GNSS电离层掩星反演技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线电掩星技术起源于19世纪60年代中期,最早被美国斯坦福大学用于研究太阳系行星的大气层和电离层。随着1995年GPS/MET掩星探测计划的成功,该技术被广泛地应用于地球中性大气和电离层探测。GNSS电离层掩星反演技术具有全天候、全球覆盖、高垂直分辨率、准实时、自校准等其他电离层探测手段所不具备的特点,尤其能够弥补特殊区域(如:海洋、极地)电离层观测资料的不足,为电离层研究提供了更多的资料及更多的选择。利用该技术获得的全球性的电离层电子密度分布资料,将极大地推动空间环境监测、数据同化及空间天气效应等研究的发展,具有十分重要的科学意义。
     论文详细地介绍了GNSS无线电电离层掩星反演技术的研究现状及基本原理,围绕掩星反演方法、反演结果验证及应用等开展了一系列研究和讨论,主要内容和成果如下:(1)系统地介绍了GNSS电离层掩星反演方法,包括:Abel积分反演方法、“洋葱分层”反演方法以及最小二乘反演方法,着重对它们的反演结果进行了比较和分析。实验结果表明,对于轨道高度约800km的COSMIC电离层掩星数据,Abel积分反演方法与“洋葱分层”反演方法反演得到的电子密度廓线在F2层以下基本一致,但在500km以上的电离层上部,采用不同的反演方法会引起结果的差异;而最小二乘反演方法与“洋葱分层”反演方法得到的电子密度廓线基本一致。
     (2)对COSMIC掩星数据的时空分辨率进行了分析。结果表明,掩星电离层反演的垂直分辨率DF和水平分辨率ΔH分别为1.5km和300km,具有较高的垂直分辨率,但水平分辨率和时间分辨率较低,对于一些对时间分辨率要求较高的应用(如:地震-电离层异常探测),现阶段掩星数据还只能作为其他电离层观测手段的补充,不足以独立利用自身数据进行研究。
     (3)利用IRI模型和电离层垂测仪观测数据,对掩星结果进行了比较验证及统计分析。结果表明,利用COSMIC掩星数据反演得到的电离层垂直电子密度剖面与垂测仪结果在整体趋势和结构上符合的比较好;推求出的foF2与垂测仪和IRI模型的结果均具有较高的一致性,相关系数分别为0.9和0.88,但hmF2相较于垂测仪和IRI模型的结果存在较大偏差,相关系数分别只有0.339和0.42。
     (4)对于采用Abel积分反演方法反演电子密度的计算式中存在积分下奇点的问题,论文全面讨论了处理积分奇点的几种不同方法,并首次将“奇点分离法”用于对Abel积分反演中积分下奇点的处理,该方法与常用的Hφeg的“变换法”相比,更为简单直接、更易于编程实现,且反演得到的电子密度剖面与UCAR公布的电子密度产品符合的很好。
     (5)针对低轨卫星轨道高度以上的电子含量对反演结果造成的影响,论文采用"Calibrated TEC",即改正TEC方法来进行反演,利用非掩星时段观测数据修正掩星时段观测数据,以消除低轨卫星轨道高度以上的电离层对掩星观测的影响。结果显示,改正TEC算法消除了低轨卫星轨道高度以上电子含量的影响,对于轨道较低的低轨卫星而言是一种有效的电离层掩星反演方法。
     (6)对于CHAMP这类轨道高度较低的低轨卫星,论文提出利用变标高的Chapman函数对CHAMP卫星轨道高度以上部分的电离层电子密度垂直分布进行重建。结果显示,通过Chapman函数恢复出的电子密度剖面补充了CHAMP卫星轨道高度以上的电离层电子密度信息,包括了电离层的主要部分,且在F2层峰值高度至CHAMP卫星轨道高度这一区间与Abel积分反演结果吻合的很好。
     (7)分析了非球对称性对电离层掩星反演的影响,将已在模拟数据中取得良好修正效果的非球对称因子AF用于实测COSMIC掩星数据掩星反演结果的修正,结果表明,引入非球对称因子AF改善局部球对称假设后,电离层掩星反演结果有显著改善,但修正效果还需通过更多的实测数据来验证。
     (8)对E层负值的出现与掩星切点水平漂移的关系进行了统计分析,深入分析了E层产生负值的原因;对反演结果中E层出现的异常情况进行了归纳分类,并统计了四种异常情况所占比率随纬度的变化。在此基础上,利用非线性最小二乘方法以及非负最小二乘方法对E层负值进行修正,并首次提出利用Chapman函数对E层反演异常情况进行重建。结果显示,利用非线性最小二乘方法以及非负最小二乘方法对E层负值进行修正只是一种数学上的处理,不能给出物理解释;利用Chapman函数进行E层重建,能够得到具有物理意义的E层电子密度廓线,大大提高了掩星数据的可利用性。
     (9)利用COSMIC掩星数据对全球电离层变化、日全食-电离层效应、地震-电离层效应以及由太阳风暴引发的电离层暴等进行了详细的分析和讨论。结果表明,COSMIC掩星电离层反演能够观测到全球电离层的各种变化,并能够探测到各种现象引起的电离层效应,为全球电离层运行机制和电离层扰动的监测与解释提供了一种新的观测手段。
Originated in 1960's, radio occultation technique was first to be used to study atmosphere and ionosphere of the planetary in the solar system by Stanford University. Since success of the GPS/MET program in 1995, this technology has been widely used in the Earth's neutral atmosphere and ionospheric sounding. With advantages of all-weather, global coverage, high vertical resolution, near real-time, self-calibration, etc, GNSS ionospheric occultation inversion technique could make up for lack of ionospheric data in special areas (especially in Oceans and polar region), so as to provide more information and more choices in ionospheric studies. And the global distribution of ionospheric electron density data obtained by this technique if of extremely important scientific significance, which would greatly promote the development of space environment monitoring, data assimilation as well as space weather effects etc.
