中国南方H9N2禽流感病毒的分子进化分析及其对小鼠致病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽流感(Avian influenza, AI)是由正黏病毒科(Orthomyxoviridae)、流感病毒属(Influenzavirus)、甲型流感病毒引起的禽类的感染和/或疾病综合征,被国际兽医局确定为甲型烈性传染病。自1878年首次发现以来,已经造成全球范围内的多次爆发,感染的宿主范围不断扩大,已经不仅仅能够感染家禽、野鸟和部分哺乳动物,甚至在1997年,香港发生了人感染H5N1禽流感病毒并造成死亡的事件,严重威胁公共卫生健康,给公众生命财产带来了巨大的损失。
     禽流感病毒亚型众多,不同毒株间毒力差异很大,并不是所有亚型都能引起禽流感的爆发和流行,至今已发现的甲型流感病毒根据血凝素(HA)和和神经氨酸酶(NA)抗原的差异,将血凝素(HA)分为16个亚型(H1-H16),神经氨酸酶(NA)分为9个亚型(N1-N9), H9N2亚型禽流感病毒广泛分布于禽类、野鸟和一些哺乳动物之中,也能够感染人类,其中野鸟被认为是H9N2亚型禽流感病毒的自然宿主,H9N2亚型禽流感病毒广泛存在变异重组现象,对养殖产业和公众生命财产安全具有极大的威胁,被国际卫生组织(WHO)认为是潜在的、可能引起下一轮爆发的禽流感病毒,基于以上原因,本研究中对分离到的17株病毒中11株H9N2病毒的分子生物学特性、基因组序列和遗传进化关系进行了分析,旨在从分子水平上了解我国南方H9N2流感毒株的变异情况和导致其不同生物学特性的原因,研究其可能的来源及分子进化路径。
     在国内南方流行病调查期间,我们从野生赤颈鸭(Anas penelope)、雉鸡(Phasianus colchicus)、斑嘴鸭(Anas poecilorhyncha)和绿头鸭(Anas platyrhynchos)的拭子样品中分离并鉴定到17株H9N2亚型禽流感病毒,分别命名为:A/Anas penelope/Shanghai/23/11(H9N2), A/Phasianus colchicus/Jiangxi/30/11(H9N2), A/Phasianus colchicus/Jiangxi/31/11(H9N2), A/Anas poecilorhyncha/Jiangxi/32/11(H9N2), A/Anas poecilorhyncha/Jiangxi/33/11(H9N2), A/Anas poecilorhyncha/Jiangxi/34/11(H9N2) A/Anas poecilorhyncha/Jiangxi/35/11(H9N2), A/Anas poecilorhyncha/Jiangxi/36/11(H9N2)A/Anas poecilorhyncha/Jiangxi/37/11(H9N2), A/Anas platyrhynchos/Jiangxi/38/11(H9N2), A/Anas platyrhynchos/Jiangxi/39/11(H9N2), A/Anas platyrhynchos/Jiangxi/41/11(H9N2), A/Anas platyrhynchos/Jiangxi/43/11(H9N2), A/Anas platyrhynchos/Jiangxi/46/11(H9N2)。
     通过设计特异引物进行扩增、克隆和测序,得到17株分离株中11株的PB2、PB1、 PA、HA、NP、NA、M和NS8个片段的序列信息,进而对8个基因片段的分子进化关系进行了分析,分析结果表明这11株病毒和2009年在香港分离的2株人源H9N2病毒(A/HongKong/35820/2009和A/HongKong/33982/2009)具有很高的氨基酸同源性,具有相同的祖先来源,而且,该11株H9N2病毒为G1-like型、Ck/Bei94-like型和Y439-like型病毒的三重重组病毒,其中,NA基因来源于Ck/Bei94-like型H9N2病毒,PA基因来源于Y439-like型H9N2病毒,而其余6个基因来源于G1-like型H9N2病毒。
     在小鼠致病性研究实验中,用分离到的H9N2病毒(A/Anas platyrhynchos/Jiangxi/39/11)感染无特异病原体的小鼠(SPF),组织切片结果和Real-time PCR实验的结果表明我们所获得的H9N2亚型病毒能够感染小鼠并在小鼠的肺部和气管组织中进行自由复制,小鼠在感染H9N2病毒之后的3-6天内,引起20-40%的死亡率。表明野生鸭类作为宿主,在H9N2病毒重组中起到了重要作用,经过重组的H9N2病毒具有潜在的感染、致死哺乳动物的可能性,因此,必须对该型H9N2的防治引起广泛重视,加强对H9N2病毒变异演化的检测,防止造成新的禽流感亚型的爆发和流行,避免对公众健康和人民生命财产造成损失。
Avian influenza is a kind of epidemic infectious disease which is caused by Orthomyxoviridae, type A avian influenza virus. It is listed as a fulminating infectious disease, type I by the World Organisation for Animal Health. Avian influenza viruses have broken out many times in a worldwide range since it was first detected in1878. It not only infected domestic poultry, wild birds, and some species of mammals (such as pigs), but also subtype H5N1infected humans in Hong Kong in1997, which resulted in the deaths of several people. It has caused huge economic losses to poultry industries as well as damages to human health.
     In total, there are16subtypes of the Hemagglutini gene (HA1-HA16) and9subtypes of the Neuramindase gene (NA1-NA9). Lethality in different subtypes of avian influenza viruses is very different; only some of them have caused outbreaks in birds and domestic poultry. The H9N2subtype of avian influenza virus is prevalent in many species. Its natural hosts vary among domestic fowls, many kinds of wild birds, some kinds of mammalians, and even human. Wild birds are considered to be the natural reservoirs for avian influenza A viruses(禽流感).This subtype is also regarded by the World Health Organization (WHO) as the next potential avian influenza subtype that may have high prevalence in the future, and which may bring huge damages upon global economies and public health. Based on those reasons, we discuss the characterization, sequence data and evolution of those isolated H9N2viruses in our study.
