氧化硅基—石墨烯纳米复合储锂材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨由于具有平坦且较低的嵌锂电势,较低的成本和良好的循环性能成为商品化的负极材料。但是它的理论容量较低所以导致了电池的功率密度较低,而且安全性能较差。氧化硅(SiO)基材料具有体积和质量比容量高,价格低廉以及环境友好等优点,所以通常被认为是Si基材料中极具前景的锂离子电池负极材料。然而在嵌入/脱出锂离子过程中巨大的体积变化以及较低的电导率导致了电池容量的迅速衰减,限制了SiO基材料的实际应用。本研究以SiO为活性物质,石墨烯为缓冲载体,制备了二元复合材料—纳米氧化硅-石墨烯(SiO-石墨烯)复合物、电极体系—纳米三维(3D)氧化硅-石墨烯多层电极、三元复合材料—纳米碳包覆氧化硅-石墨烯(SiOx@C/RGO)复合物以及三元复合材料—纳米氧化硅@氮掺杂碳/氮掺杂石墨烯(SiO@NC/NG)复合物。对SiO基-石墨烯复合材料的制备方法、物理性质、电化学储锂性能及其储锂机制进行了深入的研究。
     以微米石墨为起始物质,采用改进的Hummers法制备得到了氧化石墨烯,并通过“化学还原法和热还原法结合”和“热处理法”得到还原石墨烯(RGO)和热处理石墨烯(TG)。通过对比实验,发现RGO更适合成为制备SiO基-石墨烯复合材料的良好缓冲载体。采用高速研磨法制备了纳米尺寸的SiO颗粒,相比商品化SiO材料,纳米化的SiO颗粒具有更高的比表面积和更好的循环性能。但纳米SiO颗粒也发生了较快的容量衰减,循环20次后,比容量衰减为0,所以不适合独立作为负极材料应用于锂离子电池中。采用“化学还原法和热还原法结合”和“机械混合法”制备SiO/RGO复合物和SiO+RGO混合物,通过对比实验发现SiO/RGO复合物比SiO+RGO混合物具有更优异的电化学性能。在电流密度为100mA g-1时,经过100次放充电循环后SiO/RGO复合物的可逆容量为774.3mAh g-1。通过倍率性能测试发现,当电流密度为800mA g-1时,SiO/RGO复合物的平均可逆容量只有191.5mAh g-1,其倍率性能还有待提升。通过考察不同石墨烯含量对电极的循环性能的影响,发现SiO与氧化石墨烯按照质量比为1:2进行制备时可以得到最佳的循环性能。此外,利用密度泛函理论计算对SiO基-石墨烯增强SiO电化学储锂性能的机理进行研究,深入到因无法测定Li+在金属性Si-石墨烯材料的界面反应的参数所以不能解释的范围,揭示金属性Si-石墨烯复合材料与Li+的迁移信息,从本源上解释SiO-石墨烯纳米复合物增加SiO的电化学储锂性能的作用机制。
     以3D多孔泡沫镍为集流体,取代传统的铜集流体,采用“交替粘附”的方法将纳米SiO颗粒和石墨烯负载在泡沫镍集流体上,制成电极体系-纳米3D SiO-石墨烯多层电极。通过对比实验发现纳米3D SiO-石墨烯多层电极的比容量远优于纳米3D SiO电极。在电流密度为100mA g-1时,经过100次循环后,纳米3D SiO-石墨烯多层电极保持了1369.5mAh g-1的可逆容量,400次循环后,可逆容量为1349.1mAh g-1,实现了较好的循环性能。当电流密度为极高的3200mA g-1时,依然有519.5mAh g-1的平均可逆容量。
     采用了C层和RGO层双层修饰方法设计并制备了三元复合材料-纳米SiOx@C/RGO复合物,并研究了其物理性质及电化学储锂性能。SiOx@C具有纳米级的粒径分布,SiOx@C/RGO具有极大的比表面积和典型的多孔结构。通过对比实验发现SiOx@C/RGO电极的电化学性能优于SiOx@C电极。SiOx@C/RGO电极在电流密度为100mA g-1时,首次放充电容量分别为2402.9mAh g-1和1225.5mAh g-1,首次库伦效率为51%。循环400次后,可逆容量为1264mAh g-1,仅比100次循环后可逆容量减少20mAh g-1,实现了较好的循环性能。当电流密度为极高的3200mA g-1时,依然有419.5mAh g-1的平均可逆容量。采用电化学阻抗测试和扫描电镜对C包覆层和RGO网络的协同储锂机制进行了分析,C包覆层对抑制活性物质的体积变化起着重要作用,C包覆层与RGO的协同效应保证了电极结构的稳定性进而提升了材料的电化学储锂性能。进一步利用C包覆层和RGO对SiO基复合物的作用机制示意图分析了其电化学储锂机制。
     进一步地分别对C层和RGO层进行氮掺杂修饰,制备得到三元复合材料-纳米SiO@NC/NG复合物,并研究了其物理性质及电化学储锂性能。纳米SiO@NC/NG三元复合物具有比纳米SiOx@C/RGO复合物更优异的电化学储锂性能:在电流密度为100mA g-1时,首次放充电容量分别为2465mA h g-1和1372mA h g-1,首次库伦效率为55.66%。电极经过500次循环,依然有1790mAh g-1的可逆容量。即使当电流密度为极高的3200mA g-1时,依然有580mAh g-1的平均可逆容量。最后,采用电化学阻抗测试和扫描电镜测试分析了纳米SiO@NC/NG电极提高的循环性能的作用机制。
Graphite has been considered as the commercial anode material because of its flat and low insertion potential of Li+, low cost and preferable cycling performance. However, it suffers from safety issues, low theoretical capacity (leding to the low power density of batteries). SiO-based materials have been considered as promising Li-ion battery anode material among Si-based material owing to their high volume capacity and weight capacity, low cost and environmentally friendly properties. Nevertheless, the application of SiO-based has been limited due to the fast capacity fading, which arises from the large volume variation during the Li+insertion/deinsertion process and its low electrical conductivity. In this work, SiO material has been used as active material and graphene has been utilized as the buffered carrier to prepare binary composite material-nano-SiO-graphene composites, electrode system-nano-3D SiO-graphene multilayered electrode, ternary composite material-nano-SiOx@C/RGO composites and the ternary composite material-nano-SiO@NC/NG composites. The preparation strategy, physical properties, electrochemistry lithium storage properties and lithium storage mechanism of SiO-based-graphene composite material have been researched deeply. Graphene oxide was synthesized by a modified Hummers’ method, micron
     graphite was used as the starting material. The reduced graphene oxide(RGO) and high temperature treated graphene(TG) were prepared though the “the approach combinated chemical reduction method and thermal reduction method” and “method of heat treatment”. By comparison, RGO was founded as a more suitable buffering carrier in the preparation of SiO-based-graphene composite material. Nano-size SiO particles were prepared using the high speed grinding method which caused a higher specific surface area and better cycling performance than the commercial SiO particles. But the nano-SiO particles also have showed rapid capacity fading, and the specific capacity was reduced to0after20cycles, so it is not suitable for using nano-SiO particles independently as anode material for lithium-ion batteries. The SiO/RGO composites and SiO+RGO compounds were prepared though the “the approach combinated chemical reduction method and thermal reduction method” and “method of heat treatment”. The electrochemical properties of SiO/RGO composites were superior to SiO+RGO compounds according to the result of comparative experiment. The as-prepared composites exhibited a reversible capacity of774.3mAh g-1after100cycles at a current density of100mA g-1. Rate capability tests indicated that the composites exhibited weak high rate properties, and the reversible capacity was as low as191.5mAh g-1at800mA g-1, and the rate performance needs to be improved. By compared studying the effect of different content of graphene on cycling performance, we could get the best cycling performance through adjusting SiO and graphene oxide in accordance with mass ratio of1:2. The mechanism of the enhanced lithium storage performance of SiO-graphene compared with SiO was investigated by density functional theory.
