基质金属蛋白酶-3及其组织抑制物-1在兔腰椎间骨缺损及生长板中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1研究背景
     软骨内骨化是一种骨组织沿软骨模板进行生长的过程,它发生于骨骼发育过程、骨折愈合和骨生长板的骨形成过程中,并涉及从富含Ⅱ型胶原纤维及聚集蛋白聚糖的无血管软骨区向富含Ⅰ型胶原纤维和矿物质的血管丰富的骨组织的转变。在软骨内成骨过程中,软骨细胞的前体间充质细胞分化为软骨细胞,随后软骨细胞增殖并成为肥大的成熟软骨细胞。肥大的软骨开始钙化,软骨基质降解并出现血管长入,肥大软骨细胞开始凋亡,随后骨质开始沉积于钙化的软骨小梁中。虽然越来越多的研究涉及软骨内骨化基质,但其中各个部分的确切关系仍未明确。骨的愈合是一个涉及类骨质降解和基质矿化的复杂过程,在这个过程中基质金属蛋白酶及其抑制剂起着重要的作用。基质金属蛋白酶的活性受到基质金属蛋白酶组织抑制剂(TIMPs)的调节,TIMPs通过形成非共价键结合的双分子复合物及阻止MMPs前体结合的方式使MMPs失活。TIMPs和MMPs在骨的发生和重构中起着重要的作用。
     骨缺损的修复提供了一个软骨成骨的很好的模型,因为它模拟了骨骼发育过程中的生长步骤。骨缺损的修复不仅是一个软骨和骨快速生成的过程,而且还是一个细胞外基质广泛降解的过程。骨生长板中MMP-3及TIMP-1的表达情况对骨缺损修复过程中的MMP-3及TIMP-1的表达的研究具有参考价值。
     本研究运用免疫组织化学的方法观察MMP-3及TIMP-1在兔腰椎骨骺中的表达随着时间的变化情况,并观察MMP-3及TIMP-1在骨缺损修复过程中表达的变化,从而判断不同骨材料介导的骨修复的成骨能力的区别。
     2研究目的
     观察MMP-3及TIMP-1在骨缺损修复过程中表达的变化,从而判断不同骨材料介导的骨修复的成骨能力的区别。
     3实验方法
     新西兰白兔30只,通过经腹前路手术显露下腰椎,利用牙科磨钻建立兔腰5/6、腰6/7、腰7/骶1椎间缺损的模型。腰5/6椎间缺损区不植入任何材料,作为阴性对照组;腰6/7椎间缺损区植入可注射型纳米羟基磷灰石/胶原复合材料,作为实验组;腰7/骶1椎间缺损区植入已临床使用的固体型纳米羟基磷灰石/胶原复合材料,作为阳性对照组。随机选取动物,分别在术后4周、8周、10周、12周、16周、20周处死动物,取腰椎标本,制作每只动物腰5/6、腰6/7、腰7/骶1椎间区域的组织切片,用兔MMP-3抗体、TIMP-1抗体等一抗进行处理,再用上述抗体的相应的二抗抗体进行处理,并做显色处理,得出组织块中特定区域中MMP-3和TIMP-1的表达情况。
     4实验结果
     在实验组和阳性对照组中,骨缺损的修复主要通过软骨内成骨方式进行修复。在修复过程中,软骨细胞表达基质金属蛋白酶-3(MMP-3)及金属蛋白酶组织抑制剂-1。其中随着时间的推移,MMP-3及TIMP-1的表达量呈现先上升后下降的趋势,前者的峰值出现在术后12周,后者的峰值出现在术后16周。在峰值到达前,用可注射型纳米羟基磷灰石/胶原人工骨材料填充的实验组椎间骨缺损的MMP-3及TIMP-1的表达程度高于用固体型纳米羟基磷灰石/胶原人工骨材料填充的阳性对照组椎间骨缺损中的MMP-3及TIMP-1的表达程度。
     5结论
     可注射型纳米羟基磷灰石/胶原人工骨材料介导的骨修复比固体型纳米羟基磷灰石/胶原人工骨材料介导的骨修复具有更高的成骨能力。
1 Introduction
     Endochondral ossification is process of bone growth along the template of cartilage, which occurs in bone development, fracture healing and bone growth plate in the bone formation process, and involves transformation from typeⅡcollagen and aggrecan rich avascular cartilage to collagen type I and mineral rich vascular bone tissue. In the process of endochondral ossification, precursor cartilage cells, namely mesenchymal cells differentiate into cartilage cells, which then mature into hypertrophic chondrocytes. Hypertrophic chondrocytes start to calcify, cartilage matrix degradates and the vessels ingrowth. Apoptosis of hypertrophic chondrocytes occurs, followed by bone deposition in the calcified cartilage trabeculae. Although more and more researches involve the mechanism of endochondral ossification, the exact relationship between each part remains unclear.
     Bone graft healing is a complex process involving the degradation of surface osteoid and mineralized matrix by matrix metalloproteinases (MMPs). The activity of MMPs is regulated by tissue inhibitors of matrix metalloprotemases (TIMPs). TIMPs inactivate MMPs by forming non-covalent bimolecular complexes and prevent pro-MMP activation. TIMPs and MMPs have been implicated to play important roles in bone formation and remodeling.
     2 Objective
     To observe the expression of MMP-3 and TIMP-1 in the repair process of bone defect; Also to observe the changes over time of expression of MMP-3 and TIMP-1 in the rabbit spinal epiphyseal.
     3 Methods
     There were 16 New Zealand white rabbits, we excised anterior discs and built defect areas between L5/6, L6/7 and L7/S1 through anterior lumbar approach operation in each animal. Of these, no material was implanted in defect area between L5/6; injectable n-HA/Col was implanted in defect area between L6/7; and solid type n-HA/Col was implanted in defect area between L7/S1. We killed 4 animals at 4w,8w,12w,16w postoperatively respectively, and harvested lumbosacral vertebrae specimens. We made organization slices of L5/6,L6/7,L7/S1 segment in every specimen. Immunohistochemistry procedures with MMP-3 and TIMP-1 antibodies were performed to compare expression differences of the 3 groups and expression changes with time in growth plate.
