台风条件下上海地区典型海堤防御能力评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变化的加速,所引起的极端灾害性风暴潮发生的频次在增加,强度在加大,且在北半球有路径北移的趋势;沿海地区又因城市化进程的加速和人口规模的增加面临着需要通过不断外延陆海边界以拓展活动空间的压力。建设能达到抵御高标准台风,并在超标准情况下也不会被大规模毁坏而造成人员和财产损失的城市一线海堤工程,是当前和今后一段时间像上海这样的低地势、中纬度和高密度人口的国际大都市的重要任务。
     本文通过对位于长江口、杭州湾的上海一线海堤进行了广泛调研,并收集了历史上发生的多次登陆上海或者在邻近省市登陆并对上海造成严重灾害的台风事件,就上海可能发生的超标准台风及由台风引起的风暴潮和台风浪进行模拟计算,结合当前海堤防御标准,分析其对海堤可能造成的破坏因素。其目的和意义在于通过此类研究,实现在不对现有海堤进行大规模加高加固的情况下,有效提高其防御能力,大幅降低可能的受灾损失,本文具体的研究内容和成果如下:
     (1)在对当前风-潮-浪数值模型研究进展进行了解分析的基础上,选择并建立了适用于长江河口地区的台风模型、风—潮模型和风—潮—浪耦合数学模型,以9711号台风等实测同步风、潮、和浪资料对模型进行了率定。
     分别编程建立了藤田—高桥(Fujita.T- Takahashi)与Jelesnianski风场模式,通过比较采用了衰减相对较小、与9711号台风和0216号台风等实际风场符合更好的Jelesnianski风场,并通过调整衰减系数和最大风速圈半径使计算风场与实际风场更为吻合。
     建立了风—潮数学模型,就9711号台风在登陆前对潮波过程的影响进行了分析。在外海深水区域,台风形成增水主要由低气压引起,且集中于台风中心下方局部海域,随着台风不断向岸逼近,低气压作用相对减弱,风场作用逐渐明显,近岸区发生了先增水后减水的现象,风场作用下沿岸形成的反时针方向的流动对台风中心南北两侧形成了有力的水交换。
     风—潮—浪耦合的台风浪模型考虑了潮位过程导致的水深变化对波浪传播的影响。波浪场能量分布与台风风场相对应,在深水中波浪强度随着风力的加强或者风圈的加大而增强,在浅水区受波浪折射、浅水、破碎及底摩阻等效应的影响,波浪强度随之变小。
     (2)为了构造能对上海形成最不利情况的强台风和超强台风两种超标准的气旋,模拟这种条件下海堤前沿的极端潮位和风浪,通过对9711台风的空间和时间的平移,就长江口杭州湾不同位置典型海堤,找出对其最为不利的路径和登陆时间,并以此为袭击上海最不利的强台风;在此基础上利用强台风模拟成果中的路径、登陆时间和5612超强台风低气压过程,模拟了超强台风登陆的风—潮—浪过程,并计算得到超强台风条件下海堤前沿风—潮—浪要素。
     (3)在调研的典型海堤中,选取临港新城新建海堤为研究对象,利用设计标准的和超标准台风条件下的风、潮、浪要素,对海堤护面结构稳定和越浪量进行复核计算,在此基础上评价海堤安全性。复核结果表明,以临港新城新建海堤为例,在设防标准情况下,现有海堤的结构稳定和越浪量基本满足安全标准;在强台风作用下,海堤堤顶越浪量不满足要求;在超强台风下,海堤防浪墙稳定和越浪量都不能满足安全要求。
     本文通过在不同强度台风条件下的上海海堤安全性进行了评估,就可能的受损情况进行了定量计算,提出应对措施,以达到经济有效地提高海堤整体防御能力的目标。该成果可推广应用于上海地区台风—浪—潮的预报和后报分析,建立的海堤防御能力评价体系可应用于上海沿江、沿海海堤的防御能力评价,为有关部门提高海堤防御能力制定经济有效的工程措施提供技术支持。
Due to the global climate change, extremely disastrous storm surges happen more intensively and frequently, which also have the trend to go even north at the northern hemisphere. Meanwhile, the accelerated process of urbanization and population increase in the coastal areas faces the needs of the seaward extension of shoreline for more living space. Shanghai, an international metropolis in mid-latitude the low-lying area with high-density population, is vulnerable to typhoon disasters. To protect against the high-level typhoon and prevent large scale destruction, loss of lives and properties for the typhoon exceeding the design standard, first-line seawalls play an essential role in the safety of Shanghai in the current and future time periods.
