模拟失重所致人肺微血管内皮细胞凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
失重/模拟失重可导致肺组织形态学的改变,肺动脉高压,肺微血管的变化,同时可引起内皮细胞的凋亡。但是,失重/模拟失重所致的肺微血管内皮细胞(HPMVEC)凋亡情况已有报导,其时间效应和发生机制仍不清楚。因此,本课题的目的如下:
     1.观察回转模拟失重对人肺微血管内皮细胞凋亡时间效应的影响;
     2.研究线粒体信号转导通路在回转模拟失重所致的人肺微血管内皮细胞凋亡中的作用;
     3.观察PI3K/Akt、NF-κB在回转模拟失重所致的人肺微血管内皮细胞凋亡中的变化情况,进一步探讨与细胞凋亡的关系;
     4.观察回转模拟失重条件下,人肺微血管内皮细胞的细胞骨架的变化与细胞凋亡的关系。
     方法
     为达到以上研究目的,本课题采用以下实验方法进行研究:
     1.将人肺微血管内皮细胞进行培养和传代,内皮细胞贴壁覆盖率达到80%时,收集细胞,并用于回转模拟失重实验。回转模拟失重时间设为4个时间点,12h、24h、48h和72h,同时每个时间点设立同步1g对照。采用流式细胞仪检测细胞凋亡和透射电镜观察模拟失重细胞超微结构的变化,观察模拟失重对人肺微血管内皮细胞凋亡时间效应的影响;
     2.找出细胞凋亡最显著的时间点后,选择与线粒体信号传导通路相关的几个关键基因和蛋白,Bcl-2, Bax,细胞色素C, Caspase-9和Caspase-3;用real timePCR技术来检测模拟失重后人肺微血管内皮细胞中Caspase-3, Bcl-2和Bax基因的表达;用Western blot技术来检测模拟失重后人肺微血管内皮细胞中细胞色素C, Caspase-9和Caspase-3的表达;
     3.用Westernblot技术来检测模拟失重后人肺微血管内皮细胞中PI3K、Akt及磷酸化水平的变化,以及NF-κB水平的变化;
     4.采用免疫荧光标记技术,以phalloidin标记人肺微血管内皮细胞微丝肌动蛋白(F-actin),观察回转模拟失重所致人肺微血管内皮细胞的细胞骨架的变化与细胞凋亡的关系。
     结果
     采用以上的实验方法,本课题得出以下结果:
     1.流式细胞仪结果显示,回转模拟失重12h和24h,细胞凋亡略有增加,但回转组和对照组比较,无明显差异,两组凋亡率为C12:2.29±0.78,Clinostat 12: 3.89±1.24,p=0.13; C24:2.35±1.48, Clinostat 24:4.08±0.72, p=0.14;回转模拟失重48h和72h,细胞凋亡显著,回转组和对照组比较,差异显著,以72h更为明显,两组凋亡率为C48:2.07±0.49, Clinostat 48:3.47±0.32, p=0.0386; C72:2.55±0.78, Clinostat72:8.18±0.48, p=0.0132,透射电镜观察模拟失重72h细胞超微结构,显示内皮细胞胞体缩小,变圆;细胞突起减少,细胞间连接消失;胞质基质密度增加,核膜皱缩、破损、消失,核内染色质浓缩凝聚趋边于核膜下;胞质内线粒体个数增加,但多肿胀变性,嵴变短、消失,甚至空泡化,粗面内质网扩张,肿胀成囊泡状;细胞溶酶体大量增殖,另还可见凋亡小体。
     2. Real time PCR结果显示,回转模拟失重72h,人肺微血管内皮细胞中,Bcl-2表达下调,Bax和Caspase-3表达上调;Western blot结果显示:人肺微血管内皮细胞中,回转组胞浆中细胞色素C浓度高于线粒体中细胞色素C浓度,同时,Caspase-9和Caspase-3表达上调。
     3. Western blot结果显示:模拟失重72h,人肺微血管内皮细胞中,PI3K的表达上调,Akt磷酸化水平降低,NF-κB水平增加。
     4. phalloidin标记模拟失重48h时,人肺微血管内皮细胞微丝肌动蛋白,F-actin的表达明显减少,分布很不均匀,排列紊乱,72h时,F-actin的表达进一步减少。
     结论
     1.回转模拟失重可导致人肺血管内皮细胞发生早期凋亡,其中回转模拟失重72h,细胞凋亡最显著;
     2.线粒体信号通路在回转模拟失重所致的人肺微血管内皮细胞凋亡中起主要作用;
     3.回转模拟失重所致的人肺微血管内皮细胞凋亡中,PI3K-Akt参与细胞凋亡,回转模拟失重抑制PI3K,进一步抑制Akt磷酸化水平,促进细胞凋亡;同时,NF-κB表达水平升高,促进细胞凋亡。
     4.回转模拟失重可导致人肺微血管内皮细胞的细胞骨架成分F-actin发生解聚,其可能参与细胞凋亡。
Objective
     Microgravity or simulated microgravity can induce the change of pulmonary histomorphology, pulmonary hypertension and pulmonary microvascular change. Meanwhile, Microgravity or simulated microgravity can induce the apoptosis of endothelial cell. However, the apoptosis of human pulmonary microvascular endothelial cells (HPMVECs) which was caused by microgravity or simulated microgravity is not reported until now. The time effect and mechanism of the apoptosis are nor clear. So, the purpose of this study is following:
     1. Find the optimal time of the apoptosis of human pulmonary microvascular endothelial cells which was caused by simulated microgravity by clinostat.
     2. Study the effect of mitochondrial signal transduction pathway on the apoptosis of human pulmonary microvascular endothelial cells which was caused by simulated microgravity.
