piras, A. M.; Chiellini, E., Polymeric materials for bone and cartilage repair. Progress in Polymer Science 2010,35 (4),403-440.
    [7]. Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y., Biological materials:Structure and mechanical properties. Progress in Material Science 2008,53 (1),1-206.
    [8]. Johnson, J. A.; Turro, N. J.; Koberstein, J. T.; Mark, J. E., Some hydrogels having novel molecular structures. Progress in Polymer Science 2010,35 (3),332-337.
    [9]. Tillet, G.; Boutevin, B.; Ameduri, B., Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Progress in Polymer Science 2011,36 (2), 191-217.
    [10].Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B., Smart polymers:Physical forms and bioengineering applications. Progress in Polymer Science 2007,32 (10),1205-1237.
    [11].Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science 2008,33 (4), 448-477.
    [12].Chung, H. J.; Park, T. G., Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 2009,4 (5),429-437.
    [13].Gilbert, P. M.; Havenstrite, K. L.; Magnusson, K. E. G.; Sacco, A.; Leonardi, N. A.; Kraft, P.; Nguyen, N. K.; Thrun, S.; Lutolf, M. P.; Blau, H. M., Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture. Science 2010,329 (5995),1078-1081.
    [14].Moschou, E. A.; Peteu, S. F.; Bachas, L. G.; Madou, M. J.; Daunert, S., Artificial muscle material with fast electroactuation under neutral pH conditions. Chemistry of Materials 2004,16 (12),2499-2502.
    [15]. Bassil, M.; Davenas, J.; EL Tahchi, M., Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application. Sensors and Actuators B-Chemical 2008,134 (2),496-501.
    [16].Abdekhodaie, M. J.; Wu, X. Y., Modeling of a glucose sensitive composite membrane for closed-loop insulin delivery. Journal of Membrane Science 2009,335 (1-2),21-31.
    [17]. Dai, T. Y.; Qing, X. T.; Zhou, H.; Shen, C.; Wang, J.; Lu, Y., Mechanically strong conducting hydrogels with special double-network structure. Synthetic Metals 2010,160 (7-8),791-796.
    [18].Berger, S.; Zhang, H. P.; Pich, A., Microgel-Based Stimuli-Responsive Capsules. Advanced Functional Materials 2009,19 (4),554-559.
    [19].Smoukov, S. K.; Bishop, K. J. M.; Klajn, R.; Campbell, C. J.; Grzybowski, B. A., Cutting into solids with micropatterned gels. Advanced Materials 2005,17(11),1361-1365.
    [20].Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, P.; Aizenberg, J., Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 2007,315 (5811),487-490.
    [21].Zarzar, L. D.; Kim, P.; Aizenberg, J., Bio-inspired Design of Submerged Hydrogel-Actuated Polymer Microstructures Operating in Response to pH. Advanced Materials 2011,23 (12), 1442-1446.
    [22].Xiong, L. J.; Zhu, M. N.; Hu, X. B.; Liu, X. X.; Tong, Z., Ultrahigh Deformability and Transparence of Hectonite Clay Nanocomposite Hydrogels with Nimble pH Response. Macromolecules 2009,42 (11),3811-3817.
    [23].Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S., Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science 2009,324 (5923),59-63.
    [24]. Wang, C.; Flynn, N. T.; Langer, R., Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites. Advanced Materials 2004,16 (13),1074-1078
    [25].Haraguchi, K.; Takada, T., Synthesis and characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules 2010,43 (9),4294-4299.
    [26].Smarsly, B.; Garnweitner, G.; Assink, R.; Brinker, C. J., Preparation and characterization of mesostructured polymer-functionalized sol-gel-derived thin films. Progress in Organic Coating 2003,47 (3-4),393-400.
    [27].Lin, L.; Liu, M. J.; Chen, L.; Chen, P. P.; Ma, J.; Han, D.; Jiang, L., Bio-Inspired Hierarchical Macromolecule-Nanoclay Hydrogels for Robust Underwater Superoleophobicity. Advanced Materials 2010,22 (43),4826-4830.
    [28].Okumura, Y.; Ito, K., The polyrotaxane gel:A topological gel by figure-of-eight cross-links. Advanced Materials 2001,13 (7),485-487.
    [29].Kato, K.; Inoue, K.; Kidowaki, M.; Ito, K., Organic-Inorganic Hybrid Slide-Ring Gels: Polyrotaxanes Consisting of Poly(dimethylsiloxane) and gamma-Cyclodextrin and Subsequent Topological Cross-Linking. Macromolecules 2009,42 (18),7129-7136.
    [30]. Bin Imran, A.; Seki, T.; Kataoka, T.; Kidowaki, M.; Ito, K.; Takeoka, Y., Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane. Chemical Communication 2008, (41),5227-5229.
    [31].Haraguchi, K.; Takehisa, T., Nanocomposite Hydrogels:A Unique Organic"CInorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling Properties. Advanced Materials 2002,14 (16),1120-1124.