     Through the extensive and in-depth research on first-line seawall and defense standards in Shanghai, a city at the inter-junction of Yangtze River Estuary and Hangzhou Bay, and a collection of multiple landing events at Shanghai or neighboring provinces, this study simulated the storm surge and swells in Shanghai caused by typhoons that exceed the defense standards, and analyzed the factors that probably destroy the seawall. The purpose and destination of this study is to improve the defense capabilities of the seawalls and significantly reduce the potential disaster losses by properly heightening and consolidating the existing seawalls. This specific research contents and results are as follows:
     (1)Based on the extensively analysis on research progress of current wind-tide-wave numerical model, the typhoon numerical model, storm surge model and typhoon-tide-wave coupling model are selected and established for the Yangtze River estuary, and these models are calculated and calibrated by synchronous wind-tide-wave observed data of Typhoon 9711 and other typhoons.
     In this study, Fujita.T- Takahashi formula and Jelesnianski wind model are established respectively by computer programming. Jelesnianski wind field model with relatively less decay and consistent wind verification is applied on the numerical model. By adjusting the attenuation coefficient and the radius of maximum wind speed, the calculated wind field is more consistent with the observed wind field.
     The wind-tide numerical model is established. The tidal wave process before landing process under the impact of Typhoon 9711 is analyzed. In the offshore deep water area, the storm surge is mainly forced by the lower air pressure under the typhoon center. With the typhoon's approaching to the nearshore area, wind induced set-up and set-down occur successively, the impact of low pressure decreases relatively, and the anti-clockwise direction flow along the shoreline under the impact of wind field lead to the formation of a strong water exchange on the south and north sides of typhoon center.
     The impact of water depth fluctuation during tidal process on wave propagation has been taken into consideration by the tide-wave coupling typhoon model. The energy distribution of wave field is consistent with the typhoon wind field, and along with the movement process of typhoon, the wave intensity in deep water is enhanced with the increasement of wind strength or the radius of wind field. The maximum effective wave height is up to 9.0 m in the deep water under the impact of Typhoon 9711. Due to the impact of wave breaking and bottom friction in the shallow water, the wave intensity is reduced correspondingly.
     (2)To simulate the potential strong typhoon and super strong typhoons may had the worst impact on the city of Shanghai, the extreme tide level and wave in front of seawall can be simulated in these most unfavorable conditions. By the temporal and spatial transformation of Typhoon 9711, the most dangerous path and landing time can be determined for the typical sea walls at the different positions of Yangtze River and Hangzhou Bay, and take this as the most dangerous hypothetical super typhoon may attack on Shanghai. On the basis of simulation results of the path and landing time of strong typhoon, combined with the low pressure and wind field process of super strong Typhoon 5612, the wind-tide-wave process of super strong typhoon is simulated. The extreme storm surge water level and typhoon wave in front of the typical seawall under the impact of typhoon over normal standard are obtained in this study.
     (3)In the investigation of typical seawall, the harbor seawall is chosen as the studied seawall. By using the tide level and storm wave at designed and over normal standard criteria, the structure stability and wave overtopping discharge of seawall are tested by calculation. On this basis, the safety of the seawall is evaluated. The evaluation shows that the structure stability and wave overtopping discharge of the existing seawalls can basically satisfy the safety requirement, the wave overtopping discharge of seawall under the action of strong typhoon doesn't meet the requirement; under the impact of super strong typhoon, the stability and wave overtopping discharge of all the studied seawalls can't satisfy the safety requirement.
     Through the study on safety evaluation of seawall under the different intensity of cyclones, the reinforcement suggestions for the possible damaged seawall structure are proposed to improve the overall defense capability of seawall economically and effectively. The results of this study can be applied to typical typhoon-wave-tide model analysis in Shanghai, and the evaluation system of seawall defense capability can be applied on the seawall in the river and coastal region of Shanghai. This study can provide technical support to the related department to improve the defense capability of seawalls with economic and effective engineering applications.
引文
1. Booij N, Haagsma IJG, Holthuijsen LH, Kieftenburg ATMM, Ris RC, Van der Westhuysen AJ, et al. SWAN user manual (Cycle III version 40.41)[Z]. Delft:Delft University of Technology,2004.
    2. Besley, P. Overtopping of Seawalls[C]//Design and Assessment Manual, HR, Wallingford Ltd, R&D Technical Report W178. EA,1999.