     This dissertation paper focuses on the GNSS ionospheric occultation inversion technique and its application. The main works and results can be summarized as follows:
     (1) Ionospheric occultation inversion methods are studied systematically. Comparison and analysis are made between different inversion results. Results show an agreement of the electron density profiles obtained by Abel inversion and the "onion peeling" inversion under the altitude of the F2 layer. However, at the upper ionosphere above 500km, deviation would be caused with different inversion methods. Because of the equivalence of Least squares inversion and "onion peeling" inversion method, electron density profiles obtained from these two methods are consistent.
     (2) Spatial and temporal resolution of the COSMIC occultation data is analyzed. Results show that there is a high vertical resolution of the occultation data, while the horizontal resolution and the temporal resolution are low. Therefore occultation data at the present stage can not do research independently but could only be used as a complement of other ionospheric observation techniques for applications with high temporal resolution demands (such as:Earthquake-ionosphere anomaly detection).
     (3) Inversion result from COSMIC ionospheric occultation data is compared with IRI model and ionosondes data. It shows that the trend and structure of electron density profiles of Ionospheric occultation are more consistent with ionosondes results, and the foF2 of Ionospheric occultation is consistent with both results of ionosonde and IRI model, with correlation coefficients as 0.9 and 0.88 respectively. However, there is deviation in the comparison of hmF2, with correlation coefficients as 0.339 and 0.42 respectively.
     (4) Several methods of dealing with integral singularity existed in Abel inversion are discussed comprehensively. "Singularity separation method" is used in handling of the integral singularity for the first time, which is more straightforward and easier programming while comparing with Hcpeg's method and the profiles are consistent with results published by UCAR.
     (5) Calibrated TEC method is used to eliminate the effect of upper TEC above the LEO satellite orbit altitude on inversion Result by using observation data from non-occultation period to correct for data from occultation period. Result shows that it is an effective method for low altitude LEOs, which could eliminate the effect of upper TEC above the LEO satellite orbit altitude.
     (6) Modified Chapman-layer function with varying scale height is used to reconstruct the vertical distribution of electron density above the CHAMP orbit altitude. Result shows that the reconstructed electron density profile by this method includes the main part of the ionosphere, and there is an agreement between the reconstructed result and the Abel inversion result from hmF2 to the CHAMP orbit altitude.