     During active influenza surveillance in southeast China, we isolated and characterized17H9N2viruses from four species of ducks, Anas penelope, Phasianus colchicus, Anas poecilorhyncha and Anas platyrhynchos, and named as:A/Anas penelope/Shanghai/23/11(H9N2), A/Phasianus colchicus/Jiangxi/30/11(H9N2), A/Phasianus colchicus/Jiangxi/31/11(H9N2), A/Anas poecilorhyncha/Jiangxi/32/11(H9N2), A/Anas poecilorhyncha/Jiangxi/33/11(H9N2),A/Anas poecilorhyncha/Jiangxi/34/11(H9N2), A/Anas poecilorhyncha/Jiangxi/35/11(H9N2),A/Anas poecilorhyncha/Jiangxi/36/11(H9N2), A/Anas poecilorhyncha/Jiangxi/37/11(H9N2), A/Anas platyrhynchos/Jiangxi/38/11(H9N2), A/Anas platyrhynchos/Jiangxi/39/11(H9N2), A/Anas platyrhynchos/Jiangxi/40/11(H9N2), A/Anas platyrhynchos/Jiangxi/41/11(H9N2), A/Anas platyrhynchos/Jiangxi/42/11(H9N2), A/Anas platyrhynchos/Jiangxi/43/11(H9N2), A/Anas platyrhynchos/Jiangxi/45/11(H9N2), A/Anas platyrhynchos/Jiangxi/46/11(H9N2).
     All8segments (HA, NA, M, NP, PB1, PB2, NS and PA) forming11of17isolated avian viruses were amplified, cloned and sequenced successfully. Phylogenetic analysis of the whole genome indicates that all isolates share high homology with each other and with two human H9N2isolates (A/HongKong/35820/2009and A/HongKong/33982/2009). All eleven isolates appear to belong to a novel reassortant H9N2genotype of G1-like viruses, containing Ck/Bei-like NA genes, Y439-like PA genes and six other G1-like genes (HA, M, NP, PB1, PB2, NS and PA).
     We chose one isolated H9N2virus (A/Anas platyrhynchos/Jiangxi/39/11) based on sequence data to infect specific pathogen free mice (BALB/c) to assess the pathogenicity of these isolates in mice. Data from histological section and real-time PCR demonstrated that these viruses could replicate efficiently in the lungs and tracheae of BALB/c mice and caused mortality in20-40%of infected groups after3-6days. Our results confirm that wild ducks play a role as reservoir hosts for the reassortant H9N2genotype. Because the results also suggest that these viruses are capable of establishing lethal mammalian infection, urgent attention should be paid to surveillance for these strains in humans.
引文
[1](1980). A revision of the system of nomenclature for influenza viruses:a WHO memorandum. Bull World Health Organ 58(4),585-591.
    [2](2011a). Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. Wkly Epidemiol Rec 86(43),469-480.
    [3](2011b). [Genome composition analysis of the reassortant influenza viruses used in seasonal and pandemic live attenuated influenza vaccine]. Mol Gen Mikrobiol Virusol(4),29-36.
    [4]Aamir, U. B., Wernery, U., Ilyushina, N., and Webster, R. G. (2007). Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology 361(1),45-55.
    [5]Abolnik, C., Gerdes, G. H., Sinclair, M., Ganzevoort, B. W., Kitching, J. P., Burger, C. E., Romito, M., Dreyer, M., Swanepoel, S., Cumming, G. S., and Olivier, A. J. (2010). Phylogenetic analysisA/Anas platyrhynchos/Jiangxi/39/11(H9N2) of influenza A viruses (H6N8, H1N8, H4N2, H9N2, H10N7) isolated from wild birds, ducks, and ostriches in South Africa from 2007 to 2009. Avian Dis 54(1 Suppl),313-322.
    [6]Alexander, D. J. (2000). A review of avian influenza in different bird species. Vet Microbiol 74(1-2),3-13.
    [7]Banet-Noach, C., Panshin, A., Golender, N., Simanov, L., Rozenblut, E., Pokamunski, S., Pirak, M., Tendler, Y., Garcia, M., Gelman, B., Pasternak, R., and Perk, S. (2007). Genetic analysis of nonstructural genes (NSl and NS2) of H9N2 and H5N1 viruses recently isolated in Israel. Virus Genes 34(2),157-168.
    [8]Barbour, E. K., Mastori, F. A., Abdel Nour, A. M., Shaib, H. A., Jaber, L. S., Yaghi, R. H., Sabra, A., Sleiman, F. T., Sawaya, R. K., Niedzwieck, A., Tayeb, I. T., Kassaify, Z. G., Rath, M., Harakeh, S., and Barbour, K. E. (2009). Standardisation of a new model of H9N2/Escherichia coli challenge in broilers in the Lebanon. Vet Ital 45(2),317-322.
    [9]Bi, J., Deng, G, Dong, J., Kong, F., Li, X., Xu, Q., Zhang, M., Zhao, L., and Qiao, J. (2010). Phylogenetic and molecular characterization of H9N2 influenza isolates from chickens in Northern China from 2007-2009. PLoS One 5(9), e13063.
    [10]Brown, E. G. (2000). Influenza virus genetics. Biomed Pharmacother 54(4),196-209.
    [11]Butt, K. M., Smith, G. J., Chen, H., Zhang, L. J., Leung, Y. H., Xu, K. M., Lim, W., Webster, R. G., Yuen, K. Y, Peiris, J. S., and Guan, Y. (2005). Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43(11), 5760-5767.
    [12]Cameron, K. R., Gregory, V., Banks, J., Brown, I. H., Alexander, D. J., Hay, A. J., and Lin, Y. P. (2000). H9N2 subtype influenza A viruses in poultry in pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong. Virology 278(1),36-41.
    [13]Capua, I., and Alexander, D. J. (2002). Avian influenza and human health. Acta Trop 83(1), 1-6.
    [14]Castrucci, M. R., and Kawaoka, Y (1993). Biologic importance of neuraminidase stalk length in influenza A virus. J Virol 67(2),759-764.
    [15]Chen, H., Smith, G. J., Zhang, S. Y, Qin, K., Wang, J., Li, K. S., Webster, R. G., Peiris, J. S., and Guan, Y (2005). Avian flu:H5N1 virus outbreak in migratory waterfowl. Nature 436(7048),191-192.
