金属蛋白MT的电化学行为以及金属蛋白p53与DNA相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属蛋白是由氨基酸和金属离子结合而成的。金属离子作为金属蛋白中重要的辅因子,承担着活性中心或结构中心的作用。金属硫蛋白与癌症抑制转录因子p53是两种重要的金属蛋白。
     金属硫蛋白(Metallothionein, MT)是一类低分子量,高半胱氨酸含量,能结合大量重金属离子的蛋白质。MT广泛存在于人体、动物、植物以及微生物体内,它参与必需金属的平衡代谢和重金属解毒过程。MT电化学行为的研究对阐述氧化还原诱导的MT电子转移与金属释放过程以及环境毒理学方面的作用具有重要意义。到目前为止,MT电化学行为的研究几乎都是在汞电极上进行的,由于MT与汞之间较强的结合力,MT中的Cd和Zn离子有可能被汞所取代。此外,汞电极的机械强度差且容易产生污染。引入具有选择性渗透作用的Nafion膜,有望克服上述缺陷。本文采用新型的Nafion-汞膜修饰电极(NCMFEs)对两种形态的MT,即Zn7-MT和CdT-MT进行了定量研究。分别在-1.141和-0.774 V处观察到Zn7-MT和Cd7-MT的氧化还原峰。结合电化学和原子吸收计算出电极表面每个MT分子中具有电活性的金属-巯基(M-Cysteine, M=Zn,Cd)侧链的数量分别为2.03和0.62。表明在一个MT分子中,并不是所有金属-半胱氨酸侧链都参与氧化还原反应,只有距离电极表面较近的基团才能够参与电子转移过程。上述工作对于阐述MT在环境毒理学和细胞内金属转移过程的机制具有重要的作用。
     肿瘤抑制转录因子p53在遏止肿瘤细胞生长、DNA修复、以及细胞程序化凋亡等方面扮演着十分重要的角色,因而有“基因组卫士”的美称。p53是一种结合Zn离子的蛋白质,其生物学功能和与DNA键合的特性有关。p53蛋白质中与DNA键合的区域含有一个锌指结构,锌指结构中锌离子对于维持野生型p53(没有发生突变的型体)的构型、稳定性及其与DNA的键合活性至关重要。目前常见的检测p53与DNA相互作用的方法有凝胶迁移滞后法、酶联免疫吸附分析法(ELISA)、以及电化学等。与上述方法相比,荧光分析法是一种简单、有效且灵敏的检测手段。通过引入能嵌入DNA螺旋中的荧光染料探针,检测了p53与DNA相互作用。另外,通过荧光共振能量转移(FRET),其中p53作为供体,DMACA修饰的DNA作为受体,来指示p53与DNA之间的相互作用。上述方法对灵敏、简便地检测p53与DNA的相互作用过程提供了重要依据。
Metalloproteins are composed of amino acids and metal ions.As the most important cofactors of proteins, metal ions are responsible for the active or structural sites in metalloproteins.Metallothionein and p53,the transcription factor protein, are two kinds of the most important metallproteins.
     Metallothionein (MT) is a type of metalloproteins characterized by a large number of cysteine residues, low molecular weight and the absence of aromatic or histidine residues.It exerts its functions in regulating essential metals, detoxifying heavy metals, scavenging free radicals and controlling the intracellular redox potential.Investigation of electrochemistry of MT is of great significance in illustrating the role of MTs in environmental toxicology and in intracellular metal transfer. Up to now, characterization of the redox properties of MT has been carried out at mercury electrodes.However, the use of mercury could result in replacement of Cd2+ or Zn2+ inherent in MTs by Hg2+ due to the higher binding affinity of MT toword Hg. Furthermore, mercury electrodes are known to be mechanically unstable and prone to surface contamination. To alleviate these problems, voltammetric studies of Zn7-MT and Cd7-MT have been carried out at Nafion-coated mercury film electrodes (NCMFEs).Two well-defined redox waves at-0.774 and -1.141 V, which correspond to the reduction reactions of Cd7-MT and Zn7-MT complexes, respectively, were observed. Via electrochemistry and flame atomic absorption spectrophotometry (AAS), the amount of the redox-active metal-cysteine side chains per MT molecule entrapped into the NCMFEs was determined to be 2.03 and 0.62 for Zn7-MT and Cd7-MT, respectively. The above results indicate that not all of the metal-cysteine side chains of MTs entrapped into the NCMFEs have participated in the interfacial electron transfer (ET) reactions, only those that are positioned in close vicinity of the electrode with favorable orientation are accessible for facile ET reactions.Voltammetric characterization of MTs at Nafion-coated mercury film electrodes is of great significance in illustrating the role of MTs in environmental toxicology and in intracellular metal transfer.