    3. Briganti, R., G Bellotti, L. Franco, etc. Field measurements of wave overtopping at the rubble mound breakwater of Rome-Ostia yacht harbour[J]. Coastal Engineering,2005, (52):1155-1174.
    4. 陈孔沫.台风气压场和风场模式[J].海洋学报,1981,3(1):44-56.
    5. 陈孔沫.海上台风风场模式[J].海洋学报,1982,4(6):771-777.
    6. 陈孔沫.热带气旋风场的计算[J].热带海洋学报,1991,10(1):63-70.
    7. 陈孔沫.新的台风风场计算方法[J].海洋预报,1992,9(3):60-65.
    8. 陈孔沫.一种计算台风风场的方法[J].热带海洋,1994,13(2):41-48.
    9. 陈希,桂祁军,闵锦忠,等.湛江港临近海域台风浪的模拟研究[J].河海大学学报(自然科学版),2003,31(5):593-596.
    10.陈光华.西北太平洋热带气旋活动的年际变化及其机理研究[D].北京:中国科学院,2007.
    11. Danish Hydraulic Institute(DHI), MIKE21 Spectral Waves Module Scientific Documentation.2007.
    12. Danish Hydraulic Institute(DHI), MIKE21 Spectral Waves FMModule User Guide.2007.
    13. D De Zeeuw and KG Powell. An Adaptively Refined Cartesian Mesh Solver for the Euler Equations[J]. Journal of Computational Physics,1993,104(1):56-68.
    14. DM Ingram, DM Causon, F Gao and CG Mingham etc. Free Surface Numerical Modelling of Wave Interactions with CoastalStructures[J]. CLASH Report. Work package 5:43-49.
    15.丁平兴,胡克林,孔亚珍,胡德宝.风暴对长江河口北槽冲淤影响的数值模拟——以“杰拉华”台风为例[J].泥沙研究,2003,6:18-24.
    16.丁平兴,胡克林,孔亚珍,朱首贤.长江河口波-流共同作用下的全沙数值模拟[J].海洋学报,2003,25(5):113-124.
    17. EAK,2002. Ansatz fur die Bemessung von Kustenschutzwerken. Chap.4 in Die Kuste, Archive for Research and Technology on the North Sea and Baltic Coast. Empfelungen fur Kustenschuzxwerke.
    18. Fujita, T. Pressure distribution in typhoon[J]. J. Geophys. Mag.,1952,23:437.
    19.冯芒,沙文钰,朱首贤.近岸海浪几种数值计算模型的比较[J].海洋预报,2003,20(1):52-59.
    20.富曾慈.中国海岸台风暴雨风暴潮灾害及防御措施[J].防洪与减灾—水利规划设计,2002,2 23--30.
    21. FJ Kelecy and RH Pletcher. The development of a free surface capturing approach for multidimensional free surface flows in closed containers[J]. Journal of Computational Physics,1997,138:939-980.
    22.福建省水利水电厅.福建省围垦工程设计技术规程[S].1992.
    23.高桥浩一郎.台风域内に於ける气压はひ风速の分布[C]//高桥浩一郎.气象集志.1939,17(11):417.
    24.广东省质量技术监督局.广东省海堤工程设计导则(试行)[S].2004.
    25.国家技术监督局,中华人民共和国水利部.堤防工程设计规范.GB 50286-98.
    26. Heaps, N.S. Storm Surges,1967-1982[J]. Geophys.J.R.1983,74:331-376.
    27. Holand, J. An analytic model of the wind and pressure profiles in hurricanes[J]. Mon. Wea. Rev.,1980, 108:1212-1218.
    28.黄小刚,费建芳,张根生,等.一种台风海面非对称风场的构造方法[J].热带气象学报,2004,20(2):129-136.
    29.黄世昌,周骥,谢亚力,等.浙江省海塘塘顶高程的确定[J].海洋工程,2001,19(4):67-71.
    30.黄世昌.浙江沿海超强台风引发的潮浪及其对海堤作用[D].天津:天津大学,2008.
    31.黄世昌,楼越平,周骥.浙江省软土地基海塘的防浪特点研究[J].海洋工程,2002,20(4):11-16.
    32.贺海洪,陈善民,胡海忠.浙江省海塘工程波浪要素计算分析与比较[J].浙江水利科技,2005,(4):13-20.