    [32].Lu, D.; Yang, H.; Guo, X. F.; Cheng, R. S., Inorganic Nanocomposite Hydrogels. Progress in Chemistry 2010,22 (5),948-952.
    [33].Haraguchi, K., Nanocomposite hydrogels. Current Opinion in Solid State & Materials Science 2007,11 (3-4),47-54.
    [34].Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010,463 (7279),339-343.
    [35].Lin, W. C.; Fan, W.; Marcellan, A.; Hourdet, D.; Creton, C., Large Strain and Fracture Properties of Poly(dimethylacrylamide)/Silica Hybrid Hydrogels. Macromolecules 2010,43 (5), 2554-2563.
    [36].Gaharwar, A. K.; Dammu, S. A.; Canter, J. M.; Wu, C. J.; Schmidt, G., Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly (ethylene glycol) and Hydroxyapatite Nanoparticles. Biomacromolecules 2011 12 (5),1641-1650.
    [37].Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y, Double-network hydrogels with extremely high mechanical strength. Advanced Materials 2003,15 (14),1155-1158.
    [38].Kaneko, D.; Tada, T.; Kurokawa, T.; Gong, J. P.; Osada, Y, Mechanically strong hydrogels with ultra-low frictional coefficients. Advanced Materials 2005,17 (5),535-538.
    [39].Webber, R. E.; Creton, C.; Brown, H. R.; Gong, J. P., Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 2007,40 (8),2919-2927.
    [40].Tirumala, V. R.; Tominaga, T.; Lee, S.; Butler, P. D.; Lin, E. K.; Gong, J. P.; Wu, W. L. Molecular model for toughening in double-network hydrogels. Journal of Physical Chemistry B 2008,112(27),8024-8031.
    [41]. Wang, X. Z.; Wang, H. L.; Brown, H. R., Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 2011,7 (1),211-219.
    [42].Henderson, K. J.; Zhou, T. C.; Otim, K. J.; Shull, K. R., lonically Cross-Linked Triblock Copolymer Hydrogels with High Strength. Macromolecules 2010.
    [43].Xu, S. W.; Zhang, J.; Yang, Z. P.; Cao, J. H.; Ma, X. L.; Jiang, Z. Y., Analyzing the effect of carrier on the microenvironment of encapsulated enzyme. Progress in Chemistry 2008,20 (1), 163-170.
    [44].Haque, M. A.; Kamita, G.; Kurokawa, T.; Tsujii, K.; Gong, J. P., Unidirectional Alignment of Lamellar Bilayer in Hydrogel:One-Dimensional Swelling, Anisotropic Modulus, and Stress/Strain Tunable Structural Color. Advanced Materials 2010,22 (45),5110-5114.
    [45].Huang, T.; Xu, H. G.; Jiao, K. X.; Zhu, L. P.; Brown, H. R.; Wang, H. L., A novel hydrogel with high mechanical strength:A macromolecular microsphere composite hydrogel. Advanced Materials 2007,19(12),1622-1626.
    [46].He, C. C.; Jiao, K. X.; Zhang, X.; Xiang, M.; Li, Z. Y.; Wang, H. L., Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles. Soft Matter 2011,7 (6),2943-2952.
    [47].Shin, M. K.; Spinks, G. M.; Shin, S. R.; Kim, S. I.; Kim, S. J., Nanocomposite Hydrogel with High Toughness for Bioactuators. Advanced Materials 2009,21 (17),1712-1716.
    [48]. Wu, Y. T.; Zhou, Z.; Fan, Q. Q.; Chen, L.; Zhu, M. F., Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties. Journal of Materials Chemistry 2009,19 (39),7340-7346.
    [49]. Wu, Y. T.; Xia, M. G.; Fan, Q. Q.; Zhu, M. F., Designable synthesis of nanocomposite hydrogels with excellent mechanical properties based on chemical cross-linked interactions. Chemical Communication 2010,46 (41),7790-7792.
    [50].Tan, Y.; Xu, K.; Wang, P. X.; Li, W. B.; Sun, S. M.; Dong, L. S., High mechanical strength and rapid response rate of poly(N-isopropylacrylamide) hydrogel crosslinked by starch-based nanospheres. Soft Matter 2010,6 (7),1467-1471.
    [51].Tan, Y.; Wang, P. X.; Xu, K.; Li, W. B.; An, H. Y.; Li, L. L.; Liu, C.; Dong, L. S., Designing Starch-Based Nanospheres to Make Hydrogels with High Mechanical Strength. Macromolecular Materials and Engineering 2009,294 (12),855-859.
    [52].Xu, K.; Tan, Y.; Chen, Q.; An, H. Y.; Li, W. B.; Dong, L. S.; Wang, P. X., A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. Journal of Colloid and Interface Science 2010,345 (2),360-368.
    [53].Cai, T.; Wang, G. N.; Thompson, S.; Marquez, M.; Hu, Z. B., Photonic Hydrogels with Poly(ethylene glycol) Derivative Colloidal Spheres as Building Blocks. Macromolecules 2008,41 (24),9508-9512.