    [16]Chen, H., Subbarao, K., Swayne, D., Chen, Q., Lu, X., Katz, J., Cox, N., and Matsuoka, Y. (2003). Generation and evaluation of a high-growth reassortant H9N2 influenza A virus as a pandemic vaccine candidate. Vaccine 21(17-18),1974-1979.
    [17]Chen, W. S., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J. R., and Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7(12), 1306-1312.
    [18]Chen, Y P., Higgins, J. A., and Gundersen-Rindal, D. E. (2003). Quantitation of a Glyptapanteles indiensis polydnavirus gene expressed in parasitized host, Lymantria dispar, by real-time quantitative RT-PCR. J Virol Methods 114(2),125-133.
    [19]Choi, Y. K., Ozaki, H., Webby, R. J., Webster, R. G., Peiris, J. S., Poon, L., Butt, C., Leung, Y. H., and Guan, Y. (2004). Continuing evolution of H9N2 influenza viruses in Southeastern China.J Virol 78(16),8609-8614.
    [20]Cline, T. D., Karlsson, E. A., Freiden, P., Seufzer, B. J., Rehg, J. E., Webby, R. J., and Schultz-Cherry, S. (2011). Increased pathogenicity of a reassortant 2009 pandemic H1N1 influenza virus containing an H5N1 hemagglutinin. J Virol 85(23), 12262-12270.
    [21]Cong, Y., Wang, G, Guan, Z., Chang, S., Zhang, Q., Yang, G., Wang, W., Meng, Q., Ren, W., Wang, C., and Ding, Z. (2010). Reassortant between human-Like H3N2 and avian H5 subtype influenza A viruses in pigs:a potential public health risk. PLoS One 5(9), el2591.
    [22]Cong, Y. L., Wang, C. F., Yan, C. M., Peng, J. S., Jiang, Z. L., and Liu, J. H. (2008). Swine infection with H9N2 influenza viruses in China in 2004. Virus Genes 36(3), 461-469.
    [23]Deng, G. C., Bi, J. M., Kong, F. L., Li, X. Z., Xu, Q., Dong, J., Zhang, M. J., Zhao, L. H., Luan, Z. H., Lv, N. N., and Qiao, J. (2010). Acute respiratory distress syndrome induced by H9N2 virus in mice. Arch Virol 155(2),187-195.
    [24]Deshpande, K. L., Fried, V. A., Ando, M., and Webster, R. G. (1987). Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proc Natl Acad Sci U S A 84(1),36-40.
    [25]Dong, G., Luo, J., Zhang, H., Wang, C., Duan, M., Deliberto, T. J., Nolte, D. L., Ji, G., and He, H. (2011a). Phylogenetic diversity and genotypical complexity of H9N2 influenza A viruses revealed by genomic sequence analysis. PLoS One 6(2), e17212.
    [26]Dong, G., Xu, C., Wang, C., Wu, B., Luo, J., Zhang, H., Nolte, D. L., Deliberto, T. J., Duan, M., Ji, G, and He, H. (2011b). Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China. PLoS One 6(9), e25808.
    [27]Drake, J. W. (1993). Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 90(9),4171-4175.
    [28]Ebrahimi, S. M. (2011). Pathobiology of H9N2 Avian Influenza Virus in Japanese Quail (Corurnix coturnix japonica) (vol 51, pg 390,2007). Avian Dis 55(2),335-335.
    [29]Ebrahimi, S. M., Ziapour, S., Tebianian, M., Dabaghian, M., and Mohammadi, M. (2011a). Study of infection with an Iranian field-isolated H9N2 avian influenza virus in vaccinated and unvaccinated Japanese quail. Avian Dis 55(2),195-200.
    [30]Enami, M. (1997). [Structure and function of influenza virus NS1 and NS2 proteins]. Nihon Rinsho 55(10),2605-2609.
    [31]Fan, X., Zhu, H., Zhou, B., Smith, D. K., Chen, X., Lam, T. T., Poon, L. L., Peiris, M., and Guan, Y. (2012). Emergence and Dissemination of a Swine H3N2 Reassortant Influenza Virus with 2009 Pandemic H1N1 Genes in Pigs in China. J Virol 86(4), 2375-2378.
    [32]Feng, J. Q., Zhang, M. X., Mozdzanowska, K., Zharikova, D., Hoff, H., Wunner, W., Couch, R. B., and Gerhard, W. (2006). Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J 3,102.
    [33]Fouchier, R. A. M., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D., Rimmelzwaan, G. F., Olsen, B., and Osterhaus, A. D. M. E. (2005). Characterization of a novel influenza a virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79(5),2814-2822.
    [34]Gao, Y., Zhang, Y., Shinya, K., Deng, G., Jiang, Y, Li, Z., Guan, Y., Tian, G., Li, Y., Shi, J., Liu, L., Zeng, X., Bu, Z., Xia, X., Kawaoka, Y., and Chen, H. (2009). Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5(12), e1000709.
    [35]Garten, W., and Klenk, H. D. (1999). Understanding influenza virus pathogenicity. Trends Microbiol 7(3),99-100.
    [36]Gharaibeh, S. (2008). Pathogenicity of an avian influenza virus serotype H9N2 in chickens. Avian Dis 52(1),106-110.
    [37]Gianfrani, C., Oseroff, C., Sidney, J., Chesnut, R. W., and Sette, A. (2000). Human memory CTL response specific for influenza A virus is broad and multispecific. Hum Immunol 61(5),438-452.
    [38]Gibbs, J. S., Malide, D.,Hornung, F., Bennink, J. R., and Yewdell, J. W. (2003). The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 77(13), 7214-7224.
    [39]Goto, H. (2004). [Novel function of plasminogen-binding activity of the NA determines the pathogenicity of influenza A virus]. Uirusu 54(1),83-91.
    [40]Gregg, M. B., Hinman, A. R., and Craven, R. B. (1978). The Russian flu. Its history and implications for this year's influenza season. JAMA 240(21),2260-2263.