     4 Results
     In the experimental group and the positive control group, repair of bone defects occurs mainly through endochondral ossification. In the repair process, the cartilage cells express matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinase-1(TIMP-1). Over time, MMP-3 expression first increased and then decreased, while the expression of TIMP-1 showed gradual upward trend. The expression of MMP-3 in bone defects filled with injectable n-HA/Col in the experimental group is higher than that in bone defects filled with solid n-HA/Col in positive control group. The expression of TIMP-1 in bone defects filled with injectable n-HA/Col in the experimental group is earlier than that in bone defects filled with solid n-HA/Col in positive control group.
     5 Conclusion
     Bone defect repair mediated by injectable n-HA/Col is more efficient than that mediated by solid n-HA/Col. ECM remodeling balance in bone defect repair mediated by injectable n-HA/Col is earlier than that in bone defect repair mediated by solid n-HA/Col.
引文
1. Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O,Bacher JD, Baron J 2002 The role of the resting zone in growth plate chondrogenesis. Endocrinology 143:1851-1857
    2. Gafni RI, Weise M, Robrecht DT, Meyers JL, Barnes KM, De LeviS, Baron J 2001 Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr Res 50:618-623;
    3. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A 2002 Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439-449;
    4. Wang W, Kirsch T 2002 Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J Cell Biol 157:1061-1069
    5. Anderson HC 2003 Matrix vesicles and calcification. Curr Rheumatol Rep 5:222-226
    6. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS 2001 Hypoxia in cartilage:HIF-1 is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865-2876
    7. Waring P, Beaver J 1996 Cyclosporin A rescues thymocytes from apoptosis induced by very low concentrations of thapsigargin:effects on mitochondrial function. Exp Cell Res 227:264-276 15.
    8. Escargueil-Blanc I, Meilhac O, Pieraggi MT, Amal JF, Salvayre R, Negre-Salvayre A 1997 Oxidized LDLs induce massive apoptosis of cultured human endothelial cells through a calcium-dependent pathway. Prevention by aurintricarboxylic acid. Arterioscler Thromb Vase Biol 17:331-339
    9. Srinivasan S, Stevens MJ, Sheng H, Hall KE, Wiley JW 1998 Serum from patients with type 2 diabetes with neuropathy induces complement-independent, calcium-dependent apoptosis in cultured neuronal cells. J Clin Invest 102:1454-1462
    10. Boyan BD, Sylvia VL, Dean DD, Schwartz Z 2001 24,25-(OH)(2)D(3) Regulates cartilage and bone via autocrine and endocrine mechanisms. Steroids 66:363-374
    11. Malloy PJ, Pike JW, Feldman D 1999 The vitamin D receptor and the syndrome of hereditary 1,25-Dihydroxyvitamin D-resistant rickets. Endocr Rev 20:156-188 19.
    12. Lin R, Amizuka N, Sasaki T, Aarts MM, Ozawa H, Goltzman D, Henderson JE, White JH 2002 1,25-Dihydroxyvitamin D3 promotes vascularization of the chondro-osseous junction by stimulating expression of vascular endothelial growth factor and matrix metalloproteinase 9. J Bone Miner Res 17:1604-1612
    13. Lewinson D, Silbermann M 1992 Chondroclasts and endothelial cells collaborate in the process of cartilage resorption. Anat Rec 233:504-514
    14. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z 1998 MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411-422
    15. Horton WA 1993 Morphology of connective tissue: cartilage. In: McCusick V, ed. Connective tissue and its heritable disorders. New York:Wiley-Liss, Inc.; 641-675
    16. Spranger J, Winterpacht A, Zabel B 1994 The type Ⅱ collagenopathies:a spectrum of chondrodysplasias. Eur J Pediatr 153:56-65
    17. Horton Jr WE, Wang L, Bradham D, Precht P, Balakir R 1992 The control of expression of type Ⅱ collagen:relevance to cartilage disease. DNA Cell Biol 11:193-19825.
    18. Muragaki Y, Mariman EC, van Beersum SE, Perala M, van Mourik JB, Wannan ML, Hamel BC, Olsen BR 1996 A mutation in COL9A2 causes multiple epiphyseal dysplasia (EDM2). Ann NY Acad Sci 785:303-306 26.
    19. Wallis GA, Rash B, Sykes B, Bonaventure J, Maroteaux P, Zabel B, Wynne-Davies R, Grant ME, Boot-Handford RP 1996 Mutations within the gene encoding the 1(X) chain of type X collagen (COL10A1) cause metaphyseal chondrodysplasia type Schmid but not several other forms of metaphyseal chondrodysplasia. J Med Genet 33:450-457
    20. Rossi A, Superti-Furga A 2001 Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2):22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance. Hum Mutat 17:159-171