     3D porous nickel foam current collector was used to replace traditional copper collector, an “alternating conglutination” method was developed to fabricate electrode system-nano-3D SiO-graphene multilayered electrode by loading nano-SiO paticles and graphene. The specific capacity of nano-3D SiO-graphene multilayered electrode were much better than the counterpart of nano-3D SiO electrode according to the results of comparative experiment. The reversible capacity of nano-3D SiO-graphene multilayered electrode was1369.5mAh g-1after100cycles at the current density of100mA g-1. After400cycles at the same current density, the reversible capacity was1349.1mAh g-1, which could realize a better cycling performance and the average reversible capacity was as high as519.5mAh g-1even at3200mA g-1.
     Ternary composite material-nano-SiOx@C/RGO composites was designed and prepared via a co-modification strategy. The physical properties and electrochemistry lithium storage properties of the composites were also investigated. SiOx@C shows nanosized particle size distributions, and SiOx@C/RGO typically shows the properties of enormous specific surface area and porous structure. The electrochemical performance of SiOx@C/RGO was better than the counterpart of SiOx@C according to the results of comparative experiment. Specifically, SiOx/C@RGO anode delivers a capacity of2402.9mAh g-1in the first discharge and1225.5mAh g-1in the first charge process, exhibiting an initial coulombic efficiency of51%. The reversible capacity of SiOx/C@RGO after400cycles is observed to be1264mAh g-1, which is only20mAh g-1less than that after100cycles and realizing a better cycling performance. The synergistic lithium storage mechanism between carbon coating layer and graphene was investigated by electrochemical impedance spectroscopy and FESEM, and mechanism of carbon coating layer and RGO on SiO-based composite materials was also proposed.
     Based on the co-modification strategy, a further modification action was operated to improve the double modification layer. Ternary composite material-nano-SiO@NC/NG composites was prepared. The physical properties and electrochemistry lithium storage properties of the composites were also investigated. The electrochemical performance of nano-SiO@NC/NG composites was better than the counterpart of SiOx@C/RGO. Nano-SiO@NC/NG anode delivers a capacity of2465mAh g-1in the first discharge and1372mAh g-1in the first charge process at the current density of100mA g-1, exhibiting an initial coulombic efficiency of55.66%. The reversible capacity of nano-SiO@NC/NG after500cycles is observed to be1790mAh g-1and the average reversible capacity was as high as580mAh g-1even at3200mA g-1. At last, mechanism of improved cycling performance of electrode of nano-SiO@NC/NG was investigated by electrochemical impedance spectroscopy and FESEM.
引文
1Whittingham M. Lithium Batteries and Cathode Materials[J]. ChemicalReviews,2004,104(10):4271-4302.
    2Yang Z, Zhang J, MCW M, et al. Electrochemical Energy Storage for GreenGrid[J]. Chemical Reviews,2011,111:3577-3613.
    3Marom R, Amalraj S, Leifer N, et al. A Review of Advanced and PracticalLithium Battery Materials[J]. Journal of Materials Chemistry,2011,21:9938-9954.
    4郭向欣,黄诗婷,赵宁,等.二次锂空气电池研究的快速发展及其急需解决的关键科学问题[J].无机材料学报,2014,29:113-123.
    5Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-Air Battery: PromiseAnd Challenges[J]. Journal of Physical Chemistry Letters,2010,1:2193-2203.
    6Scrosati B, Garche J. Lithium batteries: Status, Prospects and Future[J]. Journalof Power Sources,2010,195:2419-2430.
    7Armand M, Tarascon J. Building Better Batteries[J]. Nature,2008,451:652-657.
    8郭炳馄,徐徽,王先友,等.锂离子电池[M].湖南:中南大学出版社,2005:188-203.
    9Goodenough J, Park K. The Li-Ion Rechargeable Battery: A Perspective[J].Journal of the American Chemical Society,2013,135:1167-1176.
    10Etacheri V, Marom R, Elazari R. Challenges in The Development of AdvancedLi-Ion Batteries: A Review[J]. Energy&Environmental Science,2011,4:3243-3262.
    11Winter M, Brodd R. What Are Batteries, Fuel Cells, and Supercapacitors?[J].Chemical Reviews,2004,104:4245-4270.
    12Cheng F, Liang J, Tao Z, et al. Functional Materials for RechargeableBatteries[J]. Advanced Materials,2011,23:1695-1715.
    13Li H, Wang Z, Chen L, et al. Research on Advanced Materials for Li-IonBatteries[J]. Advanced Materials,2009,21:4593-4607.
    14Goodenough J, Kim Y. Challenges for Rechargeable Li Batteries[J].Chemistry of Materials,2009,22:587-603.
    15Tarascon J, Armand M. Issues and Challenges Facing Rechargeable LithiumBatteries[J]. Nature,2001,414:359-367.
    16Xu B, Qian D, Wang Z, et al. Recent Progress in Cathode Materials Researchfor Advanced Lithium Ion Batteries[J]. Materials Science and Engineering: R:Reports,2012,73:51-65.
    17王殿龙,王博,王秋明,等.多层石墨烯/磷酸铁锂插层复合材料、其制备方法以及其为正极材料的锂离子电池[P].中国发明专利. CN201110271677.5.
    18Thackeray M, Wolverton C, Isaacs E. Electrical Energy Storage forTransportation-Approaching The Limits of, and Going Beyond, Lithium-IonBatteries[J]. Energy&Environmental Science,2012,5(7):7854-7863.
    19Liang Y, Tao Z, Chen J. Organic Electrode Materials for Rechargeable LithiumBatteries[J]. Advanced Energy Materials,2012,2:742-769.
    20Song Z, Zhou H. Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energy&EnvironmentalScience,2013,6:2280-2301.
    21Goriparti S, Harish, Sampath S. Ellagic Acid-A Novelorganic Electrode Ma-Terial for High Capacity Lithium Ion Batteries[J]. Chemistry Communication,2013,49:7234-7236.