     3. Observe the change of PI3K/Akt and NF-κB in the human pulmonary microvascular endothelial cells of apoptosis caused by simulated microgravity.
     4. Observe the change of cytoskeleton in human pulmonary microvascular endothelial cells by simulated microgravity, and find the relationship between cytoskeleton and cell apoptosis.
     Methods
     To obtain the aim of study above, the experimental methods were applied as following:
     1. The human pulmonary microvascular endothelial cells were cultured and passaged. When the adherence of human pulmonary microvascular endothelial cells and fraction of coverage was 80%, they were gathered and were applied in the experiment of simulated microgravity by clinostat.4 time point selected were 12h,24h,48h and 72h, respectively, meanwhile,1g control was set at every time point. Cell apoptosis was detected by the flow cytometry, and transmission electron microscope was used to observe the ultrastrcture of human pulmonary microvascular endothelial cells after simulated microgravity. According to the results, the optimal time of the apoptosis of human pulmonary microvascular endothelial cells.
     2. After the optimal time of the apoptosis of human pulmonary microvascular endothelial cells was found, some important genes and proteins, such as Bcl-2, Bax, Cytochrome C, Caspase-9 and Caspase-3, correlated with the mitochondrial signal transduction pathway were selected. Caspase-3, Bcl-2 and Bax were detected by real time PCR, and ctytochrome C, Caspase-9 and Caspase-3 were measured by Western blot.
     3. PI3K, Akt, P-Akt and NF-κB in the human pulmonary microvascular endothelial cells after simulated microgravity were measured by Western blot.
     4. By inmunfluorescence technique, phalloidin was used to incubate with human pulmonary microvascular endothelial cells to detect the change of microfilament cytoskeleton at the different time of cell apoptosis.
     Results
     1. By the flow cytometry, when 12h and 24h of simulated microgravity by clinostat, cell apoptosis was not obvious; Compared 12h with 24h, there was no significantly difference (C12:2.29±0.78, Clinostat 12:3.89±1.24, p=0.13; C24: 2.35±1.48, Clinostat 24:4.08±0.72, p=0.14). When 48h and 72h of simulated microgravity by clinostat, cell apoptosis can by observed; however, Compared 48h with 72h, the apoptosis of human pulmonary microvascular endothelial cells was most obvious at 72h (C48:2.07±0.49, Clinostat 48:3.47±0.32, p=0.0386; C72:2.55±0.78, Clinostat72:8.18±0.48, p=0.0132). The results from transmission electron microscopy showed that the cell body of endothelial cells decreased and became round, the cell process decreased, the density of cytoplasmic matrix increased, nuclear membrane shrinkaged, intranuclear chromatin concentrated and aggregated below the nuclear membrane and mitochondrion became hyperplasia and swelling. Meanwhile, the apoptotic body can be observed when 72h of simulated microgravity.