    21. Ruoslahti E 1991 Integrins. J Clin Invest 87:1-5
    22. Werb Z 1997 ECM and cell surface proteolysis:regulating cellular ecology. Cell 91:439-442 30.
    23. Ortega N, Behonick D, Stickens D, Werb Z 2003 How proteases regulate bone morphogenesis. Ann NY Acad Sci 995:109-116
    24. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, FerraraN1999 VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623-628
    25. Alexander CM, Werb Z 1992 Targeted disruption of the tissue inhibitor of metalloproteinases gene increases the invasive behavior of primitive mesenchymal cells derived from embryonic stem cells in vitro. J Cell Biol 118:727-739
    26. Wu CW, Tchetina EV, Mwale F, Hasty K, Pidoux I, Reiner A, Chen J, Van W, Poole AR 2002 Proteolysis involving matrix metalloproteinase 13 (collagenase-3) is required for chondrocyte differentiation that is associated with matrix mineralization. J Bone Miner Res 17:639-651
    27. Isakson OGP,Lindahl A, Nilsson A, et al. Mechanism of the stimulatory effect of growth hormone on longitudinal bone growth
    28. Gevers EF,van der Erden BC, Karperein M, et al. Localization and regulation of the growth hormone receptor and growth hormone binding protein in the rat growth plate. J Bone Miner Res,2002,17:1408-1419
    29. Mohan S,Richman C, Guo R, et al, Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and independent mechanisms. Endocrinology,2003,144:929-936
    30. Santos F, Carbajo-Perez E, Rodriguez J, et al, Alterations of the growth plate in chronic renal failure. Pediatr Nephrol,2005,20:330-334
    31. Ohlsson C, Isgaard J, Nilsson A, Isaksson OGP, Lindahl A 1993 Endocrine regulation of longitudinal bone growth. Acta Paediatr Suppl 391:33-40
    32. Burch WM, van Wyk JJ 1987 Triiodothyronine stimulates cartilage growth and maturation by different mechanisms. Am J Physiol 252:E176-E182
    33. Lewinson D, Bialik GM, Hochberg Z 1994 Differential effects of hypothyroidism on the cartilage and the osteogenic process in the mandibular condyle:recovery by growth hormone and thyroxine. Endocrinology 135:1504-1510
    34. Wakita R, Izumi T, Itoman M 1998 Thyroid hormone-induced chondrocyte terminal differentiation in rat femur organ culture. Cell Tissue Res 293:357-364
    35. Okubo Y, Hari RA 2003 Thyroxine downregulates Sox9 and promotes chondrocyte hypertrophy. Biochem Biophys Res Commun 306:186-190
    36. Lewinson D, Harel Z, Shenzer P, Silbermann M, Hochberg Z 1989 Effect of thyroid hormone and growth hormone on recovery from hypothyroidism of epiphyseal growth plate cartilage and its adjacent bone. Endocrinology 124:937-945
    37. Burch WM, van Wyk JJ 1987 Triiodothyronine stimulates cartilage growth and maturation by different mechanisms. Am J Physiol 252:E176-E182
    38. Ohlsson C, Nilsson A, Isaksson O, Bentham J, Lindahl A 1992 Effects of tri-iodothyronine and insulin-like growth factor-I(IGF-I) on alkaline phosphatase activity, [3H]thymidine incorporation and IGF-I receptor mRNA in cultured rat epiphyseal chondrocytes. J Endocrinol 135:115-123
    39. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS 1994 Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056-1060
    40. Morishima A, Grumbach MM, Simpson ER, Fisher C, Qin K 1995 Aromatase deficiency in male and female siblings caused by a novel mutation and the physiological role of estrogens. J Clin Endocrinol Metab 80:3689-3698 137.
    41. Carani C, Qin K, Simoni M, Faustini-Fustini M, Serpente S, Boyd J, Korach KS, Simpson ER 1997 Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91-95
    42. GrumbachMM2001 Estrogen, bone, growth and sex:a sea change in conventional wisdom. J Pediatr Endocrinol Metab 13 Suppl 6:1439-1455 140. Juul A 2001 The effects of oestrogens on linear bone growth. Hum Reprod Update 7:303-313
    43. Gevers EF, Wit JM, Robinson ICAF 1995 Effect of gonadectomy on growth and GH responsiveness in dwarf rats. J Endocrinol 145:69-79
    44. Strickland AL, Sprinz H 1973 Studies of the influence of estradiol and growth hormone on the hypophysectomized immature rat epiphyseal cartilage growth plate. Am J Obstet Gynecol 115:471-477 147.
    45 Jansson JO, Eden S, Isaksson O 1983 Sites of action of testosterone and estradiol on longitudinal bone growth.AmJ Physiol 244:E135-E140
    46. Cassorla FG, Skerda MC, Valk IM, Hung W, Cutler Jr GB, Loriaux DL 1984 The effects of sex steroids on ulnar growth during adolescence. J Clin Endocrinol Metab 58:717-720
    47. Zung A, Phillip M, Chalew SA, Palese T, Kowarski AA, Zadik Z 1999 Testosterone effect on growth and growth mediators of the GH-IGF-I axis in the liver and epiphyseal growth plate of juvenile rats. J Mol Endocrinol 23:209-221
    48. Metzger DL, Kerrigan JR 1993 Androgen receptor blockade with flutamide enhances growth hormone secretion in late pubertal males: evidence for independent actions of estrogen and androgen. J Clin Endocrinol Metab 76:1147-1152
    49. Abu EO, Homer A, Kusec V, Triffitt JT, Compston JE 1997 The localization of androgen receptors in human bone. J Clin Endocrinol Metab 82:3493-3497
    50. Bello CE, Garrett SD 1999 Therapeutic issues in oral glucocorticoid use. Lippincotts Prim Care Pract 3:333-341
    51. Elias LL, Huebner A, Metherell LA, Canas A, Warne GL, Bitti ML, Cianfarani S, Clayton PE, Savage MO, Clark AJ 2000 Tall stature in familial glucocorticoid deficiency. Clin Endocrinol (Oxf) 53:423-430
    52. Annefeld M 1992 Changes in rat epiphyseal cartilage after treatment with dexamethasone and glycosaminoglycan-peptide complex. Pathol Res Pract 188:649-652
    53. Abu EO, Horner A, Kusec V, Triffitt JT, Compston JE 2000 The localization of the functional glucocorticoid receptor_in human bone. J Clin Endocrinol Metab 85:883-889
    54. Silvestrini G, Ballanti P, Patacchioli FR, Mocetti P, Di Grezia R, Wedard BM, Angelucci L, Bonucci E 2000 Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plate and metaphyseal bone cells of rats after high-dose treatment with corticosterone. Bone 26:33-42
    55. Smink JJ, Gresnigt MG, Hamers N, Koedam JA, Berger R, Buul-Offers SC 2003 Short-term glucocorticoid treatment of prepubertal mice decreases growth and IGF-I expression in the growth plate. J Endocrinol 177:381-388 128.