     (7) Effect of the asymmetry of electron density in the inversion of IRO is studied. Asymmetry factor is used for the correction of inversion result of the measured COSMIC occultation data. Study shows that there is significant improvement in inversion result when the asymmetry factor is applied. However, its effects need more actual measuring data to verify.
     (8) Statistical analysis is made of the relation between the appearance of negative results in E layer and the horizontal drift of the occultation tangent point. Reason of the appearance of negative results in E layer is studied, and variations of four exceptions in E layer with respect to latitude are generalized. On this basis, methods of nonlinear least squares and non-negative least squares are used for correction of the negative results, and the Chapman function is proposed for the first time to deal with the reconstruction of abnormal E layer inversion results. Result shows that the nonlinear least squares method and the non-negative least squares method cannot give physical interpretation, while reconstruction through Chapman function could obtain the electron density profiles in E layer, which greatly improved the availability of occultation data.
     (9) COSMIC ionospheric occultation data is applied to analyze ionospheric effects associated with total solar eclipse、earthquake and solar storm, as well as changes of the global ionosphere. Study shows that the changes of global ionosphere and ionospheric effects associated with various kinds of phenomena could be observed through COSMIC ionospheric occultation inversion, which provides a new observational approach for monitoring of ionospheric disturbances.
引文
[1]蔡军涛,陈小斌,赵国泽等.地震前兆:电离层F2层异常.地球物理学进展,2007,22(3):720-728
    [2]杜晓勇,符养,薛震刚,郭鄂宁,毛节泰.卫星轨道参数对LEO-LEO掩星事件数量及分布影响的模拟研究.地球物理学报.2007,50(5):1289-1297
    [3]杜晓勇,王景青,薛震刚,张训械GNSS掩星电离层观测的模拟试验.解放军理工大学学报(自然科学版).2002,3(1):71-74
    [4]郭鹏,蔡风景,洪振杰,严豪健,刘敏.非圆轨道GPS/LEO掩星反演地球大气参数的算法及讨论.天文学报.2004,45(2):204-211
    [5]郭鹏,严豪健,洪振杰,刘敏,黄珹GPS/LEO掩星技术中Abel积分变换的奇点问题.天文学报.2004,45(3):330-336
    [6]郭鹏,严豪健,黄珹,洪振杰.上海天文台CHAMP掩星资料处理结果的统计分析.天文学报.2006,47(2):192-200
    [7]郭鹏,洪振杰,严豪健,黄珹.上海天文台GPS/LEO掩星掩星反演地球大气模拟软件(SHAOOS)介绍.中国科学院上海天文台年刊.2003年,第24期:150-156
    [8]郭鹏,徐会作.GPS无线电掩星数据处理系统.中国科学院上海天文台年刊.2006年,第27期:118-127
    [9]郭鹏.无线电掩星技术与CHAMP掩星资料反演.2006.中国科学院研究生院博士学位论文
    [10]宫晓艳,胡雄,吴小成,王鑫,肖存英,徐丽.GPS测量误差对大气掩星反演精度影响分析.地球物理学进展,2008,23(6):1764-1781
    [11]何友文,孙宏林,苗卫苏.磁赤道异常区的日食电离层效应.电波科学学报,2004年10月,Vol.19:184-189
    [12]洪振杰,郭鹏,刘敏,黄城.GPS掩星折射率剖面一维变分同化.天文学报.2006,47(1):100-109
    [13]胡雄,张训械,吴小成,肖存英,曾桢,宫晓艳.山基GPS掩星观测实验及其反演原理.地球物理学报.2006,49(1):22-27
    [14]黄城,郭鹏,洪振杰等GAIM电离层同化方法进展.天文学进展.2007,25(3):236-248
    [15]李黄.我国的天基GPS/MET掩星技术(上)——全球定位系统气象参数探测(GPS/MET)技术(之十).中国气象报.2006年6月13日,第3版:1-2
    [16]李黄.我国的天基GPS/MET掩星技术(下)——全球定位系统气象参数探测(GPS/MET)技术(之十一).中国气象报.2006年6月15日,第3版:1-2
    [17]刘经南,赵莹,张小红GNSS无线电掩星电离层反演技术现状与展望.武汉大学学报(信息科学版),2010年6月:631-635
    [18]刘赵林,孙学金,符养.电离层的掩星分离假设反演法.2009.天文学进展.27(3):270-279
    [19]林行,高山红,黄容.大气数据同化方法的研究与应用进展.2004.山东气象.2004年第4期:16-18
    [20]林剑,吴云,刘经南.电离层GPS掩星反演技术研究,地球物理学报.2009,52(8):1947-1953.