     2. The results by real time PCR showed that the expression of Bcl-2 was decreased, and the expression of Bax and Caspase-3 were increased in the human pulmonary microvascular endothelial cells when 72h of simulated microgravity. The results by Western blot showed the concentration of Cytochrome C in the cytoplasm was higher than that in the mitochondrion and the expression of Caspase-9 and Caspase-3 were increased when 72h of simulated microgravity.
     3. The results by Western blot showed that simulated microgravity significantly decreased the expression of PI3K and the phosphorylation level of Akt, meanwhile, increased the expression of NF-κB.
     4. The results by phallodidin showed that the expression of F-actin was decreased and appeared depolymerization at 48h, and the change of that was more obvious at 72h.
     Conclusion
     1. Simulated microgravity by clinostat can induce human pulmonary microvascular endothelial cells prophase apoptosis and the optimal time was 72h.
     2. The mitochondial signal transduction pathway played an important role in the apoptosis of human pulmonary microvascular endothelial cells by simulated microgravity.
     3. PI3K-Akt and NF-κB took part in the apoptosis of human pulmonary microvascular endothelial cells by simulated microgravity.
     4. The express of F-actin was decreased and appeared depolymerization in the human pulmonary microvascular endothelial cells by simulated microgravity, and this suggested that the change of F-actin can take part in the cell apoptosis.
引文
1. Lees.PJ. Cardiology in space. Hell J Cardiol,2005,46:320
    2. Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res,2004,19(6): 1006
    3. Hansen G, Martinuk KJ, Bell GJ, et al.Effects of spaceflight on myosin heavy-chain content, fibre morphology and succinate dehydrogenase activity in rat diaphragm. Pflugers Arch,2004,448(2):239
    4. Sonnenfeld G, Butel JS, Shearer WT. Effects of the space flight environment on the immune system. Rev Environ Health,2003,18 (1):1
    5. Macho L, Koska J, Ksinantova L, et al. The response of endocrine system to stress loads during space flight in human subject. Adv Space Res,2003,31(6):1605
    6. Williams.D, Kuipers. A, Mukai. C, et al. Acclimation during space flight:effects on human physiology. CMAJ,2009,180(13):1317
    7. Watenpaugh D.E, Hargens A.R. The cardiovascular system in microgravity. In: Fregly M.J., Blatteis C.M.(Eds.), Handbook of Physiology:Environmental Physiology. Oxford University Press, New York,1996, pp.631
    8. Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respiratory physiology & Neurobiology, 2009,169S:S30
    9.王承氓,张汝果,付宏伟.尾悬吊模拟失重对大鼠肺脏的影响.航天医学与医学工程.1995,8(4):239-241.
    10. OlegY Atkov and Victor S Bednenko. Lungs [M]. HyPokinesia And Weightless-ness:Clinical And Physiologic Aspects,1992:236-238.
    11. Pierre M, Christian K, Daniel R, et al. Pulmonary diffusing capacity and pulmonary capillary blood volume during parabolic flights[J]. J Appl Physiol, 1997,82(4):1091-1097.
    12. Linnarsson D, Larsson H, Ingelsson J. Pulmonary Perfusion and ventilation in Microgravity during rest and exercise[R]. In:Anthrorack on the Spacelab D2 mission. Noordwijk, Netherlands, ESA,1997:61-63.
    13. Herbert G, Chew JR, Segal SS. Arterial morphology and blood volumes of rats following 10~14 weeks of tail suspension [J]. Med Sci Sports Exerc,1997,29(10): 1304-1310.
    14. West JB. Microgravity and the lung. The physiologist,1991(suppl),34(1): S8-S10.
    15. Bailliart O, Capderou A, Cholley BP, et al. Changes in lower limb volume in humans during parabolic flight. J Appl physiol 1998,85:2100-2105.
    16.汪德生,向求鲁,沈羡云,等.7天头低位卧床对心肺循环功能的影响.航天医学与医学工程,1998,11(3):177-180.