    56. Allen DB 1996 Growth suppression by glucocorticoid therapy. Endocrinol Metab Clin North Am 25:699-717 129.
    57. Luo JM, Murphy LJ 1989 Dexamethasone inhibits growth hormone induction of insulin-like growth factor-I (IGF-I) messenger ribonucleic acid (mRNA) in hypophysectomized rats and reduces IGF-I mRNA abundance in the intact rat. Endocrinology 125:165-171 130.
    58. Itagane Y, Inada H, Fujita K, Isshiki G 1991 Interactions between steroid hormones and insulin-like growth factor-1 in rabbit chondrocytes. Endocrinology 128:1419-1424
    59. Heyma P, Larkins RG 1982 Glucocorticoids decrease in conversion of thyroxine into 3,5,3 -tri-iodothyronine by isolated rat renal tubules. Clin Sci (Lond) 62:215-220 133.
    60. Cavalieri RR, Castle JN, McMahon FA 1984 Effects of dexamethasone on kinetics and distribution of triiodothyronine in the rat. Endocrinology 114:215-221
    61. Miura M, Tanaka K, Komatsu Y, Suda M, Yasoda A, Sakuma Y, Ozasa A, Nakao K 2002 Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate. J Bone Miner Res 17:443-454
    62.Kugimiya F, Tei Y. Regulation of chondrogenesis by PTH/PTHrP signaling, Clin Calcium,2003,13:19-24
    63. Uyama Y, Yagami K, Hatori M. Recombinant human bone morphogenetic promotes India hedgehog-mediated osteochondrogenic differentiation of a human chondrocytic cell line in vivo and in vitro Differentiation,2004,72:3240
    64. Liu Z. Xu J, Colvin JS,et al. Coordination of chondrogenesis and osteogenensis by fibroblasts growth factor 18. Genes Dev, 2002,16,859-869
    65. Ferrara N, Davis-Smyth T 1997 The biology of vascular endothelial growth factor. Endocr Rev 18:4-25
    66. Haigh JJ, Gerber HP, Ferrara N, Wagner EF 2000 Conditional inactivation of VEGF-A in areas of collagen2al expression results in embryonic lethality in the heterozygous state. Development 127:1445-1453
    67. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, FerraraN 1999 VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623-628
    68. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z 1998 MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411-422
    69. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z 1998 MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411-422
    70. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, FerraraN1999 VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623-628
    71. Gerber HP, FerraraN2000 Angiogenesis and bone growth. Trends Cardiovasc Med 10:223-228
    72. Carlevaro MF, Albini A, Ribatti D, Gentili C, Benelli R, Cermelli S, Cancedda R, Cancedda FD 1997 Transferrin promotes endothelial cell migration and invasion:implication in cartilage neovascularization. J Cell Biol 136:1375-1384
    73. Hiraki Y, Inoue H, Iyama K, Kamizono A, Ochiai M, Shukunami C, Iijima S, Suzuki F, Kondo J 1997 Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage.J Biol Chem 272:32419-32426
    74. Baron J, Klein KO, Yanovski JA, Novosad JA, Bacher JD, Bolander ME, Cutler Jr GB 1994 Induction of growth plate cartilage ossification by basic fibroblast growth factor. Endocrinology 135:2790-2793
    75. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS 2001 Hypoxia in cartilage:HIF-1 is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865-2876
    76. Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S, Yu A 1999 Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1. Ann NY Acad Sci 874:262-268
    77. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS 2001 Hypoxia in cartilage:HIF-1_ is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865-2876
    78. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS 2001 Hypoxia in cartilage:HIF-1 is essential for chondrocyte growth arrest and survival. Genes Dev 15:2865-2876
    79. Takeda S, Bonnamy JP, Owen MJ, Ducy P, Karsenty G 2001 Continuous expression of Cbfal in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfal-deficient mice. Genes Dev 15:467-481
    80. Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, Kurisu K, Komori T 2001 Skeletal malformations caused by overexpression of Cbfal or its dominant negative form in chondrocytes. J Cell Biol 153:87-100
    81. Takamoto M, Tsuji K, Yamashita T, Sasaki H, Yano T, Taketani Y, Komori T, Nifuji A, NodaM2003 Hedgehog signaling enhances core-binding factor 1 and receptor activator of nuclear factor-_B ligand (RANKL) gene expression in chondrocytes. J Endocrinol 177:413-421
    82. Karsenty G, Wagner EF 2002 Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389-406
    83. Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S, Olsen BR 2001 Tissue specific regulation of VEGF expression during bone development requires Cbfal/Runx2. Mech Dev 106:97-106
    84. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development.Dev Cell 2002;2:389-406
    85. Costell M, et al. Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 1999;147:1109-1122
    86. Arikawa-Hirasawa E, et al. Perlecan is essential for cartilage and cephalic development. Nat Genet 1999;23:354-358
    87. Jacenko O, et al. A dominant interference collagen Ⅹ mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice. Am J Pathol 001;159:2257-2269
    88. Blair HC, et al. Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J 2002;364:329-341
    89. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development.Dev Cell 2002;2:389-406.
