血流剪切力对大鼠肺微血管内皮细胞钠氢交换体1表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:钠氢交换体(NHE)是真核细胞内pH值的重要调节剂,到目前为止共发现了10种NHE亚型。其中NHE1主要表达在哺乳动物的心肌细胞、血管和肺,参与多种细胞功能,包括调节细胞内的pH值,稳定细胞容量,影响细胞的增殖和凋亡,调节细胞行为以及离子转运等。近年来,有大量文献表明,NHE1参与心肌损伤、重构、心肌肥厚及肺动脉高压的形成过程;更为重要的是,在动物实验中发现NHE1有促进细胞增殖的作用。左向右分流型先天性心脏病(congenital heart disease, CHD)的病理生理变化主要表现为肺循环血流量的显著增多。血管内皮细胞附着于血管管腔的内壁,因此,高肺血流可直接造成肺动脉内皮细胞(pulmonary arterial endothelial cells, PAECs)所受剪切力(shear stress, SS)的增加,由于内皮细胞的异质性,远端肺微血管内皮细胞更容易受到损伤,肺微血管内皮细胞损伤后激活、合成的多种细胞因子激发或是参与了肺动脉高压过程中肺血管的收缩和结构的重构。由于NHE1在慢性心衰及心肌肥厚等方面的研究较多,而在高肺血流所致肺动脉高压(pulmonary hypertension, PH)过程中的作用目前鲜有报道;同时关于肺动脉高压的发病机制中,当前研究的焦点更多的是有关肺动脉平滑肌的改变,从肺微血管内皮细胞(PMVECs)层次上的研究甚少。且多数实验研究局限于肺动脉高压慢性或中晚期的分子病理事件,因此本实验立项研究肺动脉高压发生的早期生物学效应。
     研究目的:研究流体剪切力对大鼠PMVECs NHE1表达的影响,探讨血流剪切力损伤肺微血管内皮细胞的早期作用机制。
     研究方法:培养大鼠肺微血管内皮细胞(PMVECs),而后应用多层流动腔装置对PMVECs进行流体冲击。依据剪切力作用的不同时间实验分为5组:正常对照组;剪切力作用15分钟组;剪切力作用30分钟组;剪切力作用45分钟组;剪切力作用60分钟组。实时荧光定量PCR检测NHE1的基因表达水平,Western-blot免疫印迹检测NHE1的蛋白表达。
     结果:在1.5*10-5N/cm2的剪切力作用下,实验组同对照组相比,NHE1的基因和蛋白水平表达明显上升(P<0.05),在升高的实验组中尤其以15分钟组最为明显,而后随着剪切力作用时间的延长,在作用30分钟和45分钟时NHE1基因和蛋白的表达出现了一个下降期,而在作用时间延长至60分钟时,NHE1的表达又显著增高。
     结论:血流剪切力上调NHE1在大鼠PMVECs中的表达,提示NHE1的表达上调可能损伤肺微血管内皮细胞,进而可触发肺动脉高压的发生。
BACKGROUND:The Na+/H+exchanger (NHE) is one of the most studied plasma membrane mechanisms involved in proton transport. The10members of the NHE family described so far show a particular tissue distribution pattern. The isoform NHE-1is found in the plasma membrane of most mammalian cells and is normally described as the housekeeping isoform. It plays many different pHysiological roles in mammals, primarily responsible for the regulation of cellular pH, volume and growth. Recently many studies show that the role of NHE1in cardiac hypertropHy and chronic heart failure. Significant increasment of pulmonary blood flow is the main pathopHysiological change of left-right shunt congenital heart disease Because vascular endothelial cells attached to the inner wall of the vessel lumen, high pulmonary blood flow can lead to high shear force, causing pulmonary arterial endothelial cells (PAECs), especially pulmonary microvascular endothelial cell (PMVECs) to change its morpHology and function, secret some cytokines, which may play an important role in pulmonary vascular remodeling. The functional changes of PMVECs in the early stage of pulmonary vascular remodeling rarely have been reported. And the majority of experimental studies or animal experiments limited to chronic or late molecular pathological events.
     Objective:To explore the effect of Shear stress on Na+-H+exchanger isoform1in rat pulmonary microvascular endothelial cell, to discuss the early mechanism of injury on PMVECs by shear stress.
     Methods:Cultured rat PMVECs. Interfere PMVECs with the hydrodynamic system we designed, depending on the acting time, the PMVECs were randomly divided into control group,15minutes group、30minutes group、45minutes group、60minutes group, The gene and protein expression were determined by RT-PCR and Western blot, respectively.
     Results:When shear stress was1.5*10-5N/cm2, compared with the control group, the expression of NHE1at mRNA and protein levels was obviously increased in the groups acted on shear stress (P<0.05), especially in the15minutes group. In the30minutes group and45minutes group, the NHE1expression was decreased compared with the15minutes group, but when the acting time was60minutes, the mRNA and protein levels of NHE1was significantly up-regulated.