    33. Jelesnianski, C.P. Numerical computation of storm surge Induced by a Tropical Storm impinging on a Continental Shelf[J]. Mon. Wea. Rev.,1965,93(16):343-358.
    34. J.W. van der Meer. Technical Report Wave Run-up and Wave Overtopping at Dikes[C]//Technical Advisory Committee on Flood Defences, TAW,2002.
    35. JC Park, MH Kim and H Miyata. Full non-linear free-surface simulations by a 3d viscous numerical wave tank[J]. International Journal for Numerical Methods in Fluids,1999,29(6):658-703.
    36. JJ Monaghan. Simulating free surface flows with SPH[J]. Journal of Computational Physics,1994, 110:499-406.
    37. Geeraerts, J., P. Troch a, J. De Rouck, etc. Wave overtopping at coastal structures:prediction tools and related hazard analysis[J]. Journal of Cleaner Production,2007, (15):1514-1521.
    38. Kirby, J.T., Dalrymple, R.A. Modelling waves in the surfzones and around islands[J]. J. Wtrwy. Port,Coast. and Oc. Engrg.,ASCE,1986,112 (1):78-93.
    39. Kirby, J.T. A note on linear surface wave-current interaction over slowly varying topography[J]. J. Geophys. Res.,1984,89 (C1):745-747.
    40.李岩,杨支中,沙文钰,等.台风的海面气压场和风场模拟计算[J].海洋预报,2003,20(1):6-13.
    41.李孟国,王正林,蒋德才.近岸波浪传播变形数学模型的研究与进展[J].海洋工程,2002,20(4):43-57.
    42.李孟国,蒋德才.关于波浪缓坡方程的研究[J].海洋通报,1999,18(4):70-92.
    43.刘凤树.国内外风暴潮概况及其防御对策[J].自然灾害学报,1992,1(1):85-95.
    44.卢永金.上海市防御台风战略对策探讨[J].上海市水利学会专辑—城市道桥与防洪,2007,4:29-33.
    45. LU Yong-jin, LIU Hua, WU Wei, etc. Numerical simulation of two-dimensional overtopping against seawalls armoured with artificial units regular waves[J]. Journal of hydrodynamics,2007, 19(3):322-329.
    46.李寿星,沈水土.浙江省海塘管理现状及对策研究[J].浙江水利科技,2003,增(5):43-45.
    47.卢永金,何友声,刘桦.围海造地工程两个重要环节风险估算实用方法研究[J].海洋工程,200624(1):41-54.
    48.卢永金.上海市防御台风战略对策探讨[J].城市道桥与防洪,2007, (4):29-34.
    49.卢永金,何友声,刘桦.海堤设防标准探讨[J].中国工程科学,2005,7(12):17-23.
    50.卢永金.海堤波浪爬高计算分析与越浪设计准则探讨[J].水利水电技术,2007,38(4):30-34.
    51. Myers, V. A. Maximum hurricane winds[J]. Bull. Amer. Metero. Sco.,1957,38(4):227.
    52. Madsen, P.A., Warren, I.R. Performance of a numerical short2wave model [J]. Coast. Engrg.,1984, 8:73-93.
    53. M Sussman, P Smereka and S Osher. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics,1994,114:146-159.
    54.潘少华.江河风浪计算中的一些问题[J].人民黄河,1994(7):13-16.
    55.潘丽红,朱建荣,刘新成,等.上海市海堤设计波浪计算有关问题探讨[C].中国水利学会2007年学术年会论文集(人类活动与河口).中国水利水电出版社,2008.
    56.潘风英.历史时期江浙沿海特大风暴潮研究[J].南京师大学报(自然科学版),1995,18(1):94-100.
    57. Troch, P., J.D. Rouck, L.V. Damme. Instrumentation and prototype measurements at the Zeebrugge rubble mound breakwater[J]. Coastal Engineering,1998, (35):141-166.
    58.秦曾灏,刘秦玉,封少林.海洋大气边界层风场的非线性动力诊断模式的数值试验[J].海洋学报(中文版),1986,8(6):678-685.‘
    59.上海地方志办公室.上海通志[M].上海:上海社会科学院出版社,2005:第二卷自然环境,第三章气候,第七节天气系统.
    60.上海市水利局规划室,上海市水利工程设计研究院,上海市水文总站等.上海市海塘规划[Z].上海:上海市水利局规划室,1996.
    61.沙文钰,杨支中,冯芒,等.风暴潮、浪数值预报[M].北京:海洋出版社,2004.