    90. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-174
    91. Vu TH, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998;93:411-422
    92. Holmbeck K, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999;99:81-92
    93. Zhou Z, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membranetype matrix metalloproteinase I. Proc Natl Acad Sci U S A 2000;97:4052-4057
    94.Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-174
    95. Blair HC, et al. Mechanisms balancing skeletal matrix synthesis and degradation. Biochem J 2002;364:329-341
    96. Yasui N, et al. Production of collagenase inhibitor by the growth cartilage of embryonic chick bone:isolation and partial characterization. Coll Relat Res 1981; 1:59-72
    97. Dean DD, et al. Localization of collagenase in the growth plate of rachitic rats. J Clin Invest 1985;76:716-722
    98. Brown CC, et al. Immunolocalization of metalloproteinases and their inhibitor in the rabbit growth plate. J Bone Joint Surg Am 1989;71:580-593
    99. Flenniken AM, Williams BR. Developmental expression of the endogenous TIMP gene and a TIMPlacZ fusion gene in transgenic mice. Genes Dev 1990;4:1094-1106
    100. Apte SS, et al. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J Biol Chem 1997;272:25511-25517
    101. Zeng Y, et al. Temporal and spatial regulation of gene expression mediated by the promoter for the human tissue inhibitor of metalloproteinases-3 (TIMP-3)-encoding gene. Dev Dyn 1998;211:228-237
    102. Airola K, et al. Human TIMP-3 is expressed during fetal development, hair growth cycle, and cancer progression. J Histochem Cytochem 1998;46:437-447
    103. Bord S, et al. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) distribution in normal and pathological human bone. Bone 1999;24:229-235
    104. Huang W, et al. Tissue inhibitor of metalloproteinases-4 (TIMP-4) gene expression is increased in human osteoarthritic femoral head cartilage. J Cell Biochem 2002;85:295-303
    105. Bord S, et al. Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) expression in developing human bone:potential roles in skeletal development. Bone 1998;23:7-12
    106. Bord S, et al. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) distribution in normal and pathological human bone. Bone 1999;24:229-235
    107. Mattot V, et al. Expression of interstitial collagenase is restricted to skeletal tissue during mouse embryogenesis. J Cell Sci 1995;108:529-535
    108. Gack S, et al. Expression of interstitial collagenase during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ 1995;6:759-767
    109. Tuckermann JP, et al. Collagenase-3 (MMP-13) and integral membrane protein 2a (Itm2a) are marker genes of chondrogenic/osteoblastic cells in bone formation:sequential temporal, and spatial expression of Itm2a, alkaline phosphatase, MMP-13, and osteocalcin in the mouse. J Bone Miner Res 2000; 15:1257-1265
    110. Hayami T, et al. Spatiotemporal change of rat collagenase (MMP-13) mRNA expression in the development of the rat femoral neck. J Bone Miner Metab 2000;18:185-193
    111. Stahle-Backdahl M, et al. Collagenase-3 (MMP-13) is expressed during human fetal ossification and re-expressed in postnatal bone remodeling and in rheumatoid arthritis. Lab Invest 1997;76:717-728
    112. Johansson N, et al. Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Dyn 1997;208:387-397
    113. Davoli MA, et al. Enzymes active in the areas undergoing cartilage resorption during the development of the secondary ossification center in the tibiae of rats aged 0-21 days:Ⅱ. Two proteinases, gelatinase B and collagenase-3, are implicated in the lysis of collagen fibrils. Dev Dyn 2001;222:71-88
    114. Jimenez MJ, et al. Collagenase 3 is a target of Cbfal, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 1999;19:4431-4442
    115. Uusitalo H, et al. Expression of cathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus. Calcif Tissue Int 2000;67:382-390
    116.Z Werb & J.R. Chin: Extracellular matrix remodeling during morphogenesis. Ann NY Acad Sci 857,110-118(1998)
    117.Y. Wang, F. Middleton, J. A. Horton, L. Reichel, C. E. Farnum & T.A. Damom:Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways. Bone 35(6),1273-1293(2004)
    118. A. Gepstein, S. Shapiro, G. Arbel, N. Lahat & E. Livne:Expression of matrix metalloproteinases in articular cartilage of temporomandibular and knee joints of mice during growth, maturation, and aging. Arthritis Rheum 46(12),3240-3250(2002)
    119. N. Fukui, A McAlinden, Y. Zhu, E. Crouch, T. J. Broekelmann, R. P. Meacham & L. J. Sandell:Processing of type Ⅱ procollagen propeptide by matrix metalloproteinases. J Biol Chem 277(3),2193-2201 (2002)
    120. K. Joronen, H. Salminen, V. Glumoff, M. Savontous & E. Vuorio:Temporospatial expression of tissue inhibitors of matrix metalloproteinases-1,-2,-3 during development, growth aging of the mouse skeleton. Histochem Cell Biol 114(2),157-165(2000)
    121. S. Masure, G. Nys, P. Fiten, J. Van Damme & G. Opdenakker:Mouse gelatinase B, cDNA cloning, regulation of expression and glycosylation in WEHI-3 macrophages and gene organisation
    122. P. Dabarajan. J.J. Johnston, S. S. Ginsberg, H.E. van Wart & N. Berliner:Structure and expression of neutrophil gelatinase cDNA. Identity with type Ⅳ collagenase from HT1080 cells. J Biol Chem 267(35),25228-25232(1992)