     Conclusion:Fluid Shear stress can up-regulate the mRNA and protein lever of NHE1, which indicated that increased NHE1may has an action on early stage of pulmonary hypertension.
引文
1.冯娟,王玉林。儿童肺动脉高压遗传学及细胞分子学研究进展[J]。实用儿科学杂志,2006,21(22):1580-1582.
    2.王毅,解卫平。肺动脉高压发病机制的研究进展[J]。临床肺科杂志,2010,15(11):1621-1623.
    3.Graham BB, Tuder RM,王丛,等.肺动脉高压的发病机制[J]。中华医学杂志,2009,89(30):2091-1093.
    4. Zaiman A, Fijalkowska L, Hassoun PM, et al. One hundred years of research in the pathogenesis of pulmonary hypertension[J]. Am J Respir Cell Mol Biol,2005,33(5):425-431.
    5. Chan SY, Loscalzo J. Pathogenicmechanisms of pulmonary arterial hypertension[J]. J Mol Cell Cardiol,2008,44(1):14-30.
    6. Johji K, Toshihiro T, Toshihiro K, et al. Adrenomedullin::a protective factor for blood vessels[J]. Arterioscler Thromb Vasc Biol,2005,25(12):2480-2487.
    7. Wedgwood S, Black S. Endothelin-1 decreares endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide[J]. Am J Physiol-Lung Cell Mol hysiol,2005,288(3):L480-L487.
    8. Sage E, Mercier O, Van den Eyden F, et al. Endothelial cell apoptosis in chronically obstructed and reperfused pulmonary artery[J]. Respir Res,2008,9: 19.
    9. Barbera JA, Peinado VI, Santos S. Pulmonary hypertension in chronic obstructive pulmonary disease[J]. Eur Respir J,2003,21(5):892-905.
    10. Smadja DM, Mauge L, Sanchez O, et al. Distinct patterns of circulating endothelial cells in pulmonary hypertension[J]. Eur Respir J,2020,36(6):1284-93.
    11.李南,孔辉,解卫平等.肺血管内皮功能紊乱与肺动脉高压[J].国际呼吸杂志,2012,32(6):470-475.
    12. Hassoun PM, Mouthon L, Barbera JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling[J]. J Am Coll Cardiol,2009:54(I Suppl):S10-9.
    13. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease[J]. Biochem Pharmacol,2009,78:539-552.
    14. Rios EJ, Fallon M, Wang J, Shimoda LA. Chronic hypoxia elevates intracellular PH and activates Na+-H+ exchange in pulmonary arterial smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol 2005; 289:L867-L874.
    15. Shimoda LA, Fallin M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinzation of intracellucar PH in pulmonary arterial myocytes[J]. Am J Physiol Lung Cell Mol Physiol 2006; 291: L941-L949.
    16. Yu L, Quinn DA, Gary HG, Hales CA. Deficiency of the NHE1 gene prevents hypoxia-induced pulmonary hypertension and vascular remodeling[J]. Am J Respir Crit Care Med 2008; 177:1276-1284.
    17. Lunyin Y, Charles A, Silencing of Sodium-Hydrogen Exchanger 1 attenuates the Proliferation, Hypertrophy, and Migration of Pulmonary Atery Smooth Muscle Cells via E2F1[J]. Am J Respri Cell Mol Biol 2011; 45:923-930.
    18.李静,李新香,孙景辉.钠氢交换蛋白-1在心血管疾病中的作用分析[J].中国全新医学,2012,13(12):1364-1366.
    19. Piene H, Pulmonary arterial impedance and right ventricular function[J]. PHysiol Rev,1986(3):606-652.
    20. Andrews R, Tlloh R. Pulmonary hypertension in paediat rics[J].Curr Opin Paediatr,2002,14(2):603-605.
    21. Chandrasekar I, Eis A, Konduri GG. Betamethasone attenuates oxidant stress in endothelial cells from fetal lambs with persistent pulmonary hypertension [J]. Pediatr Res,2008,63(1):67-72.
    22.金振晓,辛梅,陈涛,等。NHE1在心肌肥大,心肌纤维化和心衰中的作用。[J].国际病理科学与临床杂志,2005,25(6):536-538.
    23. Fujisa wa G, Okada K, Muto S, NA+/H+ exchanger isoform I is involved in mineralocorticoid/salt-induced cardiac injury[J] Hypertension, 2003,41(3):493-498.
    24. Cantone A, Wang T, Pica A, et al. Use of transgenic mice in acid-base balance studies[J]. J Nephrol,2006,19(S9):S121-S127.
    25. Strok E, Schwab A. Role of the NA+/H+ exchanger NHE1 in cell migration[J]. Acta Physiol (Oxf),2006,187(1-2):149-157.
    26. Meima ME, Mackley JR,Barter DL. Beyond ion translocation:structural functions of the sodium-hydrogen exchanger isoform-1[J]. Curr Opin Nephrol Hypertens, 2007,16:365-72.