     The tumor suppressor p53,also referred to as the "guardian of the genome",plays important roles in maintenance of genome integrity, DNA repair and programmed cell death. p53 is a Zn-containing protein with biological functions depending on its DNA-binding properties. p53 is characterized with a zinc-finger-like motif in which one zinc ion is tetrahedrally coordinated to three cysteins and one histidine. The zinc ions are requisite for maintenance of wild-type p53 conformation, stability and its sequencespecific DNA-binding activity. Common methods for the determination of the interaction between p53 and DNA include enzyme-linked immunosorbant assay (ELISA), electrophoretic mobility shift assay, and electrochemistry. In comparison with the above-metioned techniques, the fluorescence spectrometry is simple, sensitive, and inexpensive to implement. The interaction of p53 with DNA has been determined via a DNA-intercalating fluorescent probe. Furthermore, fluorescence resonance energy transfer (FRET) process have been utilized to probe the interaction between p53 and DNA in which p53 acts as a donor and DNA labeled with DMACA acts as an acceptor. The above method is simple, sensitive and provides insight into the biological functions of p53.
引文
[1]黄仲贤.金属蛋白研究中几个值得注意的动向.化学进展,2002.14(4):318-322.
    [2]Xue Y L, Wang S,Feng X Z. Spectrometric Studies on Interaction Between Metal Ions and DNA-Binding Domain of Tumor Suppressor Protein p53.Chin. J. Anal.Chem.,2009.37(8):1131-1136.
    [3]Kagi J H R, Vallee B L. Metallothionein:a cadmium and zinc-containing protein from equine renal cortex. J.Biol.Chem.,1960.235(12):3460-3465.
    [4]Hamer D H.Metallothionein. Annu. Rev. Biochem.,1986.55:913-951.
    [5]Vallee B L. Introduction to metallothionein. Method. Enzymol.,1991. 205(Metallobiochem. Pt. B):3-7.
    [6]Lane D P. Cancer. p53,guardian of the genome. Nature,1992.358(6381): 15-16.
    [7]Kagi J H, Kojima Y. Nomenclature of metallothioneins:a proposal. Experientia. Suppl.,1979.34(Metallothionein):141-142.
    [8]Fowler B A, Hildebrand C E, Kojima Y. Nomenclature of metallothionein. Experientia. Suppl.,1987.52(2):19-22.
    [9]Romero-Isart N, Vasak M. Advances in the structure and chemistry of metallothioneins. J.Inorg. Biochem.,2002.88(3-4):388-396.
    [10]Quaife C J, Findley S D, Erickson J C. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry,1994.33(23):7250-7259.
    [11]Liang L, Fu K, Lee D K. Activation of the complete mouse metallothionein gene locus in the maternal deciduum. Mol.Reprod. Dev.,1996.43(1):25-37.
    [12]茹炳根.第四届国际金属硫蛋白会议简介.生命科学,1998.10(3):157-158.
    [13]刘志,魏国林.金属硫蛋白研究进展.江西科学,2004.22(2):104-109.
    [14]Wu C M, Lin L Y. Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosens. Bioelectron.,2004.20(4):864-871.
    [15]Munoz J, Baena J R, Gallego M. Development of a method for the determination of inorganic cadmium and cadmium metallothioneins in fish liver by continuous preconcentration on fullerene and flame atomic absorption spectrometry. J. Anal.At. Spectrom.,2002.17(7):716-720.
    [16]Li T Y, Minkel D T, Shaw F. On the reactivity of metallothioneins with 5, 5'-dithiobis-(2-nitrobenzoic acid).Biochem. J.,1981.193(2):441-446.
    [17]Ellman G L. Tissue sulfhydryl groups. Arch. Biochem. Biophys.,1959. 82(1):70-77.
    [18]Coyle P, Philcox J C, Carey L C, et al.Metallothionein:The multipurpose protein. Cell.Mol.Life Sci.,2002.59(4):627-647.