    17. Johnston RS, Dietlein. Biomedical results from Skylab[R]. NASASP-377, 1977:388-393.
    18. Sawin CF, Nicogossian AE, Rummel JA, et al. Pulmonary function evaluation during the Skylab and Appllo-Soyus mission[J]. Aviat. Space Envion. Med, 1976(2):168-172.
    19.李天志,刘长庭,李向红,等.模拟失重对大鼠肺组织NF-κB表达的影响[[J].解放军医学杂志,2006;31(10):997-998.
    20.李天志,刘长庭,李向红,等.模拟失重对大鼠血清及肺组织间粘附分子-1的影响[[J].军医进修学院学报,2006;27(6):401-403.
    21. Anonymous. Results of the medicine research during the flight of the second expedition of the Salyut-4 orbital station[R]. NASA TTF-17287, Washington, DC,1976.
    22. Prisk GK, Guy HJ, Elliott AR, et al. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity [J]. J Appl Physiol,1993,75(1):15-26.
    23. Schulz H, Hillebrecht A, Karemaker JM, et al. Cardiopulmonary function during 10 days of head-down tilt bedrest. Acta Physiol Scand, Suppl1992,604:23-32.
    24. Berkowitz DE, Brooks-Asplund E, Mo Z, Winters B, Nyhan D, and Shoukas A. Impaired mesenteric microvascular reactivity and reversibility in rat model of microgravity (Abstract). Circulation 1999,100:1-394.
    25. Berkowitz DE, Marucci L, Winters B, et al.Vascular responses in a rat model of microgravity (Abstract). Circulation 1998,98:1-128.
    26.王俊锋,刘长庭,刘岩,等.模拟失重对大鼠肺微血管通透性的影响[J].军医进修学院学报,2003,24(1):13-15.
    27.王俊锋,刘长庭,王德龙.尾悬吊模拟失重大鼠肺组织VECF mRNA的研究[J].解放军医学杂志,2002,27(8):709-710.
    28.汪德生,孙磊,任维,等.尾部悬吊大鼠胸主动脉、肺动脉内皮细胞一氧化氮合酶mRNA表达的动态变化[J].航天医学与医学工程,2001,14(5):318-322.
    29. Infanger.M, Kossmehl.P, Shakibaei.M, et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: Impact of vascular endothelial growth factor. Apoptosis,2006, 11(5):749.
    30. Infanger.M, Ulbrich.C, Baatout.S. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem,2007, 101(6):1439.
    31. Morbidelli L, Monici M, Marziliano N, Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochem Biophys Res Commun.2005 Aug 26; 334(2):491-9.
    32. Ulbrich.C, Westphal.K, Baatout.S. Effects of basic fibroblast growth factor on endothelial cells under conditional of simulated microgravity.J Cell Biochem, 2008,104(4):1324.
    33. Zhang Ye,Yuan Ming, Li Ting, et al. Effects of simulated weightlessness on apoptosis of pulmonary microvascular endothelial cells. Acad J PLA Postgrad Med Sch,2009,30(1):93-94.
    34.章烨,刘长庭.模拟失重对肺微血管内皮细胞F-actin的影响.军医进修学院学院,2009,30(1):91-93.
    35. Schatten H, Lewis ML, Chakrabarti A. Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut,2001,49(3-10):399.
    1. Zhang Ye, Yuan Ming, Li Ting, et al. Effects of simulated weightlessness on apoptosis of pulmonary microvascular endothelial cells. Acad J PLA Postgrad Med Sch,2009,30(1):93-94.
    2. Lou JN, Mili N, Decrinch C, et al. An improved method for isolation of microvascular endothelial cells from normal and inflamed human lung. In Vtro Cell Dev Biol Anim,1998,4(7):529-536.
    3. Oite T, Suzuki Y, Mori oka T, et al. Efficient isolation of rat aortic endothelial cells by elimination of contaminating cells with a monoclonal antibody. Microvasc Res, 1995,50(1):113-118.
    4. Magee JC, Stone AE, Oldham K, et al. Isolation, culture, and characterization of rat lung micro vascular endothelial cells. Am.J. Physiol,1994,267(4 pt 1): L433-441.
    5. Kim NS, Kim SJ. Isolation and cultivation of microvascular endothelial cells from rat lungs:effects of gelatin substratum and serum. Yonsei Med, J,1991,32(4): 303-314.