    123. A. Okada, M. Santavicca & P. Basset:The cDNA cloning and expression of the gene encoding rat gelatinase B. Gene 164(2),317-321(1995)
    124. E. R. Lee, G. Murphy, M. el-Alfy, M.A. Davoli, L. Lamplugh L, A. J. Docherty & C.P. Leblond:Active gelatinase B is identified by histozymography in the cartilage resorption sites of developing long bones. Dev Dyn 215(3),190-205(1999)
    125. P. Reponen, C. Sahlberg, C. Munaut, I Thesleff & K. Tryggvason:High expression of 92-kD type Ⅳ collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol 124(6),1091-1102(1994)
    126. T. H. Vu, J. M. Shipley, G. Bergers, J. E. Berger, J.A. Helms, D. Hanshan, S.D. Shapiro, R.M. Senior & Z. Werb:MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93(3),411-422(1998)
    127. A. Tong, A. Reich, O. Genin, M. Pines & E. Monsonego-Ornan:Expression of chick 75-kDa gelatinase-like enzyme in perivascular chondrocytes suggests its role in vascularization of the growth plate. J Bone Miner Res 18(8),1443-1452(2003)
    128. C. A. Praul, B. C. Ford, C. V. Gay & M. Pines, R.M. Leach:Gene expression and tibial dyschondroplasia. Poult Sci 79(7) 1009-1013(2000)
    129. E. Gustaffsson, A. Aszodi, N. Ottega, E. B.. Hunziker, H. W. Denker, Z. Werb& R.Fassler:Role of collagen type Ⅱ and perlecan in skeletal development. Ann NY Acad Sci 995,140-150(2003)
    130. D. Miao, X. Bai, D. K. Panda, A. C. Karaplis, D. Goltzrnan & M.D. McKee:Cartilage abnormalities are associated with abnormal Phex expression and with altered matrix protein and MMP-9 localization in Hyp mice. Bone 34(4),638-647 (2004)
    131. Vu TH, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998;93:411-422.25. Hayami T, et al. Spatiotemporal change of rat collagenase (MMP-13) mRNA expression in the development of the rat femoral neck. J Bone Miner Metab 2000;18:185-193
    132. Engsig MT, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000;151:879-889
    133. Zhao W, et al. Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest 2000; 106:941-949
    134. Lee ER, et al. Active gelatinase B is identified by histozymography in the cartilage resorption sites of developing long bones. Dev Dyn 1999;215:190-205
    135. P. Reponen, S. Sahlberg, P. Huhtala, T. Hurskainen, I. Thesleff & K. Tryggvason:Molecular cloning of murine 72-kDa type Ⅳ collagenase and its expression during mouse development. J Biol Chem 267(11),7856-7862 (1992)
    136. R. T. Aimes, D.1. French & J. P. Quigley:Cloning of a 72 kDa matrix metalloproteinase (gelatinase) from chicken embryo fibroblasts using gene family PCR:expression of the gelatinase increases upon malignant transformation. Biochem J 300 (Pt 3):729-736 (1994)
    137. S. Matumoto, M. Katoh, T. Watanabe & Y. Masuho:Molecular cloning of rabbit matrix metalloproteinase-2 and its broad expression at several tissues. Biochim Biophys Acta 1307(2),137-139 (1996)
    138. P. Huhtala, L. T. Chow & K. Tryggvason:Structure of the human type IV collagenase gene. J Biol Chem 265(19),11077-11082 (1990)
    139. C. Filtani, G.1L Dickson, D. Di Martino, V. Ulivi C. Sanguineti, P. Romano, C. Palermo & P. Manduca The expression of metalloproteinase-2,-9 and-14 and tissue inhibitor 1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastics expressing metalloproteinase-14. J Bone Mb,mr Res 15(11),2154-2168 (2000)
    140. Y. Kawashima-Ohya, H. Satakeda, Y. Kuruta, T. Kawamoto, W. Yah, Y. Akagawa, T. Hayakawa, M. Noshiro, Y. Okada, S. Nakamura & Y. Kato:Effects of parathyroid hormone (PTH) and PTI-I-related peptide on expressions of matrix metalloproteinase-2,-3 and-9 in growth plate chondrocyte cultures. Endocrinology 139(4),2120-2127 (1998)
    141. M. G. Mattei, N. Roeckel, B. IL Olsen & S. S. Apte:Genes of the membrane-type matrix metalloproteinase (MT-MMP) gene family, MMP14, MMP15, and MMP16, localize to human chromosomes 14,16 and 8, respectively. Genomics 40(1),168-169 (1997)
    142. S. S. Apte, N. Fukai, D. IL Beier & B. IL Olsen:The matrix metaUoproteinase-14 (MMP-14) is structurally distinct from other MM genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis. J Biol Chem 272(41),25511-25517 (1997)
    143. Y. T. Konttinen, A. Ainola, H. Valleala, J. Ma, H. Ida, J. Mandelin, R. W. Kinne, S. Santavirta, T. Sorsa, C Lopez-Ortin & M. Takagi: Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane:different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 58(11),691-697 (1999)
    144. E. Maquoi, K. Peyrollier, A. Noel, J. M. Foidart & F. Frankenne:Regulation of membrane-type 1 matrix metalloproteinase activity by vacuolar H+-ATPases. Biochem d 373(Pt 1),19-24 (2003)
    145. J. Oh, R. T akahashi, S. Kondo, A. Mizoguchi, E. Adachi, R. M. Sasahara, S. Nishimura, Y. Imamura, H. Kitayama, D. B. Alexander, C. Ide, T. P. Horan, T. Arakawa, H. Yoshida, S. Nishikawa, Y. Itoh, M. Seiki, S. Itohara, C. Takahashi & M. Noda:The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107(6),789-800 (2001)
    146. A. Collen, R. Hanemaajijer, F. Lupu, P. H. Quax, N. van Lent, J. Grimbergen, E. Peters, P. Koolwijk & V. W. van Hinsbergh: Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibril-collagen matrix. Blood 101(5),1810-1817 (2003)