    [41]Gu, M., Liu, W. B., Cao, J. P., Cao, Y. Z., Zhang, X. R., Peng, D. X., and Liu, X. F. (2010). Genome sequencing and genetic analysis of a natural reassortant H5N1 subtype avian influenza virus possessing H9N2 internal genes. Chinese Journal of Virology 26(4), 298-304.
    [42]Guan, Y., Shortridge, K. F., Krauss, S., Chin, P. S., Dyrting, K. C., Ellis, T. M., Webster, R. G., and Peiris, M. (2000). H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 74(20), 9372-9380.
    [43]Guan, Y., Shortridge, K. F., Krauss, S., and Webster, R. G. (1999). Molecular characterization of H9N2 influenza viruses:were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA 96(16),9363-9367.
    [44]Guo, Y., Xie, J., Wu, K., Dong, J., Wang, M., Zhang, Y., Guo, J., Chen, J., Chen, Z., and Li, Z. (2002). Characterization of genome of A/Guangzhou/333/99(H9N2) virus. Chinese Journal of Experimental and Clinical Virology 16(2), 142-145.
    [45]Guo, Y. J., Krauss, S., Senne, D. A., Mo, I. P., Lo, K. S., Xiong, X. P., Norwood, M., Shortridge, K. F., Webster, R. G., and Guan, Y. (2000). Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages ir Asia. Virology 267(2), 279-288.
    [46]Hatta, M., Gao, P., Halfmann, P., and Kawaoka, Y. (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293(5536), 1840-1842.
    [47]Hoffmann, E., Krauss, S., Perez, D., Webby, R., and Webster, R. G. (2002). Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20(25-26), 3165-3170.
    [48]Homme, P. J., and Easterday, B. C. (1970). Avian influenza virus infections. Ⅰ. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis 14(1), 66-74.
    [49]Hossain, M. J., Hickman, D., and Perez, D. R. (2008). Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens. PLoS One 3(9), e3170.
    [50]Hotta, K., Takakuwa, H., Le, Q. M., Phuong, S. L., Murase, T., Ono, E., Ito, T., Otsuki, K. and Yamashiro, T. (2012). Isolation and characterization of H6N1 and H9N2 avian influenza viruses from Ducks in Hanoi, Vietnam. Virus Res 163(2), 448-453.
    [51]Huang, Y., Hu, B., Wen, X., Cao, S., Gavrilov, B. K., Du, Q., Khan, M. I., and Zhang, X. (2010). Diversified reassortant H9N2 avian influenza viruses in chicken flocks in northern and eastern China. Virus Res 151(1), 26-32.
    [52]Hughey, P. G., Compans, R. W., Zebedee, S. L., and Lamb, R. A. (1992). Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. J Virol 66(9), 5542-5552.
    [53]Hulse-Post, D. J., Franks, J., Boyd, K., Salomon, R., Hoffmann, E., Yen, H. L., Webby, R. J., Walker, D., Nguyen, T. D., and Webster, R. G. (2007). Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. J Virol 81(16), 8515-8524.
    [54]Imai, H., Shinya, K., Takano, R., Kiso, M., Muramoto, Y., Sakabe, S., Murakami, S., Ito, M., Yamada, S., Le, M. T., Nidom, C. A., Sakai-Tagawa, Y., Takahashi, K., Omori, Y., Noda, T., Shimojima, M., Kakugawa, S., Goto, H., Iwatsuki-Horimoto, K., Horimoto, T., and Kawaoka, Y. (2010). The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets. PLoSPathog 6(9), e1001106.
    [55]Iqbal, M., Yaqub, T., Reddy, K., and McCauley, J. W. (2009). Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS One 4(6), e5788.
    [56]Jameson, J., Cruz, J., and Ennis, F. A. (1998). Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J Virol 72(11),8682-8689.
    [57]Kaverin, N. V., Rudneva, I. A., Ilyushina, N. A., Varich, N. L., Lipatov,A. S., Smirnov, Y. A., Govorkova, E. A., Gitelman, A. K., Lvov, D. K., and Webster, R. G. (2002). Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83(Pt 10),2497-2505.
    [58]Kawaoka, Y., Bean, W. J., and Webster, R. G. (1988). Origin of the a/Equine Johannesburg/86(H3n8) Virus-Antigenic and Genetic Analyses of Equine-2 Influenza-a Hemagglutinins. Equine Infectious Diseases V,47-50.
    [59]Kawaoka, Y., Chambers, T. M., Sladen, W. L., and Webster, R. G. (1988). Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 163(1),247-250.
    [60]Kawaoka, Y., Naeve, C. W., and Webster, R. G. (1984). Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139(2),303-316.
    [61]Kawaoka, Y., Yamnikova, S., Chambers, T. M., Lvov, D. K., and Webster, R. G. (1990). Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 179(2),759-767.
    [62]Kendal, A. P., Noble, G. R., Skehel, J. J., and Dowdle, W. R. (1978). Antigenic similarity of influenza A (H1N1) viruses from epidemics in 1977--1978 to "Scandinavian" strains isolated in epidemics of 1950--1951. Virology 89(2),632-636.
    [63]Kim, J. A., Cho, S. H., Kim, H. S., and Seo, S. H. (2006). H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers. Vet Microbiol 118(3-4),169-176.
    [64]Kuzuhara, T., Kise, D., Yoshida, H., Horita, T., Murazaki, Y., Nishimura, A., Echigo, N., Utsunomiya, H., and Tsuge, H. (2009). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem 284(11),6855-6860.
    [65]Lee, Y. N., Lee, D. H., Park, J. K., Lim, T. H., Youn, H. N., Yuk, S. S., Lee, Y J., Mo, I. P., Sung, H. W., Lee, J. B., Park, S. Y., Choi, I. S., and Song, C. S. (2011). Isolation and characterization of a novel H9N2 influenza virus in Korean native Chicken farm. Avian Dis 55(4),724-727.
    [66]Li, C., Yu, K., Tian, G., Yu, D., Liu, L., Jing, B., Ping, J., and Chen, H. (2005a). Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340(1) 70-83.