    1.毛焕元,曹林生.心脏病学[M].2版.北京:人民卫生出版社,2001:766-778.
    2.崔华,范利,封志纯,等.缺氧性肺动脉高压对左心室心肌细胞凋亡的影响与心肌AngⅡ含量的相关分析[J].心肺血管病杂志,2006,25(1):28-31.
    3. Grimminger F, Schermuly RT. PDGF receptor and its antagonists:role in treatment of PAH[J]. Adv Exp Med Biol,2010,661(6):435-446.
    4. Badesch DB, Champion HC, Gomez Sanchez MA, etal. Diagnosis and assessment of pulmonary arterial hypertension[J]. J Am Coil Cardiol,2009,54(1 Suppl):55-56.
    5. Parmley WW, Tyberg JV, Glantz SA. Cardiac dynamics[J]. Annu Rev PHysiol,1977,39:277-299.
    6. Burg ED, Remillard CV, Yuan JX. Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis:Ph armacotherapeutic implications [J]. Br J PHarmacol,2008,153(Suppl 1):99-111.
    7.王新,杨玉雯,王安才,等,缬沙坦干预对缺氧肺动脉高压大鼠大电导钙激活钾通道的影响[J].中国临床药理学与治疗学,2009,14(9):1032-1035.
    8. Rosenzweig EB, Barst RJ. Eisenmenger's syndrome:current management[J]. Prog Cardiovasc Dis,2002,45(1):129-138.
    9. Viswanathan S, Kumar RK. Assessment of operability of congenital cardiac shunts with increased pulmonary vascular resistance[J]. Catheter Cardiovasc Interv.2008;71(5):665-670.
    10. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension[J].Circulation,2004,109(2):159-165.
    11. Davies PF. Flow-mediated endothelial mechanotransduction[J]. Physiol Rev,1995,75(30:519-560.
    12. Boon RA, Horrevoets AJ. Key transcriptional regulators of the vasoprotective effects of shear stress[J]. Hamostaseologie,2009,29(1):39-40,41-43.
    13. Chiu JJ, Chen LJ, Chen CN, et al. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells[J]. J Biomech,2004,37(4):531-539.
    14. Paz NG, Walshe TE, et al.Role of shear-stress-induced VEGF expression in endothelial cell survival[J]. J. Cell Sci,2012; 125:831-843.
    15. Aromatario C, Sterpetti AV, et al.Fluid shear stress increases the release of platelet derived growth factor BB by aortic endothelial cells[J]. Minerva Cardioangiol,1997,45(1-2):1-7.
    16. Yoshida H, Kitaichi T, Urata M, et al. Syngeneic bone marrow mononuclear cells improve pulmonary arterial hypertion through vascular endothelial growth factor upregulaton[J]. Ann Thorac Surg,2009,88(2):418-424.
    17. Perros F, Montani D, Dorfmuller P, et al. Platelet derived growth factor expression and function in idiopathic pulmonary hypertension[J]. Am J Respir Crit Care Med,2008,178(1):81-88.
    18. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition[J]. J Clin Invest,2005,115(10):2811-2821.
    19. Harvey WR, Boudko DY, Rheault MR, Okech BA. NHE(VNAT):an H+ V-ATPase electrically coupled to a Na+:nutrient amino acid transporter(NAT) forms an Na+/H+ exchanger(NHE)[J]. J Exp Biol.2009.212(pt3):347-57.
    20. Fliegel L. Regulation of the Na+/H+ exchanger in the healthy and diseased myocardium[J]. Expert Opin Ther Targets.2009.13(1):55-68.
    21. Koliakos G, Paletas K, Kaloyianni M. NHE1:a molecular target for signaling and cell matrix interactions [J]. Connect Tissue Res.2008.49(3).
    22. Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na+/H+ exchanger NHE1[J]. J Cell Biol.2002.159(6):1087-96.
    23.李黔宁,应大君,王东武,等.内皮细胞基因的切应力反应元件[J].国外医学分子生物学分册,1999,67:S100.
    24. Okahara K, Sun B, et al.Upregulation of prostacyclin synthesis -related gene expression by shear stress in vascular endothelial cells [J]. Arterioscler Thromb Vasc Biol,1998,18:1922-1926.
    25. Stephen W, Janine M. Bekker, Stephen M.B, Shear stress regulation of endothelial NOS in fetal pulmonary arterial endothelial cells involves PKC[J]. Am J Physiol Lung Cell Mol Physiol,2001,281:490-498.
    26. Ando J,Yamamoto K, et al. Vascular mechanobiology:endothelial cell responses to fluid shear stress[J]. Circ J,2009,73(11):1983-92.
    27.魏玲,石家冲。钠氢交换体1mRNA在心衰患者心肌组织中的表达[J].中国老年保健医学,2009,7(4):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700