    [19]Prinz R, Weser U. A naturally occurring Cu-thionein in saccharomyces cerevisiae. Hoppe Seylers Z. Physiol.Chem.,1975.356(6):767-776.
    [20]Winge D R, Miklossy K A. Domain nature of metallothionein. J.Biol. Chem,1982.257(7):3471-3476.
    [21]田晓丽,郭华军.金属硫蛋白的研究进展.国外医学药学分册,2005.32(2):119-124.
    [22]Chan J N, Huang Z Y, Merrifield M E, et al.Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques. Coord. Chem. Rev,2002.233-234:319-339.
    [23]Kameo S, Nakai K, Kurokawa N. Metal components analysis of metallothionein-Ⅲ in the brain sections of metallothionein-I and metallothionein-Ⅱ null mice exposed to mercury vapor with HPLC/ICP-MS.Anal.Bioanal.Chem,2005. 381(8):1514-1519.
    [24]周妍娇,熊焱,李令媛.金属硫蛋白α和β结构域的结构功能比较研究.中国生物化学与分子生物学报,1999.15(5):772-778.
    [25]Stillman M J, Zelazowski A J.Domain specificity in metal binding to metallothionein. A circular dichroism and magnetic circular dichroism study of cadmium and zinc binding at temperature extremes. J. Biol.Chem,1988.263(13): 6128-6133.
    [26]Stillman M J. Metallothioneins. Coord. Chem. Rev,1995.144:461-511.
    [27]Nielson K B, Atkin C L, Winge D R. Distinct metal-binding configurations in metallothionein. J.Biol.Chem,1985.260(9):5342-5350.
    [28]诸德萤,林育,茹炳根.脱金属硫蛋白与镉离子的络合作用及构想研究.生物化学与生物物理学报,1995.27(4):415-420.
    [29]Sato M, Suzuki K T. Recent studies on measurement of metallothionein and its isoforms in biological materials. Biomed. Res. Trace Elements,1995.6(1):13-28.
    [30]Lobinski R, Chassaigne H, Szpunar J. Analysis for metallothioneins using coupled techniques. Talanta,1998.46(2):271-289.
    [31]李婧.金属硫蛋白的检测方法的研究进展.现代检验医学杂志,2004.19(3):64-65.
    [32]Chassaigne H,Lobinski R. Polymorphism and identification of metallothionein isoforms by reversed-phase HPLC with on-line ion-spray mass spectrometric detection. Anal.Chem.,1998.70(13):2536-2543.
    [33]Ait-Oukhatar N, Bureau F, Boudey M.Determination of metallothioneins by HPLC:application to zinc metabolism Ann.Biol.Clin.,1996.54(2):87-90.
    [34]Minami T, Tohno Y, Okazaki Y. Quantitation of metallothionein isoforms in mouse liver on capillary zone electrophoresis. Anal.Chim. Acta,1998.372(1-2): 241-247.
    [35]Knudsen C B, Beattie J H.Online solid-phase extraction-capillary electrophoresis for enhanced detection sensitivity and selectivity:application to the analysis of metallothionein isoforms in sheep fetal liver. J.Chromatogr. A,1997. 792(1-2):463-473.
    [36]Dabrio M, Rodriguez A R, Bordin G, et al.Recent developments in quantification methods for metallothionein. J.Inorg. Biochem.,2002.88(2):123-134.
    [37]Schuerenberg M, Luebber T C, Eickhoff H.Prestructured MALDI-MS sample supports. Anal.Chem.,2000.72(15):3436-3442.
    [38]季清洲,王立波,茹炳根.兔肝金属硫蛋白结合铅离子的圆二色性光谱研究.中国生物化学与分子生物学报,1999.15(6):928-932.
    [39]Ejnika J, Robinsona J, Zhua J.Folding pathway of apo-metallothionein induced by Zn2+,Cd2+ and Co2+. J.Inorg. Biochem.,2002.88(2):144-152.
    [40]Scarano G, Morelli E. Cathodic stripping voltammetric determination of metallothioneins. Electroanalysis,1996.8(4):396-398.
    [41]Fedurco M, Sestakova I. Adsorption of Cd, Zn-metallothionein on covered Hg eletrodes and its voltammetric determination.Bioelectrochem.Bioenerg.,1996. 40(2):223-232.
    [42]Munoz A, Rodriguez A R. Quantitative determination of cadmium, zinc thioneins using differential-pulse polarography. Analyst,1995.120(2):529-532.