    [67]Li, C. J., Yu, K. Z., Tian, G. B., Yu, D. D., Liu, L. L., Jing, B., Ping, J. H., and Chen, H. L (2005b). Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340(1),70-83.
    [68]Li, M., and Wang, B. (2006). Computational studies of H5N1 hemagglutinin binding With SA-alpha-2,3-Gal and SA-alpha-2,6-Gal. Biochem Biophys Res Commun 347(3) 662-668.
    [69]Li, Y., Li, J., Belisle, S., Baskin, C. R., Tumpey, T. M., and Katze, M. G. (2011) Differential microRNA expression and virulence of avian,1918 reassortant, and reconstructed 1918 influenza A viruses. Virology 421(2),105-113.
    [70]Li, Z., Jiang, Y., Jiao, P., Wang, A., Zhao, F., Tian, G., Wang, X., Yu, K., Bu, Z., and Chen, H. (2006). The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol 80(22),11115-11123.
    [71]Lin, W. Y., Fan, H. Y., Cheng, X. L., Ye, Y., Chen, X. W., Ren, T., Qi, W. B., and Liao, M. (2011). A baculovirus dual expression system-based vaccine confers complete protection against lethal challenge with H9N2 avian influenza virus in mice. Virol J 8, 273.
    [72]Lin, Y P., Shaw, M., Gregory, V., Cameron, K., Lim, W., Klimov, A., Subbarao, K., Guan, Y., Krauss, S., Shortridge, K., Webster, R., Cox, N., and Hay, A. (2000). Avian-to-human transmission of H9N2 subtype influenza A viruses:relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci U S A 97(17), 9654-9658.
    [73]Lindsay, M. I., Jr., Herrmann, E. C., Jr., Morrow, G. W., Jr., and Browd, A. L., Jr. (1970). Hong Kong influenza:clinical, microbiologic, and pathologic features in 127 cases. JAMA 214(10),1825-1832.
    [74]Liu, J., Okazaki, K., Ozaki, H., Sakoda, Y., Wu, Q., Chen, F., and Kida, H. (2003). H9N2 influenza viruses prevalent in poultry in China are phylogenetically distinct from A/quail/Hong Kong/Gl/97 presumed to be the donor of the internal protein genes of the H5N1 Hong Kong/97 virus. Avian Pathol 32(5),551-560.
    [75]Liu, Q., Ma, J., Liu, H., Qi, W., Anderson, J., Henry, S. C., Hesse, R. A., Richt, J. A., and Ma, W. (2011). Emergence of novel reassortant H3N2 swine influenza viruses with the 2009 pandemic H1N1 genes in the United States. Arch Virol 157,555-562.
    [76]Lorusso, A., Vincent, A. L., Gramer, M. R., Lager, K. M., and Ciacci-Zanella, J. R. (2012). Contemporary Epidemiology of North American Lineage Triple Reassortant Influenza A Viruses in Pigs. Curr Top Microbiol Immunol.
    [77]Ma, W., Lager, K. M., Lekcharoensuk, P., Ulery, E. S., Janke, B. H., Solorzano, A., Webby, R. J., Garcia-Sastre, A., and Richt, J. A. (2010). Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses. J Gen Virol 91(Pt 9),2314-2321.
    [78]Martin, K., and Helenius, A. (1991a). Nuclear transport of influenza virus ribonucleoproteins:the viral matrix protein (M1) promotes export and inhibits import. Cell 67(1),117-130.
    [79]Martin, K., and Helenius, A. (1991b). Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol 65(1),232-244.
    [80]Masurel, N. (1978). [The "Russian" influenza virus; origin and prevention for the season 1978-1979]. Ned Tijdschr Geneeskd 122(39),1457-1459.
    [81]Matrosovich, M., Zhou, N., Kawaoka, Y., and Webster, R. (1999). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73(2),1146-1155.
    [82]Matrosovich, M. N., Krauss, S., and Webster, R. G. (2001). H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281(2), 156-162.
    [83]Moreno, A., Di Trani, L., Faccini, S., Vaccari, G., Nigrelli, D., Boniotti, M. B., Falcone, E., Boni, A., Chiapponi, C., Sozzi, E., and Cordioli, P. (2011). Novel H1N2 swine influenza reassortant strain in pigs derived from the pandemic H1N1/2009 virus. Vet Microbiol 149(3-4),472-477.
    [84]Nagarajan, S., Rajukumar, K., Tosh, C., Ramaswamy, V., Purohit, K., Saxena, G., Behera, P., Pattnaik, B., Pradhan, H. K., and Dubey, S. C. (2009). Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry. Vet Microbiol 133(1-2),154-163.
    [85]Nakajima, K., Desselberger, U., and Palese, P. (1978). Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274(5669), 334-339.
    [86]Negovetich, N. J., Feeroz, M. M., Jones-Engel, L., Walker, D., Alam, S. M., Hasan, K., Seiler, P., Ferguson, A., Friedman, K., Barman, S., Franks, J., Turner, J., Krauss, S., Webby, R. J., and Webster, R. G. (2011). Live bird markets of Bangladesh:H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLoS One 6(4), e19311.
    [87]Nili, H., Asasi, K., Dadras, H., and Ebrahimi, S. M. (2007). Pathobiology of H9N2 avian influenza virus in Japanese quail (Coturnix coturnix japonica). Avian Dis 51(1 Suppl), 390-392.
    [88]Ohuchi, M., Orlich, M., Ohuchi, R., Kuroda, K., Garten, W., Klenk, H. D., and Rott, R. (1989a). Mutations at the Cleavage Site of the Hemagglutinin Alter the Pathogenicity of Influenza-Virus a-Chick-Penn-83 (H5n2). Genetics and Pathogenicity of Negative Strand Viruses,373-378.
    [89]Ohuchi, M., Orlich, M., Ohuchi, R., Simpson, B. E., Garten, W., Klenk, H. D., and Rott, R. (1989b). Mutations at the cleavage site of the hemagglutinin after the pathogenicity of influenza virus A/chick/Penn/83 (H5N2). Virology 168(2),274-280.