    6.杨红,斯琴,孙仁宇.肺血管内皮细胞在大鼠急性损伤发生中的作用.中国病理生理杂志,2000,16(9):831-834.
    7. Klaus DM. Clinostat s and bioreactors. Gravit Space Biol Bull,2001,14(2):55.
    8.王驰,庄逢源,王文.空间生命科学中细胞骨架的研究进展.医用生物力学,2007,22(2):216.
    9.朱鸣,吴本俨,聂捷琳,等.回转器模拟失重对人胃黏膜HFE2145细胞形态和生物学特征的影响.中华航空航天医学杂志,2006,17(11):6.
    10. Dai ZQ, Li YH, Ding B, et al.Actin microfilaments participate in the regulation of the COL1A1 promoter activity in ROS 17/2.8 cells under simulated microgravity. Adv Space Res,2006,38(6):1159.
    11.赵振军,张丽杰,易小兵,等.几种凋亡细胞检测方法的比较.医学综述,2003,9(7):387-389.
    1. Infanger M, Kossmehl P, Shakibaei M, et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity:Impact of vascular endothelial growth factor. Apoptosis,2006,11(5): 749.
    2. Infanger M, Ulbrich C, Baatout S. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem,2007, 101(6):1439.
    3. Morbidelli L, Monici M, Marziliano N, Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochem Biophys Res Commun.2005 Aug 26; 334(2):491-9.
    4. Ulbrich C, Westphal K, Baatout S. Effects of basic fibroblast growth factor on endothelial cells under conditional of simulated microgravity. J Cell Biochem, 2008,104(4):1324.
    5. Zhang Ye,Yuan Ming, Li Ting, et al. Effects of simulated weightlessness on apoptosis of pulmonary microvascular endothelial cells. Acad J PLA Postgrad Med Sch,2009,30(1):93-94.
    6. Uren RT, Dewson G, Bonzon C, et al. Mitochondrial release of proapoptotie proteins: electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J Biol Chem.2005,280(3):2266-2274.
    7. Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outermitochondrial membrane [J]. Mol Cell Biol,2000, 20(3):929-935.
    8. Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor [J]. J Biol Chem,2001,276 (19): 16391-16398.
    9. Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis [J]. J Cell Biol,2000, 150(4):731-740.
    10. Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation[J]. J Biol Chem, 2001,276(36):33869-33874.
    11. Susin SA, Lorenzo HZ, Zamzami N, et al. Moleculs characterization of mitochondrial apoptosis-inducing factor. Nature,1999,397 (6718):441-445.
    12. Susin SA, Lorenzo HZ, Zamzami N, et al. Mitochondrial release of Caspase-2 and Caspase-9 during the apoptotic process. J Exp Med,1999,189 (2):381-394.
    13. Chiu SM, Oleinick NL. Dissociation of mitochondrial depolarization from cytochrome c release during apoptosis induced by photAynamic therapy. Br J Cancer.2001,84(8):1099-1106.
    14. J urgensmeier JM, Xie Z, Deveraux Q, et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA.1998,95 (9):4997-5002.
    15. De Vos F, Hoekst ra R, Gietema JA, et al. A phase I dose escalating study of the angiogenesis inhibitor thrombospondinmimetic (ABT2510) in patients with advanced cancer. Eur J Cancer,2002,38 (S7):78-79.
    16. Ezekowitz RA, Mulliken JB, Folkman J. Interferon alfa-a therapy for life-threatening hemangiomas of infancy. N Engl J Med,1992,326 (22): 1456-1463.
    17. Cory S, Adams JM. The Bcl-2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer,2002,2(9):647-56.
    18. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin,2005,55(3):178-94.
    19. Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax and lipids cooperate to form supramolecutar openings in the outer mitochondrial membrane. Cell,2002,111(3): 331-42.
    20. Bouillet P, Strasser A. BH3-only proteins-evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci, 2002,115(Pt 8):1567-74.
    21. Haupt S, Berger M, Goldberg Z, et al. Apoptosis-the p53 network. J Cell Sci, 2003,116(Pt20):4077-85.
    22. Reed J. Bcl-2 family proteins:regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol,1997,34:9-19.
    23. Peter K, Mehdi S, Augusto C, et al. Weightlessness Induced Apoptosis in Normal Thyroid Cells and Papillary Thyroid Carcinoma Cells via Extrinsic and Intrinsic Pathways. Endocrinology,144(9):4172-4179.