    [43]Song F Y, Briseno A L, Zhou F M. Redox reactions of and transformation between cysteine-mercury thiolate and cystine in metallothioneins adsorbed at a thin mercury film electrode. Langmuir,2001.17(13):4081-4089.
    [44]Stulik K, Pacakava V Electroanalytical Measurements in Flowing Liquids. England:Ellis Horwood,1987.
    [45]Bragigand V, Berthet B.Some methodological aspects of metallothionein evaluation. Comp. Biochem. Physiol.A:Physiol.,2003.134A(1):55-61.
    [46]Sestakova I, Mader P. Voltammetry on mercury and carbon electrodes as a tool for studies of metallothionein interactions with metal ions. Cell,and Mol.r Bio., 2000.46(2):257-267.
    [47]Seen A J.Nafion:an excellent support for metal-complex catalysts. J. Mol. Catal.A:Chem.,2001.177(1):105-112.
    [48]Xu M T, Wu Y H, Wang J X, et al.Electrochemistry of and redox-induced metal release from metallothioneins at a nafion-coated bismuth film electrode. Electroanalysis,2006.18(21):2099-2105.
    [49]Levine A J. p53,the cellular gatekeeper for growth and division. Cell,1997. 88(3):323-331.
    [50]May P, May E.Twenty years of p53 research:structural and functional aspects of the p53 protein. Oncogene,1999.18(53):7621-7636.
    [51]Fritsche M, Haessler C, Brandner G Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene,1993.8(2): 307-318.
    [52]Kastan M B,Onyekwere O, Sidransky D, et al.Participation of p53 protein in the cellular response to DNA damage. Cancer Res.,1991.51(23):6304-6311.
    [53]Cho Y J, Gorina S,Jeffrey P D, et al.Crystal structure of a p53 tumor suppressor-DNA complex:understanding tumorigenic mutations. Science,1994. 265(5170):346-355.
    [54]Prives C.How loops, beta-sheets and alpha-helices help us to understand p53.Cell,1994.78(4):543-546.
    [55]Clore G M, Omichinski J G, Sakaguchi K, et al.High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science,1994. 265(5170):386-391.
    [56]Eldeiry W S,Kern S E, Pietenpol J A, et al.Definition of a consensus binding site for p53.Nat. Gene.,1992.1(1):45-49.
    [57]Sturzbecher H W, Brain R, Addison C, et al.A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene,1992.7(8):1513-1523.
    [58]Meplan C, Richard M J, Hainaut P. Metalloregulation of the tumor suppressor protein p53:zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene,2000.19(46):5227-5236.
    [59]Verhaegh G W, Parat M O, Richard M J, et al.Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Mol. Carcinogenesis,1998.21(3):205-214.
    [60]Xue Y L, Wang S A, Feng X Z. Effect of Metal Ion on the Structural Stability of Tumour Suppressor Protein p53 DNA-Binding Domain. J.Biochem., 2009.146(2):193-200.
    [61]Hainaut P, Mann K. Zinc Binding and Redox Control of p53 Structure and Function. Antioxidants & Redox Signaling,2001.3(4):611-623.
    [62]Miller J, McLachlan A D, Klug A. Repetitive zinc2binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J.,1985.4(6): 1609-1614.
    [63]李晓波,张俊武.真核生物中锌指蛋白的结构与功能.中国生物化学与分子生物学报,2009.25(3):206-211.
    [64]Dai K S,Liew C C.Characterization of a novel gene encoding zinc finger domains identified from expressed sequence tags (ESTs) of a human heart cDNA database. J. Mol.Cell Cardiol,1998.130(11):2365-2375.
    [65]Lander E S,Linton L M, Birren B.Initial sequencing and analysis of the human genome. Nature,2001.409(6822):860-921.
    [66]Lee M S,Gippert G P, Soman K V.Three-dimensional solution structure of a single zinc finger DNA2binding domain. Science,1989.245(4918):635-637.
    [67]Butler J S,Loh S N. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry,2003.42(8):2396-2403.
    [68]马煜,钱德芳,曹利平.p53蛋白研究进展.国外医学临床生物化学与检验学分册,2002.23(1):41-42.
    [69]Smith M L, Chen IT, Zhan Q, et al.Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science,1994.266(5189):1376-1380.
    [70]Wang X W, Forrester K, Yeh H, et al.Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.Proc. Natl.Acad. Sci.USA,1994.91(6):2230-2234.