    22Gong Z, Yang Y. Recent Advances in The Research of Polyanion-Type CathodeMaterials for Li-Ion Batteries[J]. Energy&Environmental Science,2011,4:3223-3242.
    23Li C, Wang Y. Importance of Binder Compositions to The Dispersion andElectrochemical Properties of Water-Based LiCoO2Cathodes[J]. Journal ofPower Sources,2013,227:204-210.
    24舒叶,刘锐,张胤,等.两步法制备镍掺杂磷酸铁锂/石墨烯复合材料[J].电池,2011,41(6):301-303.
    25Persson K, Sethuraman V, Hardwick L, et al. Lithium Diffusion in GraphiticCarbon[J]. The Journal of Physical Chemistry Letters,2010,1:1176-1180.
    26Kaskhedikar N A, Joachim M. Lithium Storage in Carbon Nanostructures[J].Advanced Materials,2009,21:2664-2680.
    27Liu J. Addressing The Grand Challenges in Energy Storage[J]. AdvancedFunctional Materials,2013,23:924-928.
    28Orsini F, Pasquier A du, Beaudouin B, et al. In Situ SEM Study of TheInterfaces in Plastic Lithium Cells[J]. Journal of Power Sources,1999,81:918-921.
    29Wu H, Cui Y. Designing Nanostructured Si Anodes for High Energy LithiumIon Batteries[J]. Nano Today,2012,7:414-429.
    30Hwang S, Lee J, Yoon W. Electrochemical Behavior of Carbon-Coated SiliconMonoxide Electrode with Chromium Coating in Rechargeable Lithium Cell[J].Journal of Power Sources,2013,244:620-624.
    31Song K, Yoo S, Kang K, et al. Hierarchical SiOx Nanoconifers for Li-IonBattery Anodes with Structural Stability and Kinetic Enhancement[J]. Journalof Power Sources,2013,229:229-233.
    32Hou J, Shao Y, Ellis M, et al. Graphene-based Electrochemical EnergyConversion and Storage: Fuel Cells, Supercapacitors and Lithium IonBatteries[J]. Physical Chemistry Chemical Physics,2011,13:15384-15402.
    33Liang M, Zhi L. Graphene-based Electrode Materials for Rechargeable LithiumBatteries[J]. Journal of Materials Chemistry,2009,19:5871-5878.
    34Sun Q, Zhang X Q, Han F, et al. Controlled Hydrothermal Synthesis of1DNanocarbons by Surfactant-Templated Assembly for Use as Anodes forRechargeable Lithium-Ion Batteries[J]. Journal of Materials Chemistry,2012,22:17049-17054.
    35Chen J, Xia X H, Tu J P, et al. Co3O4-C Core-Shell Nanowire Array as AnAdvanced Anode Material for Lithium Ion Batteries[J]. Journal of MaterialsChemistry,2012,22:15056-15061.
    36Ueda A, Nagao M, Inoue A, et al. Electrochemical Performance ofAll-Solid-State Lithium Batteries with Sn4P3Negative Electrode[J]. Journal ofPower Sources,2013,244:597-600.
    37Hwang H, Kim H, Cho J. MoS2Nanoplates Consisting of DisorderedGraphene-Like Layers for High Rate Lithium Battery Anode Materials[J].Nano Letters,2011,11:4826-4830.
    38Sun J, Liu H, Chen X, et al. Carbon Nanorings and Their Enhanced LithiumStorage Properties[J]. Advanced Materials,2013,25:1125-1130.
    39Wu Y, Wei Y, Wang J, et al. Conformal Fe3O4Sheath on Aligned CarbonNanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries[J].Nano Letters,2013,13:818-823.
    40Bindumadhavan K, Srivastava S K, Mahanty S. MoS2-MWCNT Hybrids as ASuperior Anode in Lithium-Ion Batteries[J]. Chemical Communications,2013,49:1823-1825.
    41Pan D, Wang S, Zhao B, et al. Li Storage Properties of Disordered GrapheneNanosheets[J]. Chemistry of Materials,2009,21:3136-3142.
    42Lian P, Zhu X, Liang S, et al. Large Reversible Capacity of High QualityGraphene Sheets as An Anode Material for Lithium-Ion Batteries[J].Electrochimica Acta,2010,55:3909-3914.
    43Vinayan B, Ramaprabhu S. Facile Synthesis of SnO2Nanopaticles DispersedNitrogen Doped Graphene Anode Material for Ultrahigh Capacity Lithium IonBattery Applications[J]. Journal of Materials Chemistry A,2013,1:3865-3871.
    44Wang B, Li X, Zhang X, et al. Adaptable Silicon-carbon NanocablesSandwiched between Reduced Graphene Oxide Sheets as Lithium Ion BatteryAnodes[J]. ACS Nano,2013,7:1437-1445.
    45Hu A, Chen X, Tang Y, et al. Self-assembly of Fe3O4Nanorods on Graphene forLithium Ion Batteries with High Rate Capacity and Cycle Stability[J].Electrochemistry Communications,2013,28:139-142.
    46Shen L, Uchaker E, Zhang X, et al. Hydrogenated Li4Ti5O12Nanowire Arraysfor High Rate Lithium Ion Batteries[J]. Advanced Materials,2012,24:6502-6506.
    47Armstrong A, Armstrong G, Canales J, et al. Lithium-ion Intercalation intoTiO2-B Nanowires[J]. Advanced Materials,2005,17:862-865.
    48Rai A, Anh L, Gim J, et al. Simple Synthesis and Particle Size Effects ofTiO2Nanoparticle Anodes for Rechargeable Lithium Ion Batteries[J].Electrochimica Acta,2013,90:112-118.
    49Wang J, Zhou Y, Xiong B, et al. Fast Lithium-Ion Insertion of TiO2Nanotubeand Graphene Composites[J]. Electrochimica Acta,2013,88:847-857.
    50Seng K, Park M, Guo Z, et al. Catalytic Role of Ge in Highly ReversibleGeO2/Ge/C Nanocomposite Anode Material for Lithium Batteries[J]. NanoLetters,2013,13:1230-1236.
    51Wu H, Chan G, Choi J, et al. Stable Cycling of Double-Walled SiliconNanotube Battery Anodes through Solid-Electrolyte Interphase Control[J].Nature Nanotechnology,2012,7:310-315.
    52Veluchamy A, Doh C, Kim D, et al. Improvement of Cycle Behaviour of SiO/CAnode Composite by Thermochemically Generated Li4SiO4Inert Phase forLithium Batteries[J]. Journal of Power Sources,2009,188:574-577.
    53Kim T, Park S, Seung M. Solid-state NMR and Electrochemical DilatometryStudy on Li+Uptake/Extraction Mechanism in SiO Electrode[J]. Journal of TheElectrochemical Society,2007,154: A1112-A1117.
    54Beaulieu L, Eberman K, Turner R, et al. Colossal Reversible Volume Changesin Lithium Alloys[J]. Electrochemical and Solid-State Letters,2001,4: A137-A140.