    1. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-κB transcription factors[J]. Oncogene,1999,18:6910
    2. Kaltschmidt B, Kaltschmidt C, Hofmann TG, et al.The pro or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus [J]. Eur J Biochem,2000,267:3828
    3. Osaki M, Oshimura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer [J].Apoptosis,2004,9(6):667-676.
    4. Edwards L A, Thiessen B, Dragowska W H, et al. Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth[J].Oncogene,2005,24(22):3596-3605.
    5. Song G, Ouyang G L, Bao S D. The activation of Akt/PKB signaling pathway and cell survival [J]. J Cell Mol Med,2005,9(1):59-71.
    6. Noguchi M, Kinowaki K. PI3K-Akt network roles in infectious diseases [J]. Kansenshogaku Zasshi,2008,82(3):161-167.
    7. Wong M L, Kaye A H, Hovens C M. Targeting malignant glioma survival signaling to improve clinical outcomes [J]. Clin Neurosci,2007,14(4):301-308.
    8. Chen Y L, Law P Y, Loh H H. Nuclear factor kappaB signaling in opioid functions and receptor gene expression [J]. J Neuroimmune Pharmacol,2006,1(3): 270-279.
    9.余跃伟,夏春.软骨细胞凋亡与PI3K/AKt途径及相关信号分子的研究进展.临床骨科杂志,2009,12(4):457-460.
    10. Sen P, Mukherjee S, Ray D, et al. Involvement of the Akt/PKB signaling pathway with disease processes [J]. Mol Cell Biochem,2003,253(122):241-246.
    11. Henshall DC, et al.Activation of bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death [J]. J Neurosci,2002,22(19):8458-8465.
    12. Coffey JC, et al. Phosphoinositide 3 kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis-novel role for an old enemy [J]. J Biol Chem,2005,280(22):20968-20977.
    13. Halse R, Rochford J, McCormack J G, et al. Control of glycogen synthesis in cultured human muscle cells [J]. J Biol Chem,1999,274:776-780.
    14. Bartling B, et al. Shear stress-dependent expression of apoptosis-regulating genes in endothelial cells [J]. Biochem Biophys Res Commun,2000,278 (3):740-746.
    15. Gibson EM, et al.Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release [J]. Cancer Res,2002,62(2):488-496.
    16. Zhou HL, Li XM, Meinkoth J, et al. Akt Regulates Cell Survival and Apoptosis at a Post mitochondrial Level [J]. J Cell Biol,2000,151 (3):483-494.
    17. Piotrowska A, Izykowskal, Podhorska-OkolowM, et al. The structure of NF-kappaB family proteins and their role in apoptosis[J]. Postepy HigMed Dosw (Online),2008,15(62):64.
    18.李天志,刘长庭,李向红,等.模拟失重对大鼠肺组织NF-κB表达的影响.解放军医学杂志,2006,31(10):997-998.
    19. Sharma CS, Sarkar S, Periyakaruppan A,et al. Simulated microgravity activates apoptosis and NF-kappaB in mice testis. Mol Cell Biochem.2008 Jun; 313(1-2): 71-8.
    1. Lugg D J. Behavioral health in Antarctica implications for long-duration space missions [J].Aviat Space Environ Med,2005,76(6 Supply):B74-77.
    2. Wood J, Schmidt L, Lugg D, et al. Life survival and behavioral health in small closed communities 10 years of studying isolated Antarctic gmups [J]. Aviat Space Environ Med,2005,76(6 Supply):B89-93.
    3. Infanger.M, Kossmehl.P, Shakibaei.M, et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: Impact of vascular endothelial growth factor. Apoptosis,2006,11(5):749.
    4. Uva BM, Masini MA, Sturla M, et al. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res.2002 May 3,934(2): 132-9.
    5.张华,王强,贾秀志,等.模拟微重力对人脐静脉内皮细胞微丝骨架的影响.哈尔滨医科大学学报,42(6):553-555.