    [90]Peiris, J. S., Guan, Y., Markwell, D., Ghose, P., Webster, R. G., and Shortridge, K. F. (2001). Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southeastern China:potential for genetic reassortment? J Virol 75(20), 9679-9686.
    [91]Peiris, M., Yuen, K. Y., Leung, C. W., Chan, K. H., Ip, P. L., Lai, R. W., Orr, W. K., and Shortridge, K. F. (1999). Human infection with influenza H9N2. Lancet 354(9182), 916-917.
    [92]Perales, B., Sanz-Ezquerro, J. J., Gastaminza, P., Ortega, J., Santaren, J. F., Ortin, J., and Nieto, A. (2000). The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J Virol 74(3),1307-1312.
    [93]Perdue, M. L., Garcia, M., Senne, D., and Fraire, M. (1997). Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 49(2),173-186.
    [94]Perez, D. R., Lim, W., Seiler, J. P., Yi, G., Peiris, M., Shortridge, K. F., and Webster, R. G. (2003). Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol 77(5),3148-3156.
    [95]Pinto, L. H., Holsinger, L. J., and Lamb, R. A. (1992). Influenza virus M2 protein has ion channel activity. Cell 69(3),517-528.
    [96]Rahman, M. M., Uyangaa, E., Han, Y. W., Kim, S. B., Kim, J. H., Choi, J. Y., and Eo, S. K. (2011). Oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-alpha and interleukin-18 enhances the alleviation of clinical signs caused by respiratory infection with avian influenza virus H9N2. Vet Microbiol.
    [97]Ramakrishnan, M. A., Wang, P., Abin, M., Yang, M., Goyal, S. M., Gramer, M. R., Redig, P., Fuhrman, M. W., and Sreevatsan, S. (2010). Triple reassortant swine influenza A (H3N2) virus in waterfowl. Emerg Infect Dis 16(4),728-730.
    [98]Saito, T., Lim, W., Suzuki, T., Suzuki, Y., Kida, H., Nishimura, S. I., and Tashiro, M. (2001). Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine 20(1-2),125-133.
    [99]Sakamoto, S., Kino, Y, Oka, T., Herlocher, M. L., and Maassab, F. (1996). Gene analysis of reassortant influenza virus by RT-PCR followed by restriction enzyme digestion. J Virol Methods 56(2),161-171.
    [100]Sanz-Ezquerro, J. J., Zurcher, T., de la Luna, S., Ortin, J., and Nieto, A. (1996). The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J Virol 70(3),1905-1911.
    [101]Schulze, I. T. (1997). Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. J Infect Dis 176 Suppl 1,24-28.
    [102]Sebbag, H. (1998). Orthomyxoviridae. Revue De Medecine Veterinaire 149(12), 1087-1102.
    [103]Senne, D. A., Panigrahy, B., Kawaoka, Y., Pearson, J. E., Suss, J., Lipkind, M., Kida, H., and Webster, R. G. (1996). Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses:amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40(2), 425-437.
    [104]Seo, S. H., Hoffmann, E., and Webster, R. G. (2002). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8(9), 950-954.
    [105]Seo, S. H., Hoffmann, E., and Webster, R. G. (2004). The NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses. Virus Res 103(1-2), 107-113.
    [106]Shelton, H., Smith, M., Hartgroves, L. C., Stilwell, P., Roberts, K. L., Johnson, B., and Barclay, W. S. (2012). An influenza reassortant with polymerase of pHlNl and NS gene of H3N2 influenza A virus is attenuated in vivo. J Gen Virol, doi:10.1099/vir.0.039701-0.
    [107]Shortridge, K. F. (1999a). Influenza--a continuing detective story. Lancet 354 Suppl, SIV29.
    [108]Shortridge, K. F. (1999b). Poultry and the influenza H5N1 outbreak in Hong Kong, 1997: abridged chronology and virus isolation. Vaccine 17 Suppl 1, S26-29.
    [109]Siddique, N., Naeem, K., Ahmed, Z., Abbas, M. A., Farooq, S., and Malik, S. A. (2012). Isolation, identification, and phylogenetic analysis of reassortant low-pathogenic avian influenza virus H3N1 from Pakistan. Poult Sci 91(1), 129-138.
    [110]Snoeck, C. J., Adeyanju, A. T., De Landtsheer, S., Ottosson, U., Manu, S., Hagemeijer, W, Mundkur, T., and Muller, C. P. (2011). Reassortant low-pathogenic avian influenza H5N2 viruses in African wild birds. J Gen Virol 92(Pt 5), 1172-1183.
    [111]Snyder, M. H., Clements, M. L., Berts, R. F., Dolin, R., Buckler-White, A. J., Tierney, E. L., and Murphy, B. R. (1986). Evaluation of live avian-human reassortant influenza A H3N2 and H1N1 virus vaccines in seronegative adult volunteers. J Clin Microbiol 23(5), 852-857.
    [112]Soltanialvar, M., Shoushtari, H., Bozorgmehrifard, M., Charkhkar, S., and Akbarnejad, F. (2012). Sequence and phylogenetic analysis of neuraminidase genes of H9N2 avian influenza viruses isolated from commercial broiler chicken in Iran (2008 and 2009). Trop Anim Health Prod 44(3),419-425.
    [113]Song, D., Moon, H. J., An, D. J., Jeoung, H. Y., Kim, H., Yeom, M. J., Hong, M., Nam, J H., Park, S. J., Park, B. K., Oh, J. S., Song, M., Webster, R. G., Kim, J. K., and Kang, B K. (2012). A novel reassortant canine H3N1 influenza virus between pandemic H1N1 and canine H3N2 influenza viruses in Korea. J Gen Virol 93(Pt 3),551-554.
    [114]Song, J. M., Lee, Y. J., Jeong, O. M., Kang, H. M., Kim, H. R., Kwon, J. H., Kim, J. H., Seong, B. L., and Kim, Y. J. (2008). Generation and evaluation of reassortant influenza vaccines made by reverse genetics for H9N2 avian influenza in Korea. Vet Microbiol 130(3-4),268-276.
    [115]Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., and Wilson, I. A. (2006). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312(5772),404-410.