    55Yang J, Takeda Y, Imanishi N, et al. SiOx-based Anodes for Secondary LithiumBatteries[J]. Solid State Ionics,2002,152:125-129.
    56Kim J, Sohn H, Kim H, et al. Enhanced Cycle Performance of SiO-CComposite Anode for Lithium-Ion Batteries[J]. Journal of Power Sources,2007,170:456-459.
    57Chao Y, Yuan X, Ma Z. Preparation and Characterization Of Carbon Cryogel(CC) and CC-SiO Composite as Anode Material for Lithium-Ion Battery[J].Electrochimica Acta,2008,53:3468-3473.
    58Yuan X, Chao Y, Ma Z, et al. Preparation and Characterization of CarbonXerogel (CX) and CX-SiO Composite as Anode Material for Lithium-IonBattery[J]. Electrochemistry Communications,2007,9:2591-2595.
    59Doh C, Shin H, Kim D, et al. Improved Anode Performance of ThermallyTreated SiO/C Composite with An Organic Solution Mixture[J].Electrochemistry Communications,2008,10:233-237.
    60Doh C, Park C, Shin H, et al. A New SiO/C Anode Composition forLithium-Ion Battery[J]. Journal of Power Sources,2008,179:367-370.
    61Kim J, Park C, Kim H, et al. Electrochemical Behavior of SiO Anode for LiSecondary Batteries[J]. Journal of Electroanalytical Chemistry,2011,661:245-249.
    62Si Q, Hanai K, Ichikawa T, et al. Improvement of Cyclic Behavior of aBall-Milled SiO and Carbon Nanofiber Composite Anode for Lithium-IonBatteries[J]. Journal of Power Sources,2011,196:9774-9779.
    63Park C, Choi W, Hwa Y, et al. Characterizations and Electrochemical Behaviorsof Disproportionated SiO and Its Composite for Rechargeable Li-IonBatteries[J]. Journal of Materials Chemistry,2010,20:4854-4860.
    64Lu Z, Zhang L, Liu X. Microstructure and Electrochemical Performance ofSi-SiO2-C Composites as The Negative Material for Li-Ion Batteries[J]. Journalof Power Sources,2010,195:4304-4307.
    65Su L, Zhou Z, Ren M. Core Double-shell Si@SiO2@C Nanocomposites asAnode Materials for Li-Ion Batteries[J]. Chemical Communications,2010,46:2590-2592.
    66Hu Y, Cakan R, Titirici M, et al. Superior Storage Performance of ASi@SiOx@C Nanocomposite as Anode Material For Lithium-Ion Batteries[J].Angewandte Chemie,2008,47:1645-1649.
    67Hwa Y, Park C, Sohn H, et al. Modified SiO as A High Performance Anode forLi-Ion Batteries[J]. Journal of Power Sources,2013,222:129-134.
    68Morimoto H, Tatsumisago M, Minami T. Anode Properties of Amorphous50SiO●50SnO Powders Synthesized by Mechanical Milling[J]. Electrochemi-cal and Solid-State Letters,2001,4: A16-A18.
    69Wang J, Zhao H, He J, et al. Nano-sized SiOx@C Composite Anode for LithiumIon Batteries[J]. Journal of Power Sources,2011,196:4811-4815.
    70Lee D, Ryou M, Lee J, et al. Nitrogen-doped Carbon Coating for AHigh-Performance SiO Anode in Lithium-Ion Batteries[J]. ElectrochemistryCommunications,2013,34:98-101.
    71Yamada M, Ueda A, Matsumoto K, et al. Silicon-based Negative Electrode forHigh-Capacity Lithium-Ion Batteries:“SiO”-carbon Composite[J]. Journal ofThe Electrochemical Society,2011,158: A417-A421.
    72Zhang T, Gao J, Zhang H, et al. Preparation and Electrochemical Properties ofCore-Shell Si/SiO Nanocomposite as Anode Material for Lithium IonBatteries[J]. Electrochemistry Communications,2007,9:886-890.
    73Komaba S, Shimomura K, Yabuuchi N, Et Al. Study On Polymer Binders Forhigh-capacity SiO Negative Electrode of Li-Ion Batteries[J]. The Journal ofPhysical Chemistry C,2011,115:13487-13495.
    74Guerfi A, Charest P, Dontigny M, et al. SiOx-graphite as Negative for HighEnergy Li-Ion Batteries[J]. Journal of Power Sources,2011,196:5667-5673.
    75Seong I, Kim K, Yoon W. Electrochemical Behavior of A Lithium-Pre-DopedCarbon-Coated Silicon Monoxide Anode Cell[J]. Journal of Power Sources,2009,189:511-514.
    76Seong I, Yoon W. Electrochemical Behavior of A Silicon Monoxide andLi-Powder Double Layer Anode Cell[J]. Journal of Power Sources,2010,195:6143-6147.
    77Tabuchi T, Yasuda H, Yamachi M. Li-doping Process for LixSiO-negativeActive Material Synthesized by Chemical Method for Lithium-Ion Cells[J].Journal of Power Sources,2005,146:507-509.
    78Miyachi M, Yamamoto H, Kawai H. Electrochemical Properties and ChemicalStructures of Metal-Doped SiO Anodes for Li-Ion Rechargeable Batteries[J].Journal of The Electrochemical Society,2007,154: A376-A380.
    79Liu W, Yen Y, Wu H, et al. Nano-porous SiO/carbon Composite Anode forLithium-Ion Batteries[J]. Journal of Applied Electrochemistry,2009,39:1643-1649.
    80Jeong G, Kim J, Kim Y, et al. Multifunctional TiO2Coating for A SiO Anode inLi-Ion Batteries[J]. Journal of Materials Chemistry,2012,22:7999-8004.
    81Lee J, Park S. High-performance Porous Silicon Monoxide Anodes Synthesizedvia Metal-Assisted Chemical Etching[J]. Nano Energy,2013,2:146-152.
    82Miyachi M, Yamamoto H, Kawai H, et al. Analysis of SiO Anodes forLithium-Ion Batteries[J]. Journal of The Electrochemical Society,2005,152:A2089-A2091.
    83Nagao Y, Sakaguchi H, Honda H, et al. Structural Analysis of Pure andElectrochemically Lithiated SiO Using Neutron Elastic Scattering[J]. Journalof The Electrochemical Society,2004,151: A1572-A1575.
    84Hohl A, Wieder T, Aken P, et al. An Interface Clusters Mixture Model for TheStructure of Amorphous Silicon Monoxide (SiO)[J]. Journal of Non-CrystallineSolids,2003,320:255-280.
    85Yamada Y, Iriyama Y, Abe T, et al. Kinetics of Electrochemical Insertion andExtraction of Lithium Ion at SiO[J]. Journal of The Electrochemical Society,2010,157: A26-A30.