    6. Liu X, Miao ZY, Xu SL,et al. Cytoskeleton rearrangements and induced apoptosis in human umbilical venous endothelial cell and WISH cell lines during the invasion of staphylococcus aureus.Zhonghua Yi Xue Za Zhi.2009,89(45):3215-9.
    7. White SR, Williams P, Wojcik KR, et al.Initiation of Apoptosis by Actin Cytoskeletal Derangement in Human Airway Epithelial Cells.Am J Respir Cell Mol Biol,2001,24(3):282
    8. Kim SJ, Hwang SG, Kim IC, et al.Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dediferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activated protein kinase and protein kinase C pathway. J Biol Chem,2003,278(43):42448
    9.吴波,马捷,孟奎等.肝细胞凋亡的超微结构观察[J].电子显微微学报,2000,19(6):791-797.
    10. Seol JG, Park WH, K in ES, et al. Potential role of caspase-3 and-9 in arsenic trioxide mediated apoptosis in PCI-1 head and neck cancer cells [J]. Int J Oncol 2001,18(2):249-255.
    11. Kamada S, Wasshidn M, Hasegawa JI, et al. Involvement of caspase-4 (-like) protease in Fas-mediated apoptotic pathway [J]. Oncogene,1997,15(3):285-290.
    12. Mashina T, Naito M, Tsuruo T. Caspase-mediated cleavage of cytoskeletal actin play a positive role in the process of morphological apoptosis [J]. Oncogene,1999, 18(15):2423-2430.
    13. White SR, Willims P, Wojcik KR, et al. Initiation of Apoptosis by Actin Cytoskeletal Drangement in Human Airway Epithelial cells [J]. Am J Respir Cell Mol Biol,2001,24(3):282-294.
    14. Cow in AJ, Kallincos N, Hatzirodos N, et al. Hepatocyte growth factor and macrophage-stimulating protein are upregulated during excisional wound repair in rats [J]. Cell Tissue Res,2001,306(2):239-250.
    1. Kawasaki M, Kuwano K, Hagimoto N, et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol.2000; 157:597-603.
    2. Matute-Bello G, Liles WC, Steinberg KP, et al. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol. 1999; 163:2217-2225
    3. Liu AN, Mohammed AZ, Rice WR, et al. Perforin-independent CD_8~+T-cell-mediated cytotoxicity of alveolar epithelial cells is preferentially mediated by tumor necrosis factor-a: relative insensitivity to Fas ligand. Am J Respir Cell Mol Biol.1999; 20:849-858.
    4. Maniatis NA, Harokopos V, Thanassopoulou A,et al.A Critical Role for Gelsolin in Ventilator-Induced Lung Injury. Am J Respir Cell Mol Biol.2009 Feb 6.
    5. Chopra M, Reuben JS, Sharma AC.Acute Lung Injury:Apoptosis and Signaling Mechanisms. Exp Biol Med (Maywood).2009 Jan 28.
    6. Macredmond R, Singhera GK, Dorscheid DR. Erythropoietin inhibits respiratory epithelial cell apoptosis in a model of ALI. Eur Respir J.2009 Jan 22.
    7. Slebos DJ, Ryter SW, van der Toorn M, et al. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol.2007; 36:409-417.
    8. Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analogue, in the development of cigarette smoke extract-induced emphysema.Am J Physiol Lung Cell Mol Physiol.2009 Feb 6
    9. Hu W, Xie J, Zhao J,et.al. Involvement of Bcl-2 Family in Apoptosis and Signal Pathways Induced by Cigarette Smoke Extract in the Human Airway Smooth Muscle Cells. DNA Cell Biol.2008 Dec 17.
    10. Clark H, Palaniyar N, Strong P, et al. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J Immunol.2002;169:2892-2899.
    11. Koyama S, Sato E, Haniuda M et al:Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis. Am J Respir Crit Care Med,2002; 166:382-85
    12. Kasahara Y, Tuder RM, Cool CD et al. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med,2001; 163:737-44
    13. Benayoun L, Letuve S, Druilhe A, et al. Regulation of peroxisome proliferator-activated receptor gamma expression in human asthmatic airways:relationship with proliferation, apoptosis, and airway remodeling. Am J Respir Crit Care Med.2001; 164:1487-1494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700