    [71]Buchhop S, Gibson M K, Wang X W,et al.Interaction of p53 with the human Rad51 protein. Nucleic Acids Res.,1997.25(19):3868-3874.
    [72]Bakalkin G, Yakovleva T, Selivanova G, et al.p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl.Acad. Sci. USA,1994.91(1):413-417.
    [73]Brain R, Jenkins J R. Human p53 directs DNA strand reassociation and is photolabeled by 8-azido ATP. Oncogene,1994.9(6):1775-1780.
    [74]Gould K A, Nixon C,Tilby M J.p53 Elevation in Relation to Levels and Cytotoxicity of Monoand Bifunctional Melphalan-DNA Adducts. J.Mol.Pharmacol., 2004.66(5):1301-1309.
    [75]Rippin T M, Freund S M V, Veprintsev D B, et al.Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J. Mol.Biol.,2002.319(2):351-358.
    [76]Potesil D, Mikelova R, Adam V, et al.Change of the protein p53 electrochemical signal according to its structural form-quick and sensitive distinguishing of native, denatured, and aggregated form of the "guardian of the genome". Protein J.,2006.25(1):23-32.
    [77]Wang J X, Zhu X, Tu Q Y, et al.Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocene-capped gold nanoparticle/streptavidin conjugates. Anal.Chem.,2008.80(3): 769-774.
    [78]Zhu X, Li K, Liu L, et al.Voltammetric Detection of p53 at Electrodes Modified with Consensus Double-Stranded Oligonucleotides with N-(2-Ferrocenylethyl)maleimide. Acta Chim. Sinica,2008.66(21):2379-2383.
    [79]Razumienko E, Ornatsky O, Kinach R, et al.Element-tagged immunoassay with ICP-MS detection:Evaluation and comparison to conventional immunoassays. J. Immun. Methods,2008.336(1):56-63.
    [80]Nichols N M, Matthews K S.p53 unfolding detected by CD but not by tryptophan fluorescence. Biochem. Biophys. Res. Commun.,2001.288(1):111-115.
    [81]Xia N, Liu L, Yi X Y, et al.Studies of interaction of tumor suppressor p53 with apo-MT using surface plasmon resonance. Anal.Bioanal.Chem.,2009.395(8): 2569-2575.
    [82]Otvos J D, Armitage I M.Structure of the metal clusters in rabbit liver metallothionein. Proc. Natl. Acad. Sci.USA 1980.77(12):7094-7098.
    [83]Baca A J, Garcia Y, Briseno A L, et al.Quantification of metals released by metallothionein adsorbates at mercury film electrodes by electrochemical ICP-atomic emission spectrometry. J.Electroanal.Chem.,2001.513(1):25-35.
    [84]Fu Y, Xu M T, Li X,et al. Voltammetric studies of cadmium-and zinc-containing metallothioneins at Nafion-coated mercury thin film electrodes. Electroanalysis,2008.20(8):888-893.
    [85]Silva R F, De Francesco M, Pozio A. Solution-cast Nafion(R) ionomer membranes:preparation and characterization. Electrochim. Acta,2004.49(19): 3211-3219.
    [86]Erk M, Raspor B.Advantages and disadvantages of voltammetric method in studying cadmium-metallothionein interactions. Cell,and Mol.Bio.,2000.46(2): 269-281.
    [87]Rodriguez A R, Esteban M. Application of electroanalytical methods to the characterization of metallothioneins and related molecules. Cell,and Mol. Biol.,2000. 46(2):237-256.
    [88]岳新萍,周杰昊.锌7与镉7-金属硫蛋白清除羟自由基的比较.生物化学与生物物理进展,1996.23(4):352-355.
    [89]Kagi J H R, Vallee B L. Metallothionein:a cadmium and zinc-containing protein from equine renal cortex. J. Biol.Chem.,1961.236(2435-2442.
    [90]Vasak M, Kagi J H R, Hill H A O. Zinc(Ⅱ), cadmium(Ⅱ), and mercury(Ⅱ) thiolate transitions in metallothionein. Biochemistry,1981.20(10):2852.
    [91]Willner H, Vasak M, Kagi J H R. Cadmium-thiolate clusters in metallothionein:spectrophotometric and spectropolarimetric features. Biochemistry, 1987.26(19):6287-6292.