    86Yamada M, Inaba A, Ueda A, et al. Reaction Mechanism of “SiO”-carbonComposite-Negative Electrode for High-Capacity Lithium-Ion Batteries[J].Journal of The Electrochemical Society,2012,159: A1630-A1635.
    87Novoselov K, Geim A, Morozov S, et al. Electric Field Effect in AtomicallyThin Carbon Films[J]. Science,2004,306:666-669.
    88Geim A. Graphene: Status and Prospects[J]. Science,2009,324:1530-1534.
    89Castro N, Guinea F, Peres N, et al. The Electronic Properties of Graphene[J].Reviews of Modern Physics,2009,81:109-162.
    90Kim K, Zhao Y, Jang H, et al. Large-scale Pattern Growth of Graphene Filmsfor Stretchable Transparent Electrodes[J]. Nature,2009,457:706-710.
    91Sun Y, Wu Q, Shi G. Graphene Based New Energy Materials[J]. Energy&Environmental Science,2011,4:1113-1132.
    92Yoo E, Kim J, Hosono E, et al. Large Reversible Li Storage of GrapheneNanosheet Families for Use in Rechargeable Lithium Ion Batteries[J]. NanoLetters,2008,8(8):2277-2282.
    93Xiao X, Liu P, Wang J, et al. Vertically Aligned Graphene Electrode forLithium Ion Battery with High Rate Capability[J]. ElectrochemistryCommunica-tions,2011,13:209-212.
    94Bhardwaj T, Antic A, Pavan B, et al. Enhanced Electrochemical LithiumStorage by Graphene Nanoribbons[J]. Journal of the American ChemicalSociety,2010,132:12556-12558.
    95Wang C, Li D, Chee O, et al. Electrochemical Properties of Graphene PaperElectrodes Used in Lithium Batteries[J]. Chemistry of Materials,2009,21:2604-2606.
    96Wang Y, Shao Y, Matson D, et al. Nitrogen-doped Graphene and Its Applicationin Electrochemical Biosensing[J]. ACS Nano,2010,4:1790-1798.
    97Wu Z, Ren W, Xu L, et al. Doped Graphene Sheets as Anode Materials withSuperhigh Rate and Large Capacity for Lithium Ion Batteries[J]. ACS Nano,2011,5:5463-5471.
    98Lee J, Smith K, Hayner C, et al. Silicon Nanoparticles-graphene PaperComposites for Li Ion Battery Anodes[J]. Chemical Communications,2010,46:2025-2027.
    99Xiang H, Zhang K, Ji G, et al. Graphene/nanosized Silicon Composites forLithium Battery Anodes with Improved Cycling Stability[J]. Carbon,2011,49:1787-1796.
    100Chou S, Wang J, Choucair M, et al. Enhanced Reversible Lithium Storage in ANanosize Silicon/Graphene Composite[J]. Electrochemistry Communications,2010,12:303-306.
    101Wang X, Han W. Graphene Enhances Li Storage Capacity of Porous SingleCrystalline Silicon Nanowires[J]. ACS applied materials&interfaces,2011,2:3709-3713.
    102Nazri G A, Pistoia G. Lithium Batteries: Science and Technology[D]. Kluwer,Boston/Dordrecht/New York/London,2004:708-711.
    103Wang G, Wang B, Wang X, et al. Sn/graphene Nanocomposite with3DArchitecture for Enhanced Reversible Lithium Storage in Lithium IonBatteries[J]. Journal of Materials Chemistry,2009,19:8378-8384.
    104Yao J, Shen X, Wang B, et al. In Situ Chemical Synthesis of SnO2-grapheneNanocomposite as Anode Materials for Lithium-Ion Batteries[J]. Electrochem-istry Communications,2009,11:1849-1852.
    105Poizot P, Laruelle S, Grugeon S, et al. Nano-sized Transition-Metal Oxides asNegative-Electrode Materials for Lithium-Ion Batteries[J]. Nature,2000,407:496-499.
    106Wang H, Cui L, Yang Y, et al. Mn3O4-graphene Hybrid as A High-CapacityAnode Material for Lithium Ion Batteries[J]. Journal of the American ChemicalSociety,2010,132:13978-13980.
    107Zhou G, Wang D, Li F, et al. Graphene-wrapped Fe3O4Anode Material withImproved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J].Chemistry of Materials,2010,22:5306-5313.
    108Wu Z, Ren W, Wen L, et al. Graphene Anchored with Co3O4Nanoparticles asAnode of Lithium Ion Batteries with Enhanced Reversible Capacity and CyclicPerformance[J]. ACS Nano,2010,4:3187-3194.
    109Zou Y, Wang Y. NiO Nanosheets Grown on Graphene Nanosheets as SuperiorAnode Materials for Li-Ion Batteries[J]. Nanoscale,2011,3:2615-2620.
    110Zheng Y, Xie J, Liu S, et al. Self-assembly of Co-Sb-nanocrystal/grapheneHybrid Nanostructure with Improved Li-Storage Properties via A Facile in SituSolvothermal Route[J]. Journal of Power Sources,2012,202:276-283.
    111Xue D, Xin S, Yan Y, et al. Improving The Electrode Performance of Gethrough Ge@C Core-Shell Nanoparticles and Graphene Networks[J]. Journal ofthe American Chemical Society,2012,134:2512-2515.
    112Zhang C, Peng X, Guo Z, et al. Carbon-coated SnO2/graphene Nanosheets asHighly Reversible Anode Materials for Lithium Ion Batteries[J]. Carbon,2012,50:1897-1903.
    113Li B, Cao H, Shao J, et al. Enhanced Anode Performances of TheFe3O4-Carbon-rGO Three Dimensional Composite in Lithium Ion Batteries[J].Chemical Communications,2011,47:10374-10376.
    114Wang C, Wang D, Wang Q, et al. Fabrication and Lithium Storage Performanceof Three-Dimensional Porous NiO as Anode for Lithium-Ion Battery[J].Journal of Power Sources,2010,195:7432-7437.
    115Hummers, Richard E. Preparation of Graphitic Oxide[J]. Journal of theAmerican Chemical Society,1958,80:1339-1339.
    116Kuhn W, Friedman I, Summers W, et al. Powder Metallurgy[D]. ASM MetalsHandbook,1985:7-15.
    117Persson H, Forssberg E. Fine Grinding of A Magnetite Ore with A Stirred BallMill[J]. Aufbereitungs Technik,1994,35:307-319.
    118Das A, Pisana S, Chakraborty B, et al. Monitoring Dopants by RamanScattering in An Electrochemically Top-Gated Graphene Transistor[J]. NatureNanotechnology,2008,3:210-215.
    119Pumera M. Electrochemistry Of Graphene: New Horizons for Sensing andEnergy Storage[J]. The Chemical Record,2009,9:211-223.
    120Schniepp H, Li J, McAllister M, et al. Functionalized Single Graphene SheetsDerived from Splitting Graphite Oxide[J]. The Journal of Physical Chemistry B,2006,110:8535-8539.