    62.盛立芳,吴增茂.一种新的台风海面风场的拟合方法[J].热带气象学报,1993,9(3):265-271.
    63. Seed, R. B. Abdelmalak, R. I. Athanasopoulos, A. G., et al. Investigation of the Performance of the New Orleans Flood Pretection Systems in Hurricane Katrina on August 29,2005[R].2006, VOLUME I:Main Text and Executive Summary,PART I-Technical Study:ppl-1.
    64.孙洪.我国海洋灾害及防灾策略[J].海洋通报,1993,12(6):71-74.
    65. S Osher and JA Sethian. Fronts propagating with curvature-development speed:Algorithm based on Hamilton-Jacobi formulations[J]. Jounral of Computational Physics,1998,79:12-49.
    66. SO Unverdi and G Tryggvason. A front-tracking method for viscous, incompressible multifluid flow[J]. Journal of Computational Physics,1992,100:25-37.
    67. M Sussman and EG Puckett. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics,2000,162:301-337.
    68.上海科学技术出版社.上海市地图集[M],上海:《上海市地图集》编纂委员会,1997:pp31.
    69. T Li, P. Troch, and J De Rouck. Wave overtopping over a sea dike[J]. Journal of Computational Physics, 2004,198:686-726.
    70. Troch, P., J. Geeraerts, B.Van de Walle, etc. Full-scale wave overtopping measurements on the Zeebrugge rubble mound breakwater[J]. Coastal Engineering,2004, (51):609-628.
    71.王喜年.关于温带风暴潮[J].海洋预报,2005,22(增刊):17-23.
    72.王喜年.来自台风的海洋灾害的预报与防御[J].中国减灾,1997,7(1):32-36.
    73.王喜年,尹庆江,张保明.中国海台风风暴潮预报模式的研究与应用[J].水科学进展,1991,2(1):1-7.
    74.王喜年.风暴潮数值棋式计算中气压场和风场的处理[J].海洋预报,1986,3(4):56-64.
    75.夏期颐,洪广文.长江口杭州湾地区波要素推算及验证[J].河海大学学报,1994,22(2):33-38.
    76.徐福敏,张长宽.一种浅水波浪数值模型的应用研究[J].水动力学研究与进展,2000,A辑,5(4):429-434.
    77.阎秉耀.台风梯度风模式[J].海洋预报服务,1984,1(2):12-16
    78.杨支中,沙文钰,朱首贤,等.一种新型的非对称台风的海面气压场和风场模型[J].海洋通报, 2005,24(1):1-7.
    79.杨桂山.中国沿海风暴潮灾害的历史变化及未来趋向[J].自然灾害学报,2000,9(3):23-30.
    80.浙江省钱塘江管理局,浙江省水利河口研究院,浙江省钱塘江管理局勘测设计院等.钱塘江北岸海塘应对超标准风暴潮研究总报告[R].杭州:浙江省钱塘江管理局,2009.
    81.藏重清.气象研究所研究报告[R].1977,28(2):83-95.
    82.章家琳,房文鸾,,徐启明,等.构造台风地面等压线为非相似结构的尝试[J].东海海洋,1986,4(4):8-18.
    83.章家琳,隋世峰.台风波浪数值预报的CHGS法_Ⅱ台风风场中梯度风摩擦修正系数和风向内偏角的计算[J].1989,8(1):58-66.
    84.朱建荣,沈焕庭,秦曾灏.海洋对热带气旋响应的一种改进模式[J].热带海洋,1995,14(3):44-50.
    85.朱建荣,秦曾灏.海洋对热带气旋响应的研究Ⅰ.海洋对静止、移速不同的热带气旋响应[J].海洋与湖沼,1995,26(2):146-153.
    86.朱建荣,秦曾灏.海洋对热带气旋响应的研究Ⅱ.海洋对静止、移速不同的热带气旋响应[J].海洋与湖沼,1995,26(5):455-459.
    87.朱建荣,秦曾灏.海洋对静止热带气旋响应的某些特征[J].青岛海洋大学学报,1994,24(4):439-446.
    88.朱首贤,沙文钰,丁平兴,等.近岸非对称型台风风场模型[J].华东师范大学学报(自然科学版),2002,03:66-71.
    89.浙江省水利厅.浙江省海塘工程技术规定(上册,下册)[S].1999.
    90.中华人民共和国交通部.海港水文规范.JTJ213-98.
    91.中华人民共和国水利部.海堤工程设计规范.SL435-2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700