    147. K. Holmbeck, P. Bianco, J. Caterina, S. Yamada, M. Kroraer, S. A. Kuznesov, M. Man}tm, P. G. Robey, A.R. Poole, I. Pidoux, J. M. Ward & H. Birkedal-Hansen:MTl-MMP-defieient mice develop dwarfism, osteopenia, and connective tissue disease due to inadequate turnover. Cell 99(1),81-92 (1999)
    148. Z. Zhou, S. S. Apte, R. Soininen, R. Cao, G. Y. Baaklini, R. W. Rauser, J. Wang, Y. Cao & K. Tryggvason:Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97(8),4052-4057 (2000)
    149. S. D. Shapiro, G. L. Griffin, D. J. Gilbert, N. A. Jenkins, N. G. Copeland, H. G. Welgus, R. M. Senior & T. J. Ley:Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase. J Biol Chem 267(7),4664-4671(1992)
    150. Y. Fu, A. Lyga, H. Shi, M. L. Blue, B. Dixon & D. Chen:Cloning, expression, purification and characterization of rat MMP-2. Protein Expr Purif 21 (2),268-74(2001)
    151. E. Kerkela, T. Boliling, R. Herva, J. A. Uria & U. Saarialho-Kere: Human macrophage metalloelastase (MMP-12) expression is induced in chondrocytes during fetal development and malignant transformation. Bone 29(5),487493 (2001)
    152. J. Fan, X. Wang, L. Wu, S. I. Matsumoto, J. Liang, T. Koike, T. Ichikawa, H. Sun, H. Shikama, Y. Sasaguri & T. Watanabe: Macrophage-specific overexpression of human matrix metalloproteinase-12 in transgenic rabbits. Transgenic Res 13(3),261-269 (2004)
    153. X. Wang, J. Liang, T. koike- H. Sun, T. Ichikawa,S. Kitajima, M. Morimoto, H. Shikama, T. Watanbe, Y. Sasaguri & J. Fan: Overexpression of hmnan metalloproteinase-12 enhances the development of inflammatory arthritis in transgenic rabbits. Am J Pathol 165(4), 1375-1383(2004)
    154. S. R. Abramson & J. F. Woessner, Jr:.Characterization of rat matrilysin and its cDNA. Ann NY AcadSci 732,362-364 (1994)
    155. J. D. Knox, D. R. Boreham, J. A. Walker, D. P. Morrison, L. M. Matrisian, R. B. Nagle & G. T. Bowden Mapping of the metalloproteinase gene matrilysin (MMP7) to human chromosome 1 1q21->q22.Cell Genet 72(2-3),179-182 (1996)
    156. S. Ohm, K. Imai, K. Yamashita, T. Matsumoto I Azumano & Y. Okada:Expression of metalloproteinase 7 (matrilysin) in human cartilage. Lab Invest 78(1),79-87 (1998)
    157. V. I. Shubayev, B. Branemark, J. Steinauer & R. R. Myers:Titanium implants induce expression of metalloproteinases in bone during osteointegration. J Rehabil Res Bev 41 (6),757-766 (2004)
    158. R.L. Smith: Degradative enzymes in osteoarthritis. Front Biosci 4, d704-d712 (1999)
    159. J. C. Edwards, L. S, Wilkinson, P. Soothill, R. M. Hembry, G. Murphy & J. J. Reynolds:Matrix metalloproteinases in the formation of human synovialjoint cavities. JAnat 188(Pt 2),355-360 (1996)
    160. S. Gack, R. Vallon, J. Schmidt, A. Grigoriadis, J. Tuckerman, J. Schenkel, H. Weiher, E. F. Wagner & P. Angel:Expression of interstitial collagens during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ 6(6),759-767 (1995)
    161. V. Mattot, M. B. Raes, P. Hem-iet, Y. Eeckhout, D. Stehelin, B. Vandenbunder & X. Desbiens:Expression of interstitial collagenase is restricted to skeletal tissue during mouse embryogenesis. J Cell Sci 108(Pt 2),529-535 (1995)
    162. S. Bord, A. Homer, R. M. Hembry & J. E. Compston:Stromelysin-1 (MMP-3) and stromelysin-2 (M-10) expression in developing human bone:potential roles in skeletal development. Bone 23(1),7-12 (1998)
    163. R. S. Tuan:Biology of developmental andregenerative skeletogenesis. Clin Orthop 427 Suppl, S105-S117 (2004)
    164. J. Weisser, S. Riemer, M. Schmidl,I. J. Suva, E. Poschi, R. Brauer & K. von der Mark:Four distinct chondrocyte populations in the fetal bovine growth plate:highest expression levels of PTH/PTHrP receptor, Indian hedgehog and MMP-13 in hypertrophic chondrocytes and their suppression by PTH (1-34) and PTHrP (1-40). Exp Cell Res 279(1),1-13 (2002)
    165. H. M. Kronenberg, L. Lee, B. Lanske & G. V. Segre:Parathyroid hormone-related protein and Indian hedgehog control the pace of cartilage differentiation. J Endocrinol 154 Suppl, S39-S45 (1997)
    166. G. Haeusler, I. Walter, M. Hehnreich & M. Egerbacher:Localization of matrix metalloproteinases (MMPs), their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal development and skeletal maturation. Calc Tissue Iht 76(5),326-335 (2005)
    167. M. Takahara, T. Naruse, M. Takagi, H. Orui & T. Ogino:Matrix metalloproteinase-9 expression, tartrate-resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bone. J Orthop Res 22(5),1050-1057 (2004)
    168. H. Nagai & M. Aoki:Inhibition of growth plate angiogenesis and endochondral ossification with diminished expression of MMP-13 in hypertrophic chondrocytes in FGF-2-treated rats. J Bone Miner Metab 20(3),142-147 (2002)
    169. B. S. Yoon & K. M. Lyons:Multiple functions of BMPs in chondrogenesis. J Cell Biochem 93(1),93-103 (2004)
    170. T. Nakase, T. Miyaji, K. Kuriyama, N. Tamai, M. Hotiki, T. Tomita, A Myoui, K. Shimada & Ⅱ. Yoshikaw:Immunohistochemical detection ofparathyroid hormone-related peptide, Indian hedgehog, and patched in the process of endochondral ossification in the human. Histochem Cell Biol 116(3),277-284 (2001)
    171. K. Holmbeck, P. Bianco, K. Chrysovergis, S. Yamada & H. Birkedal-Hansen:MT1-MMP-dependent, apoptotic remodeling of unminernlized cartilage, a critical process in skeletal growth. J Cell 163(3).661-671 (2003)
    172. H. I. Roach & N. M. Clarke:Physiological cell death of chondrocytes in vivo is not confined to apoptosis:new observations on the mammalian growth plate. J Bone Joint Surg Br 82(4),601-613 (2000)