    [54]. Jiang, G. Q.; Liu, C.; Liu, X. L.; Chen, Q. R.; Zhang, G. H.; Yang, M.; Liu, F. Q., Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength. Polymer 2010,51 (6),1507-1515.
    [55].Yang, M.; Liu, C.; Li, Z. Y.; Gao, G.; Liu, F. Q., Temperature-Responsive Properties of Poly(acrylic acid-co-acrylamide) Hydrophobic Association Hydrogels with High Mechanical Strength. Macromolecules 2010,43 (24),10645-10651.
    [56].Abdurrahmanoglu, S.; Can, V.; Okay, O., Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 2009,50 (23),5449-5455.
    [57].Abdurrahmanoglu, S.; Cilingir, M.; Okay, O., Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. Polymer 2011,52 (3),694-699.
    [58].Tang, L.; Liu, W. G.; Liu, G. P., High-Strength Hydrogels with Integrated Functions of H-bonding and Thermoresponsive Surface-Mediated Reverse Transfection and Cell Detachment. Advanced Materials 2010,22 (24),2652-2656.
    [59].Li, X. W.; Liu, W. G.; Ye, G. X.; Zhang, B. Q.; Zhu, D. W.; Yao, K. D.; Liu, Z. Q.; Sheng, X. Z., Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers: Synthesis, characterization and preliminary application as embolic agents. Biomaterials 2005,26 (34),7002-7011.
    [60].Sakai, T.; Matsunaga, T.; Yamamoto, Y.; Ito, C.; Yoshida, R.; Suzuki, S.; Sasaki, N.; Shibayama, M.; Chung, U. I., Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 2008,41 (14),5379-5384.
    [61].Kurakazu, M.; Katashima, T.; Chijiishi, M.; Nishi, K.; Akagi, Y; Matsunaga, T.; Shibayama, M.; Chung, U.; Sakai, T., Evaluation of Gelation Kinetics of Tetra-PEG Gel. Macromolecules 2010,43 (8),3935-3940.
    [62].Fukasawa, M.; Sakai, T.; Chung, U. I.; Haraguchi, K., Synthesis and Mechanical Properties of a Nanocomposite Gel Consisting of a Tetra-PEG/Clay Network. Macromolecules 2010,43 (9), 4370-4378.
    [63].Sacanna, S.; Kegel, W. K.; Philipse, A. P., Thermodynamically stable pickering emulsions. Physical review letters 2007,98 (15),163801,1-4.
    [64].Sacanna, S.; Philipse, A. P., A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous pickering emulsification. Advanced Materials 2007,19 (22), 3824-3828.
    [65].Sacanna, S.; Kegel, W. K.; Philipse, A. P., Spontaneous oil-in-water emulsification induced by charge-stabilized dispersions of various inorganic colloids. Langmuir 2007,23 (21), 10486-10492.
    [66].Takafuji, M.; Yamada, S. Y.; Ihara, H., Strategy for preparation of hybrid polymer hydrogels using silica nanoparticles as multifunctional crosslinking points. Chemical Communication 2011, 47(3),1024-1026.
    [67].Stober, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968,26 (1),62-69.
    [68].Sacanna, S.; Philipse, A. P., Preparation and properties of monodisperse latex spheres with controlled magnetic moment for field-induced colloidal crystallization and (dipolar) chain formation. Langmuir 2006,22 (24),10209-10216.
    [69].Massart, R., Preparation of aqueous magnetic liquids in alkaline and acidic media. Magnetics, IEEE Transactions on 1981,17(2),1247-1248.
    [70].郭新秋;丘坤元;冯新德;过硫酸盐和脂肪二元叔胺体系引发烯类聚合的反应与机理的研究.中国科学B辑,1989,11,1134-1141.
    [71].季鸿渐孙占维,张万喜,李志宏丙烯酰胺水溶液聚合一添加Na2CO3制取高分子量阴离子型速溶聚丙烯酰胺的研究.高分子学报,1994,5,559-564.
    [72]. Kraft, D. J., B. Luigjes, et al.. Evolution of Equilibrium Pickering Emulsions-A Matter of Time Scales. Journal of Physical Chemistry B 2010,114(38):12257-12263.
    [73].相梅,贺昌城,汪辉亮;磁性高强度PAAm/Fe3O4纳米复合水凝胶.物理化学学报,2011,27(X),Month 0001-0009
    [74].相梅,郑志伟,汪辉亮,贺昌城磁场敏感性水凝胶研究进展.高分子通报,2011,3,16-22
    [75].Fuhrer, R., E. K. Athanassiou, et al. (2009). Crosslinking Metal Nanoparticles into the Polymer Backbone of Hydrogels Enables Preparation of Soft, Magnetic Field-Driven Actuators with Muscle-Like Flexibility.2009, Small 5(3),383-388.
    [76].Messing, R., N. Frickel, et al. Cobalt Ferrite Nanoparticles as Multifunctional Cross-Linkers in PAAm Ferrohydrogels. Macromolecules,2011,44 (8),2990-2999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700