    [116]Suarez, D. L., Perdue, M. L., Cox, N., Rowe, T., Bender, C., Huang, J., and Swayne, D. E. (1998a). Comparisons of highly virulent H5N1 influenza A viruses isolated from humans and chickens from Hong Kong. J Virol 72(8),6678-6688.
    [117]Subbarao, E. K., Kawaoka, Y., and Murphy, B. R. (1993). Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation. J Virol 67(12),7223-7228.
    [118]Subbarao, E. K., London, W., and Murphy, B. R. (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67(4),1761-1764.
    [119]Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., Perdue, M., Swayne, D., Bender, C., Huang, J., Hemphill, M., Rowe, T., Shaw, M., Xu, X., Fukuda, K., and Cox, N. (1998). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279(5349),393-396.
    [120]Sugrue, R. J., and Hay, A. J. (1991). Structural characteristics of the M2 protein of influenza A viruses:evidence that it forms a tetrameric channel. Virology 180(2) 617-624.
    [121]Sun, Y., Pu, J., Jiang, Z., Guan, T., Xia, Y., Xu, Q., Liu, L., Ma, B., Tian, F., Brown, E. G., and Liu, J. (2010). Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Vet Microbiol 146(3-4),215-225.
    [122]Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10), 2731-2739.
    [123]Taubenberger, J. K., Reid, A. H., Lourens, R. M., Wang, R. X., Jin, G. Z., and Fanning, T. G. (2005). Characterization of the 1918 influenza virus polymerase genes. Nature 437(7060),889-893.
    [124]Tombari, W., Nsiri, J., Larbi, I., Guerin, J. L., and Ghram, A. (2011). Genetic evolution of low pathogenecity H9N2 avian influenza viruses in Tunisia:acquisition of new mutations. Virol J 8,467.
    [125]Toroghi, R., and Momayez, R. (2006). Biological and molecular characterization of Avian influenza virus (H9N2) isolates from Iran. Acta Virol 50(3),163-168.
    [126]Tosh, C., Nagarajan, S., Behera, P., Rajukumar, K., Purohit, K., Kamal, R. P., Murugkar, H. V., Gounalan, S., Pattnaik, B., Vanamayya, P. R., Pradhan, H. K., and Dubey, S. C. (2008). Genetic analysis of H9N2 avian influenza viruses isolated from India. Arch Virol 153(8),1433-1439.
    [127]Tremblay, D., Allard, V., Doyon, J. F., Bellehumeur, C., Spearman, J. G., Harel, J., and Gagnon, C. A. (2011). Emergence of a new swine H3N2 and pandemic (H1N1) 2009 influenza A virus reassortant in two Canadian animal populations, mink and swine. J Clin Microbiol 49(12),4386-4390.
    [128]Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solorzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K., Palese, P., and Garcia-Sastre, A. (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745),77-80.
    [129]Uyeki, T. M., Chong, Y. H., Katz, J. M., Lim, W., Ho, Y. Y., Wang, S. S., Tsang, T. H., Au, W. W., Chan, S. C., Rowe, T., Hu-Primmer, J., Bell, J. C., Thompson, W. W., Bridges, C. B., Cox, N. J., Mak, K. H., and Fukuda, K. (2002). Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Hong Kong, China 1999. Emerg Infect Dis 8(2),154-159.
    [130]Varghese, J. N., Laver, W. G., and Colman, P. M. (1983). Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303(5912),35-40.
    [131]Vey, M., Orlich, M., Adler, S., Klenk, H. D., Rott, R., and Garten, W. (1992). Hemagglutinin activation of pathogenic avian influenza viruses of serotype H7 requires the protease recognition motif R-X-K/R-R. Virology 188(1),408-413.
    [132]Walker, J. A., and Kawaoka, Y. (1993). Importance of conserved amino acids at the cleavage site of the haemagglutinin of a virulent avian influenza A virus. J Gen Virol 74 (Pt 2),311-314.
    [133]Wan, H., and Perez, D. R. (2007). Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 81(10),5181-5191.
    [134]Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., and Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56(1),152-179.
    [135]Woo, J. T., and Park, B. K. (2008). Seroprevalence of low pathogenic avian influenza (H9N2) and associated risk factors in the Gyeonggi-do of Korea during 2005-2006. J Vet Sci 9(2),161-168.
    [136]Wu, R., Sui, Z. W., Zhang, H. B., Chen, Q. J., Liang, W. W., Yang, K. L., Xiong, Z. L., Liu, Z. W., Chen, Z., and Xu, D. P. (2008). Characterization of a pathogenic H9N2 influenza A virus isolated from central China in 2007. Arch Virol 153(8),1549-1555.
    [137]Xu, J., Christman, M. C., Donis, R. O., and Lu, G (2011a). Evolutionary dynamics of influenza A nucleoprotein (NP) lineages revealed by large-scale sequence analyses. Infect Genet Evol 11(8),2125-2132.
    [138]Xu, K. M., Li, K. S., Smith, G. J., Li, J. W., Tai, H., Zhang, J. X., Webster, R. G., Peiris, J. S., Chen, H., and Guan, Y. (2007a). Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China,2000 to 2005. J Virol 81(6), 2635-2645.
    [139]Xu, K. M., Smith, G. J., Bahl, J., Duan, L., Tai, H., Vijaykrishna, D., Wang, J., Zhang, J. X., Li, K. S., Fan, X. H., Webster, R. G., Chen, H., Peiris, J. S., and Guan, Y. (2007b). The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol 81(19),10389-10401.
    [140]Xu, M., Huang, Y., Chen, J., Huang, Z., Zhang, J., Zhu, Y., Xie, S., Chen, Q., Wei, W., Yang, D., Huang, X., Xuan, H., and Xiang, H. (2011b). Isolation and genetic analysis of a novel triple-reassortant H1N1 influenza virus from a pig in China. Vet Microbiol 147(3-4),403-409.
    [141]Yang, H., Chen, Y, Shi, J., Guo, J., Xin, X., Zhang, J., Wang, D., Shu, Y., Qiao, C., and Chen, H. (2011). Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge. Vet Microbiol 152(3-4),229-234.