    173. H. J. Hausser, R. Deckling & R. E. Brenner:Testican-1, an inhibitor of pro-MMP-2 activation is expressed in cartilage. Osteoarthritis Cartilage 12(11),870-877 (2001)
    174. R. T. Ballock & R. J.O'Keefe:Physiology pathophysiology of the growth plate. Birth Defects Res C Embryo Today 69(2),123-143 (2003)
    175. S. Makihira, W. Yan, H. Murikami, M. Fttmkawa, M. Kawai, N. Nikawa, E. Yoshida, T. Hamada, Y. Okada & Y. Kato:Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteogtycan degradation in growth plate cartilage. Endocrinology 144(6), 2480-2488 (2003)
    176. G. Gao, A. Plaas, V. P. Thompson, S. Jim & J. D. Sandy:ADAMTS4 (aggrecanase-1)on the cell surface involes C-terminal cleavage by glycosYlphosphatidyl inositol-anchored membrane type 4- matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan. J Biol Chem 279(11),10042-10051 (2004)
    177. S. S. Glasson, R. Askew, B. Sheppard, B. A Carito, T. Blanchet, H. L. Ma, C. R. Flannery, K.K. E. Wang, D. Peluso, Z. Yang, M. K. Majumdar& E.A Morris:Characterization of and osteoarthritic susceptibility, in ADAMTS-4 knock out mice, Arthritis Rheum 50(8), 2547-2558 (2004)
    178. S.S. Glasson, R. Askew,B Sheppard,B. C. T. Blanchet, H-L Ma, C. R. Flannery, D.P.K Z Yang, M. K. Majumdar & E. A. Morris: Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434(7033) 644-648 (2005)
    179. Bord S., Homer A., Hembry R. M., Reynolds J. J.;and Compston J. E.:Distribution of matrix metalloproteinases and their inhibitor, TIMP-1, in developing human osteophytic bone. J Anat 191 (Pt 1),39-48 (1997)
    180. Ishiguro N., Ito T., Kurokouchi K., Iwahori Y., Nagaya I., Hasegawa Y. and Iwata H.:mRNA expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in interface tissue around implants in loosening total hip arthroplasty. J Biomed Mater Res 32, 611-617(1996)
    181. Stemlicht M. D. and Werb Z.:How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17,463-516(2001)
    182. Shingleton W. D., Hodges D. J., Brick P., Cawston T. E.:Collagenase:a key enzyme in collagen remover. Biochem Cell Biol 74, 759-775(1996)
    183. Bord S., Homer A., Beeton C. A., Hembry R. M. and Compston J. E.:Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) distribution in normal and pathological human bone. Bone 24,229-235 (1999)
    184. Nagase H. and Woessner J. F.:Mamx metalloproteinases. J Histol Chem 274,21491-21494 (1999)
    185. Gomez D. E., Alonso D. F., Yoshiji H., Thorgeirsson U. P.:Tissue inhibitors of metalloproteinases:Structure, regulation and biological functions. Eur J Cell Biol 74,111-122 (1997)
    186. Hill P. A., Reynolds J. J. and Meikle M. C.:Inhibition of stimulated bone resorption in vitro by TIMP-1 and TIM-2. Biochim Biophys Acta 1177,71-74(1993)
    187. Sobue T., Hakeda Y., Kobayashi Y., Hayakawa H., Yamashita K., Aoki T., Kumegawa M., Noguchi T. and Hayakawa T.:Tissue inhibitor of metalloproteinases 1 and 2 directly stimulate the bone resorbing activity of isolated mature osteoclasts. J Bone Miner Res 16,2205-2214 (2001)
    188. Shibutani T., Yamashita K., Aoki T., Iwayama Y., Nishikawa T. and Hayakawa T.:Tissue.inhibitors of metalloproteinases (TIMP-I and TIM-2) stimulate osteoclasfic bone resorption. JBone Miner Metab 17,245-251(1999)
    189. Meik le MC, Hembry RM, Ho lley J, et al. Immuno localizat ion of mat rix metallop ro teinases and T IM P21 (t issue inh ibito r of metallop ro teinases) in human gingivalt issues from periodont it is pat ients. J periodont Res,1994,29:118:
    190. Vander Zee E, J ansen I, Hoeben K, et al. EGF and IL 21A modulate the releases of co llagenase, gelat inase and T IM P21 as w ell as the release of calcium by rabbit calvarial bone exp lants, J Periodont Res,1998,33:65:
    191. Breckon JJW, Hembery RM, Reynolds JJ, et al. Matrix metalloproteinases and TIMP-1 localization at site of osteogenesis in the craniofacial region of the rabbit embryo. Anat Rec,1995,242 (2):177-187
    192. Breckon JJW, Hembery RM, Reynolds JJ, et al.Regional and temporal changes in the synthesis of matrix metalloproteinases and TIMP-1 during development of the rabbit mandibular condyle. J Anat,1994,184 (2):99-110
    193.Fernandes JC, Martel-Pelletier J, Pelletier JP (2002) The role of cytokines in osteoarthritis pathophysiology. Biorheology 39:237-246
    194. Armstrong AL, Barrach HJ, Ehrlich MG (2002) Identification of the metalloproteinase stromelysin in the physis. J Orthop Res 20:289-294
    195. Localization of Matrix Metalloproteinases, (MMPs) Their Tissue Inhibitors, and Vascular Endothelial Growth Factor (VEGF) in Growth Plates of Children and Adolescents Indicates a Role for MMPs in Human Postnatal Growth and Skeletal Maturation Calcif Tissue Int (2005) 76:326 335
    196. Joronen K, Salminen H, Glumoff V, Savontaus M, Vuorio E(2000) Temporospatial expression of tissue inhibitors of matrix metalloproteinases-1,-2, and -3 during development,growth and aging of the mouse skeleton. Histochem Cell Biol 114:157-165
    197. Geoffrey V, Marty-Morieux C, Le Goupil N, Clement-Lacroix P, Terraz C, Frain M, Roux S, Rossert J, de Vernejoul MC (2004) In vivo inhibition of osteoblastic metalloproteinases leads to increased trabecular bone mass. J Bone Miner Res 19:811-822

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700