    [92]Kefala G, Economou A, Voulgaropoulos A. A study of Nafion-coated bismuth-film eletrodes for the detemination of trace by anodic stripping voltammetry. Analyst,2004.129(11):1082-1090.
    [93]陈东初,郑家燊,傅朝阳.Nafion修饰Ag/AgCl参比电极的研制及其在pH电化学传感器中的应用.分析科学学报,2005.21(4):432-434.
    [94]徐佳宁,梁燕波.Nafion修饰电极及其在分析化学中的应用.徐州师范学院学报,1996.14(1):39-44.
    [95]Olafson R W. Electrochemical characterization of metallothionein metal-mercaptide complexes:application of cyclic voltammetry to investigation of metalloproteins.. Bioelectrochem. Bioenerg.,1988.19(1):111-125.
    [96]Ruiz C, Rodriguez A R. Study of the additions of cadmium and zinc to the cadmium, zinc metallothioneins using differential pulse polarography. Influence of the pH.Anal.Chim. Acta,1996.325(1-2):43-51.
    [97]朱明华仪器分析.北京:高等教育出版社,2000.
    [98]Ko L J, Prives C.p53:puzzle and paradigm.Genes Dev.,1996.10(9): 1054-1072.
    [99]Vogelstein B, Lane D P, Levine A J. Surfing the p53 network. Nature,2000. 408(6810):307-310.
    [100]Wang P, Reed M, Wang Y. p53 domains:structure, oligomerization and transformation. Mol.Cell Biol.,1994.14(8):5182-5191.
    [101]Bi S,Qiao C, Song D, et al.study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sens. Actuators, B,2006.119(1): 199-208.
    [102]Gurrieri S, Wells K S, Johnson L D.Direct visualization of individual DNA molecules by fluorescence microscopy:characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO. Anal. Biochem,1997.249(1):44-53.
    [103]Tan J S,Schneider R L. Dye binding and its relation to polyelectrolyte conformation. J.Phys.Chem.,1975.79(14):1380-1386.
    [104]汪敬武,朱霞萍,孙韡,等.吖啶橙荧光探针法测定人体尿液中的DNA.光谱学与光谱分析,2003.23(5):899-902.
    [105]Wang F, Yang J, Wu X, et al.Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system. J.Colloid Interface Sci.,2006.298(2):757-764.
    [106]唐宏武,陈蓓.吖啶橙—细胞DNA荧光抑制法筛选抗癌药物.高等学校化学学报,1997.18(12):1960-1962.
    [107]Tansil N C, Xie F, Xie H,等.An ultrasensitive nucleic acid biosensor based on the catalytic oxidation of guanine by a novel redox threading intercalator. Chem. commun.,2005.28(8):1064-1066.
    [108]高志宇,薛敏钊,刘燕刚,等.噻唑橙类菁染料与生物大分子结合的光谱特性的研究.感光科学与光化学,2002.20(4):267-275.
    [109]Carlsson C, Larsson A, Jonsson M. Optical and photophysical properties of the oxazole yellow DNA probes YO and YOYO. J.Phys. Chem.,1994.98(40): 10313-10321.
    [110]季维,费学宁,杨少斌.作为生物探针的噻唑橙类化合物的合成及光谱性质研究.天津理工大学学报,2007.23(3):8-12.
    [111]武昆,李树伟,高军彦,等.荧光共振能量转移测定牛血清白蛋白的研究.化学研究与应用,2009.21(4):587-589.
    [112]Schuler B, Lipman E, A.,Eaton W A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature,2002. 419(6908):743-747.
    [113]Groll J, Amirgoulova E V, Ameringer T. Biofunctionalized, ultrathin coatings of crosslinked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J.Am. Chem. Soc.,2004.126(13):4234-4239.
    [114]Kraynov V S, Chamberlain C, Bokoch G M. Localized Rac activation dynamics visualized in living cells. Science,2000.290(5490):333-337.
    [115]Kawanishi Y, Kikuchi K, Takakusa H.Design and synthesis of intramolecular resonance-energy transfer probes for use in ratiometric measurements in aqueous solution. Angew. Chem.Int. Ed,2000.39(19):3438-3440.
    [116]赵德丰,赵同丰.新型香豆素类荧光染料的合成研究.染料工业,1998.35(2):8-11.
    [117]智双,赵德丰,李海玉,等.香豆素类荧光染料的合成及结构表征.染料与染色,2004.41(2):87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700