    121Dang S, Robert S. Nanostructured Carbon and Carbon Nanocomposites forElectrochemical Energy Storage Applications[J]. Chemistry SustainabilityChemistry,2010,3:136-168.
    122Brodie B. Sur le Poids Atomique Du Graphite[J]. Annalen der Physik undChemie,1860,59:466-472.
    123Staudenmaier L. Verfahren Zur Darstellung Der Graphitsaure[J]. Berichte derdeutschen chemischen Gesellschaft,1898,31:1481-1487.
    124Wang H, Robinson J, Li X, et al. Solvothermal Reduction of ChemicallyExfoliated Graphene Sheets[J]. Journal of the American Chemical Society,2009,131:9910-9911.
    125Fan X, Peng W, Li Y, et al. Deoxygenation of Exfoliated Graphite Oxide underAlkaline Conditions: A Green Route to Graphene Preparation[J]. AdvancedMaterials,2008,20:4490-4493.
    126Guo H, Wang X, Qian Q, et al. A Green Approach to The Synthesis ofGraphene Nanosheets[J]. ACS Nano,2009,3:2653-2659.
    127Ramesha G, Sampath S. Electrochemical Reduction of Oriented GrapheneOxide Films: An in situ Raman Spectroelectrochemical Study[J]. Journal ofPhysical Chemistry C,2009,113:7985-7989.
    128Wang Z, Zhou X, Zhang J, et al. Direct Electrochemical Reduction ofSingle-Layer Graphene Oxide and Subsequent Functionalization with GlucoseOxidase[J]. Journal of Physical Chemistry C,2009,113:14071-14075.
    129Yao P, Chen P, Jiang L. Electric Current Induced Reduction of Graphene Oxideand Its Application as Gap Electrodes in Organic Photoswitching Devices[J].Advanced Materials,2010,22:5008-5012.
    130Gomez N, Weitz R, Bittner A. Electronic Transport Properties of IndividualChemically Reduced Graphene Oxide Sheets[J]. Nano Letters,2007,7:3499-3503.
    131Williams G, Seger B, Kamat P. TiO2-graphene Nanocomposites. UV-AssistedPhotocatalytic Reduction of Graphene Oxide[J]. ACS Nano,2008,2:1487-1491.
    132Matsumoto Y, Morita M, Kim S Y, et al. Photoreduction of Graphene OxideNanosheet by UV-Light Illumination under H2[J]. Chemistry Letters,2010,39:750-752.
    133Cote L, Cruz S, Huang J. Flash Reduction and Patterningof Graphite Oxide andIts Polymer Composite[J]. Journal of the American Chemical Society,2009,131:11027-11032.
    134Stankovich S, Dikin D, Piner R, et al. Synthesis of Graphene-Based Nanosheetsvia Chemical Reduction of Exfoliated Graphite Oxide. Carbon,2007,45:1558-1565.
    135Lomeda J, Doyle C, Kosynkin D, et al. Diazonium Functionalization ofSurfactant-Wrapped Chemically Converted Graphene Sheets[J]. Journal of theAmerican Chemical Society,2008,130:16201-16206.
    136Stankovich S, Dikin D, Dommett G, et al. Graphene-based CompositeMaterials[J]. Nature,2006,442:282-286.
    137Wang G, Yang J, Park J, et al. Facile Synthesis and Characterization ofGraphene Nanosheets[J]. Journal of Physical Chemistry C,2008,112:8192-8195.
    138Bourlinos A, Gournis D, Petridis D, et al. Graphite Oxide: ChemicalReduction to Graphite and Surface Modification with Primary AliphaticAmines and Amino Acids[J]. Langmuir,2003,19:6050-6055.
    139Mohanty N, Nagaraja A, Armesto J, et al. High-throughput, Ultrafast Synthesisof Solution-Dispersed Graphene via A Facile Hydride Chemistry[J]. Small,2010,6:226-231.
    140Shin H, Kim K, Benayad A, et al. Efficient Reduction of Graphite Oxide bySodium Borohydride and Its Effect on Electrical Conductance[J]. AdvancedFunctional Materials,2009,19:1987-1992.
    141Dreyer D, Murali S, Zhu Y, et al. Reduction of Graphite Oxide UsingAlcohols[J]. Journal of Materials Chemistry,2011,21:3443-3447.
    142Fan Z, Kai W, Yan J, et al. Facile Synthesis of Graphene Nanosheets Via FeReduction Of Exfoliated Graphite Oxide[J]. ACS Nano,2011,5:191-198.
    143Gao J, Liu F, Liu Y, et al. Environment-Friendly Method to Produce GrapheneThat Employs Vitamin C and Amino Acid[J]. Chemistry of Materials,2010,22:2213-2218.
    144Pham T, Kim J, Kim J, et al. One-step Reduction of Graphene OxideWithl-Glutathione[J]. Colloids and Surfaces A,2011,384:543-548.
    145Long D, Li W, Ling L, et al. Preparation of Nitrogen-Doped Graphene Sheetsby A Combined Chemical and Hydrothermal Reduction of Graphene Oxide[J].Langmuir,2010,26:16096-16102.
    146Wang G, Shen X, Yao J, et al. Graphene Nanosheets for Enhanced LithiumStorage in Lithium Ion Batteries[J]. Carbon,2009,47:2049-2053.
    147Reddy A, Srivastava A, Gowda S, et al. Synthesis of Nitrogen-Doped GrapheneFilms for Lithium Battery Application[J]. ACS Nano,2010,4:6337-6342.
    148Behabtu N, Lomeda J, Green M, et al. Spontaneous High-ConcentrationDispersions and Liquid Crystals of Graphene[J]. Nature Nanotechnology,2010,5:406-411.
    149Michael J, McAllister. Single Sheet Functionalized Graphene by Oxidation andThermal Expansion of Graphite[J]. Chemistry of Materials,2007,19:4396-4404.
    150Ferrari A, Robertson J. Interpretation of Raman Spectra of Disordered andAmorphous Carbon[J]. Physical Review B,2000,61:14095-107.
    151Wang B, Wanga Y, Park J, et al. In situ Synthesis of Co3O4/grapheneNanocomposite Material for Lithium-Ion Batteries and Supercapacitors withHigh Capacity and Supercapacitance[J]. Journal of Alloys and Compounds,2011,509:7778-7783.
    152Wu Z, Ren W, Gao L, et al. Synthesis of Graphene Sheets with High ElectricalConductivity and Good Thermal Stability by Hydrogen Arc DischargeExfoliation[J]. ACS Nano,2009,3:411-417.
    153Aurbach D. Review of Selected Electrode–Solution Interactions WhichDetermine The Performance of Li and Li Ion Batteries[J]. Journal of PowerSources,2000,89:206-218.
    154Yang S, Song H, Chen X. Electrochemical Performance of ExpandedMesocarbon Microbeads as Anode Material for Lithium-Ion Batteries[J].Electrochemistry Communications,2006,8:137-142.