    [142]Yassine, H. M., Khatri, M., Lee, C. W., and Saif, Y. M. (2010). Characterization of an H3N2 triple reassortant influenza virus with a mutation at the receptor binding domain (D190A) that occurred upon virus transmission from turkeys to pigs. Virol J 7,258.
    [143]Yassine, H. M., Khatri, M., Lee, C. W., and Saif, Y. M. (2011). Potential role of viral surface glycoproteins in the replication of H3N2 triple reassortant influenza A viruses in swine and turkeys. Vet Microbiol 148(2-4),175-182.
    [144]Yassine, H. M., Khatri, M., Zhang, Y J., Lee, C. W., Byrum, B. A., O'Quin, J., Smith, K. A., and Saif, Y M. (2009). Characterization of triple reassortant H1N1 influenza A viruses from swine in Ohio. Vet Microbiol 139(1-2),132-139.
    [145]Yu, H., Hua, R. H., Wei, T. C., Zhou, Y. J., Tian, Z. J., Li, G. X., Liu, T. Q., and Tong, G. Z. (2008). Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China. Vet Microbiol 131(1-2),82-92.
    [146]Yu, H., Zhou, Y. J., Li, G. X., Ma, J. H., Yan, L. P., Wang, B., Yang, F. R., Huang, M., and Tong, G. Z. (2011). Genetic diversity of H9N2 influenza viruses from pigs in China: a potential threat to human health? Vet Microbiol 149(1-2),254-261.
    [147]Zell, R., Bergmann, S., Krumbholz, A., Wutzler, P., and Durrwald, R. (2008). Ongoing evolution of swine influenza viruses:a novel reassortant. Arch Virol 153(11), 2085-2092.
    [148]Zeng, H., Pappas, C., Katz, J. M., and Tumpey, T. M. (2011). The 2009 pandemic H1N1 and triple-reassortant swine H1N1 influenza viruses replicate efficiently but elicit an attenuated inflammatory response in polarized human bronchial epithelial cells. J Virol 85(2),686-696.
    [149]Zhang, H., Xu, B., Chen, Q., and Chen, Z. (2011a). Characterization of H9N2 influenza viruses isolated from Dongting Lake wetland in 2007. Arch Virol 156(1),95-105.
    [150]Zhang, P., Tang, Y., Liu, X., Liu, W., Zhang, X., Liu, H., Peng, D., Gao, S., Wu, Y., Zhang, L., and Lu, S. (2009). A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in eastern China since 1998. J Virol 83(17),8428-8438.
    [151]Zhang, P., Tang, Y., Liu, X., Peng, D., Liu, W., Liu, H., and Lu, S. (2008). Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002). J Gen Virol 89(Pt 12),3102-3112.
    [152]Zhang, T., Wang, T. C., Zhao, P. S., Liang, M., Gao, Y. W., Yang, S. T., Qin, C., Wang, C. Y, and Xia, X. Z. (2011b). Antisense oligonucleotides targeting the RNA binding region of the NP gene inhibit replication of highly pathogenic avian influenza virus H5N1. Int Immunopharmacol 11(12),2057-2061.
    [153]Zhang, Y., Yin, Y., Bi, Y., Wang, S., Xu, S., Wang, J., Zhou, S., Sun, T., and Yoon, K. J. (2011c). Molecular and antigenic characterization of H9N2 avian influenza virus isolates from chicken flocks between 1998 and 2007 in China. Vet Microbiol,285-293.
    [154]Zhang, Z., Hu, S., Li, Z., Wang, X., Liu, M., Guo, Z., Li, S., Xiao, Y., Bi, D., and Jin, H. (2011d). Multiple amino acid substitutions involved in enhanced pathogenicity of LPAI H9N2 in mice. Infect Genet Evol 11(7),1790-1797.
    [155]Zhao, J., Chai, L. N., and Wang, Z. L. (2011). [Sequence and phylogenetic analysis of the haemagglutinin genes of H9N2 avian influenza viruses isolated in central China during 1998-2008]. Chinese Journal of Virology 21 (2),122-128.
    [156]Zhdanov, V. M., Lvov, D. K., Zakstelskaya, L. Y., Yakhno, M. A., Isachenko, V. I., Braude, N. A., Reznik, V. I., Pysina, T. V., Andreyev, V. P., and Podchernyaeva, R. Y. (1978). Return of epidemic A1 (H1N1) influenza virus. Lancet 1(8059),294-295.
    [157]Zhirnov, O. P., and Klenk, H. D. (2009). Alterations in caspase cleavage motifs of NP and M2 proteins attenuate virulence of a highly pathogenic avian influenza virus. Virology 394(1),57-63.
    [158]Zhou, H., Zhang, A., Chen, H., and Jin, M. (2011). Emergence of novel reassortant H3N2 influenza viruses among ducks in China. Arch Virol 156(6),1045-1048.
    [159]Zhou, N. N., Senne, D. A., Landgraf, J. S., Swenson, S. L., Erickson, G., Rossow, K., Liu, L., Yoon, K. J., Krauss, S., and Webster, R. G. (2000). Emergence of H3N2 reassortant influenza A viruses in North American pigs. Vet Microbiol 74(1-2),47-58.
    [160]甘孟侯.(1995).禽流感.北京:北京农业大学出版社.
    [161]甘孟侯.(2002).禽流感(第二版).北京:中国农业出版社.
    [162]B.W.卡尔尼克.(1991).禽病学(第九版).北京:北京农业大学出版社.
    [163]甘孟侯.(1999).中国禽病学.北京:中国农业出版社.
    [164]甘孟侯.(2004).全球禽流感的流行形势.中国预防兽医学报26(6),468-471.
    [165]陈伯伦,张泽纪.(1994).鸡A型禽流感病毒的分离与血清学初步鉴定.中国兽医杂志20(10):3-5.
    [166]李建伟.(2002).欧亚大陆H9N2亚型禽流感病毒分子演化的研究.东北农业大学学位论文.10-11.
    [167]郑腾,陈枝华.(2002).禽流感病毒致病性的分子生物学基础及研究近况.黑龙江畜牧兽医2:41-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700