    155Philipp H. Optical and Bonding Model for Non-Crystalline SiOx and SiOxNyMaterials[J]. Journal of Non-Crystalline Solids,1972,8-10:627-632.
    156Nagamori M, Boivin A, Claveau J, et al. Preparation of TransparentMethyl-Modified Silica Gel[J]. Journal of Non-Crystalline Solids,1995,189:212-17.
    157Friede B, Jansen M. Some Comments on So-Called‘Silicon Monoxide’[J].Journal of Non-Crystalline Solids,1996,204:202-203.
    158Nesheva D, Raptis C, Perakis A, et al. Raman Scattering andPhotoluminescence from Si Nanoparticles in Annealed SiOx Thin Films[J].Journal of Applied Physics,2002,92:4678-4683.
    159Wang N, Tang Y, Zhang Y, et al. Si Nanowires Grown from Silicon Oxide[J].Chemical Physics Letters,1999,299:237-242.
    160Obrovac M. Structural Changes in Silicon Anodes during Lithium Insertion/Extraction[J]. Electrochemical and Solid-State Letters,2004,7: A93-A96.
    161Ryu J, Kim J, Sung Y, et al. Failure Modes of Silicon Powder NegativeElectrode in Lithium Secondary Batteries[J]. Electrochemical and Solid-StateLetters,2004,7: A306-A309.
    162Filsinger D, Bourrie D. Silica to Silicon: Key Carbothermic Reactions andKinetics[J]. Journal of the American Ceramic Society,1990,73:1726-1732.
    163Li J, Dahn J. An in situ X-ray Diffraction Study of The Reaction of Li withCrystalline Si[J]. Journal of The Electrochemical Society,2007,154:A156-A161.
    164Hatchard T, Dahn J. In situ XRD and Electrochemical Study of The Reaction ofLithium with Amorphous Silicon[J]. Journal of The Electrochemical Society,2004,151: A838-A842.
    165耿巍.几种石墨烯复合材料性质与应用的第一性原理计算[D].兰州,兰州大学,2013:49-51.
    166Siegbahn P. The Performance of Hybrid DFT for Mechanisms InvolvingTransition Metal Complexes in Enzymes[J]. JBIC Journal of BiologicalInorganic Chemistry,2006,11:695-701.
    167Cramer C J, Truhlar D. Density Functional Theory for Transition Metals andTransition Metal Chemistry[J]. Physical Chemistry Chemical Physics,2009,11:10757-10816.
    168Wang X, Zhou X, Yao K, et al. A SnO2/graphene Composite as A High StabilityElectrode for Lithium Ion Batteries[J]. Carbon,2011,49:133-139.
    169Zhang M, Lei D, Du Z, et al. Fast Synthesis of SnO2/graphene Composites byReducing Graphene Oxide with Stannous Ions[J]. Journal of MaterialsChemistry,2011,21:1673-1676.
    170Yang S, Feng X, Ivanovici S, et al. Fabrication of Graphene-EncapsulatedOxide Nanoparticles: Towards High-Performance Anode Materials for LithiumStorage[J]. Angewandte Chemie International Edition,2010,49:8408-8411.
    171Nooney R, Thirunavukkarasu D, Chen Y, et al. Synthesis of NanoscaleMesoporous Silica Spheres with Controlled Particle Size[J]. Chemistry ofMaterials,2002,14:4721-4728.
    172Mawhinney D, Glass J, Yates J. FTIR Study of The Oxidation of PorousSilicon[J]. The Journal of Physical Chemistry B,1997,107:1202-1206.
    173Wang X, Wen Z, Liu Y, et al. Preparation and Characterization of A NewNanosized Silicon-Nickel-Graphite Composite as Anode Material for LithiumIon Batteries[J]. Journal of Power Sources,2009,189:121-126.
    174Yasaka Y, Uenaga S, Yasutake H, et al. Cleaning and Oxidation of HeavilyDoped Si Surfaces[J]. Materials Research Society Symposium Proceedings,1992,259:385.
    175Hollinger, Himpsel F. Probing The Transition Layer at The Sio2-Si InterfaceUsing Core Level Photoemission[J]. Applied Physics Letters,1984,44:93-95.
    176Su C, Bu X, Xu L, et al. A Novel LiFePO4/graphene/carbon Composite as APerformance-Improved Cathode Material for Lithium-Ion Batteries[J].Electrochimica Acta,2012,64:190-195.
    177Wang L, Wang H, Liu Z, et al. A Facile Method of Preparing Mixed ConductingLiFePO4/graphene Composites for Lithium-Ion Batteries[J]. Solid State Ionics,2010,181:1685-1689.
    178Zhou X, Wang F, Zhu Y, et al. Graphene Modified LiFePO4Cathode Materialsfor High Power Lithium Ion Batteries[J]. Journal of Materials Chemistry,2011,21:3353-3358.
    179Wang Y, Feng Z, Chen J, et al. Synthesis and Electrochemical Performance ofLiFePO4/graphene Composites by Solid-State Reaction[J]. Materials Letters,2012,71:54-56.
    180Guo C, Yang H, Sheng Z, et al. Layered Graphene/quantum Dots forPhotovoltaic Devices[J]. Angewandte Chemie International Edition,2010,49:3014-3017.
    181Nakajimaa T, Guptaa V, Ohzawaa Y, et al. Influence of Cointercalated HF onThe Electrochemical Behavior of Highly Fluorinated Graphite[J]. Journal ofPower Sources,2004,137:80-87.
    182Lian P, Zhu X, Xiang H, et al. Enhanced Cycling Performance ofFe3O4-graphene Nanocomposite as An Anode Material for Lithium-IonBatteries[J]. Electrochimica Acta,2010,56:834-840.
    183Wang X, Zhou X, Yao K, et al. A SnO2/graphene Composite as A High StabilityElectrode for Lithium Ion Batteries[J]. Carbon,2011,49:133-139.
    184Shao Y, Zhang S, Engelhard M, et al. Nitrogen-doped Graphene and ItsElectrochemical Applications[J]. Journal of Materials Chemistry,2010,20:7491-7496.
    185Leonid K, Sergei N, Olli K. Optics of Si/SiO2Super Lattices: Application toRaman Scattering and Photoluminescence Measurements[J]. Journal of AppliedPhysics,2000,87:7805-7813.
    186Z Sheng, L Shao, J Chen, et al. Catalyst-Free Synthesis of Nitrogen-DopedGraphene via Thermal Annealing Graphite Oxide with Melamine and ItsExcellent Electrocatalysis[J]. ACS Nano,2011,5:4350-4358.
    187Kudin K, Ozbas B, Schniepp H, et al. Raman Spectra of Graphite Oxide andFunctionalized Graphene Sheets[J]. Nano Letters,2008,8:36-41.
    188Guo B, Liu Q, Chen E, et al. Controllable N-doping of Graphene[J]. NanoLetters,2010,10:4975-4980.
    189Soin N, Roy S, Roy, S, et al. Enhanced and Stable Field Emission from In SituNitrogen-Doped Few-Layered Graphene Nanoflakes[J]. Journal of PhysicalChemistry C,2011,115:5366-5372.
    190Lin Y, Lin C, Chiu P, et al. Controllable Graphene N-Doping with AmmoniaPlasma[J]. Applied Physics Letters,2010,96:133110-133110-3.
    191Wu Z, Ren W, Gao L, et al. Synthesis of Graphene Sheets with High ElectricalConductivity and Good Thermal Stability by Hydrogen Arc DischargeExfoliation[J]. ACS Nano,2009,3:411-417.
    192Mohanty N, Nagaraja A, Armesto J, et al. High-Throughput, Ultrafast Synthesisof Solution-Dispersed Graphene via A Facile Hydride Chemistry[J]. Small,2010,6:226-231.
    193Reddy A, Srivastava A, Gowda S, et al. Synthesis of Nitrogen-doped GrapheneFilms for Lithium Battery Application[J]. ACS Nano,2010,4:6337-6342.
    194Chang K, Geng D, Li X, et al. Ultrathin MoS2/Nitrogen-doped GrapheneNanosheets with Highly Reversible Lithium Storage[J]. Advanced EnergyMaterials,2013,3:839-844.
    195Matter P, Zhang L, Ozkan U. The Role of Nanostructure inNitrogen-Containing Carbon Catalysts for The Oxygen Reduction Reaction[J].Journal of Catalysis,2006,239:83-96.
    196Kundu S, Nagaiah T, Xia W, et al. Electrocatalytic Activity and Stability ofNitrogen-Containing Carbon Nanotubes in The Oxygen Reduction Reaction[J].Journal of Physical Chemistry C,2009,113:14302-14310.
    197Arrigo R, H vecker M, Schl gl R, et al. Dynamic Surface Rearrangement andThermal Stability of Nitrogen Functional Groups on Carbon Nanotubes[J].Chemical Communications,2008:4891-4893.
    198Ronning C, Feldermann H, Merk R, et al. Carbon Nitride Deposited UsingEnergetic Species: A Review on XPS Studies. Physical Review B: CondensedMatter,1998,58:2207-2215.
    199Feng X, Yang J, Yu X, et al. Low-cost SiO-based Anode Using Green Bindersfor Lithium Ion Batteries[J]. Journal of Solid State Electrochemistry,2013,17:2461-2469.
    200Yu B, Hwa Y, Park C, et al. Reaction Mechanism and Enhancement ofCyclability of SiO anodes by Surface Etching with NaOH for Li-ionBatteries[J]. Journal of Materials Chemistry A,2013,1:4820-4825.
    201Li X, Geng D, Zhang Y, et al. Superior Cycle Stability of Nitrogen-DopedGraphene Nanosheets as Anodes for Lithium Ion Batteries[J]. ElectrochemistryCommunications,2011,13:822-825.
    202Guo P, Song H, Chen X, et al. Electrochemical Performance of GrapheneNanosheets as Anode Material for Lithium-Ion Batteries[J]. ElectrochemistryCommunications,2009,11:1320-1324.
    203Chung S, Bloking J, Chiang Y, et al. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes[J]. Nature Materials,2002,1:123-128.
    204Shi Y, Chou S, Wang J, et al. Graphene Wrapped LiFePO4/C Composites asCathode Materials for Li-Ion Batteries with Enhanced Rate Capability[J].Journal of Materials Chemistry,2012,22:16465-16470.
    205Chinarro E, Jurado J, Figueiredo F, et al. Bulk and Grain BoundaryConductivity of Ca0.97Ti1-xFexO3-Materials[J]. Solid State Ionics,2003,160:161-168.
    206Spencer T, Ramzy A, Goward G, et al. Structural Complexity and ElectricalProperties of The Garnet-Type Structure LaLi0.5Fe0.2O2.09Studied by7Liand139La Solid State NMR Spectroscopy and Impedance Apectroscopy[J].Chemistry of Materials,2011,23:3105-3113.
    207Kaskhedikar N, Maier J. Lithium Storage in Carbon Nanostructures[J].Advanced Materials,2009,21:2664-2680.
    208Ji L, Lin Z, Alcoutlabi Mataz. Recent Developments in Nanostructured AnodeMaterials for Rechargeable Lithium-Ion Batteries[J]. Energy&EnvironmentalScience,2011,4:2682-2699.
    209Lian P, Zhu X, Liang S. High Reversible Capacity of SnO2/grapheneNanocomposite as An Anode Material for Lithium-Ion Batteries[J].Electrochimica Acta,2011,56:4532-4539.
    210Qiu D, Ma L, Zheng M. MnO Nanoparticles Anchored on GrapheneNanosheets via In Situ Carbothermal Reduction as High-Performance AnodeMaterials for Lithium-Ion Batteries[J]. Materials Letters,2012,84:9-12.
    211Zhang B, Zheng Q, Huang Z. SnO2-graphene-carbon Nanotube Mixture forAnode Material with Improved Rate Capacities[J]. Carbon,2011,49:4524-4534.
    212Zhu X, Zhu Y, Murali S. Reduced Graphene Oxide/Tin Oxide Composite as AnEnhanced Anode Material for Lithium Ion Batteries Prepared by HomogenousCoprecipitation[J]. Journal of Power Sources,2011,196,6473-6477.
    213Xing L, Cui C, Ma C. Facile Synthesis of α-MnO2/graphene Nanocompositesand Their High Performance as Lithium-Ion Battery Anode[J]. MaterialsLetters,2011,65:2104-2106.
    214Wang G, Liu T, Xie X. Structure and Electrochemical Performance ofFe3O4/graphene Nanocomposite as Anode Material for Lithium-Ion Batteries[J].Materials Chemistry and Physics,2011,128:336-340.
    215Du Z, Yin X, Zhang M. In Situ Synthesis of SnO2/graphene Nanocomposite andTheir Application as Anode Material for Lithium Ion Battery[J]. MaterialsLetters,2010,64:2076-2079.
    216Paek S, Yoo E, and Honma I. Enhanced Cyclic Performance and LithiumStorage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J]. Nano Letters,2009,9:72-75.
    217Wang B, Wang Y, Park J. In Situ Synthesis of Co3O4/graphene nanocompositeMaterial For Lithium-Ion Batteries and Supercapacitors with High Capacityand Supercapacitance[J]. Journal of Alloys and Compounds,2011,509:7778-7783.
    218Wang X, Zhou X, Yao K. A SnO2/graphene Composite as A High StabilityElectrode for Lithium Ion Batteries[J]. Carbon,2011,49:133-139.
    219Kim H, Seo D, Kim S. Highly Reversible Co3O4/graphene Hybrid Anode forLithium Rechargeable Batteries[J]. Carbon,2011,49:326-332.
    220Yoon W, Paik J, LaCourt D. The Effect of Pressure on Phase Selection DuringNucleation in Undercooled Bismuth[J]. Journal of Applied Physics,1986,60:3489-3494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700