    [21]刘基余,李征航,王跃虎,桑吉章.全球定位系统原理及其应用[M].北京:测绘出版社, 1993.
    [22]刘立波,万卫星,涂剑南,保宗悌,叶公节.一次日食电离层效应模拟研究.地球物理学报,1999,42(3):163-170
    [23]刘立波,万卫星.1995年10月24日日食电离层效应的模式化研究.空间科学学报,1999年7月,Vol.19:200-205
    [24]雷久侯.中纬电离层的统计分析与模式化研究.中国科学院研究生院博士学位论文,2005
    [25]马寨璞,井爱琴.海洋科学中的数据同化方法.2005.海岸工程.24(4):83-99.
    [26]梅冰,万卫星.基于Millstone Hill非相干散射雷达观测的电离层电子浓度剖面的经验正交函数分析.地球物理学报.2008,51(1):10-16
    [27]裴益轩,郭民.滑动平均法的基本原理及应用.火炮发射与控制学报,2001年第一期:21-23
    [28]屈建光,郝艳玲.上边界定选取对GPS掩星反演结果影响的分析.测绘通报.2008年,第3期:12-14
    [29]孙学金,赵世军,余鹏.GPS掩星切点水平漂移规律的数值研究.应用气象学报.2004,15(2):174-179
    [30]邵华,朱丹平,吴毅雄.Abel逆变换的数值算法.上海交通大学学报,2005,39(8):1375-1388
    [31]苏元智,黄信榆.武昌电离层E-F谷区白天变化形态.地球物理学报.1987,30(6):555-559
    [32]高等数学(第六版),同济大学应用数学系主编,高等教育出版社,2007
    [33]吴雄斌,徐继生,马淑英,田茂.一次日食电离层效应的CT初步研究.地球物理学报,2002年,第45卷,增刊:16-23
    [34]吴刚宏,福卫三号电子浓度资料分析:电离层E层.中国台湾.国立中央大学硕士学位论文,2008
    [35]吴小成,胡雄,张训械等.电离层GPS掩星观测改正TEC反演方法.地球物理学报.2006,49(2):328-334.
    [36]吴小成.电离层无线电掩星技术研究.中国科学院研究生院博士学位论文,2008
    [37]吴小成,胡雄,宫晓艳等.三维模式约束的电离层掩星反演方法.地球物理学报,2008,51(3):618-625
    [38]吴小成,胡雄,张训诫,Jens Wickert电离层GPS掩星观测改正TEC反演方法.地球物理学报.2006,49(2):328-334
    [39]王也英,符养,杜晓勇,薛震刚.全球GNSS掩星计划进展.气象科技,2009,37(1):74-78
    [40]王泽民,安家春,孙伟,赵莹.利用掩星和地基GPS研究日食电离层效应.武汉大学学报(信息科学版),2011年1月,36(1):1-5
    [41]萧佐.50年来的中国电离层物理研究.1999,28(11):661-667
    [42]熊年禄.电离层物理概论.武汉大学出版社.1999
    [43]徐晓华,李征航,罗佳.GPS掩星数据反演中的地球扁率影响改正.武汉大学学报·信息科学版.2005,30(6):502-505
    [44]徐晓华,李征航,罗佳.LEO星座参数对GPS掩星数量和时空分布影响的模拟研究.测绘学报.2005,34(4):305-311
    [45]徐晓华,李征航,罗佳.单颗LEO卫星轨道参数对GPS掩星事件分布和数量影响的模拟研究.武汉大学学报·信息科学版.2005,30(7):609-612
    [46]徐文耀.地磁活动指数的过去、现在和未来.地球物理学进展,2009,24(3):830-841
    [47]严豪健,郭鹏,洪振杰,刘敏GPS/LEO掩星技术中超折射效应的修正.天文学报.2004,45(4):437-444
    [48]严豪健,郭鹏,张贵霞,黄珹.上海天文台GPS掩星技术研究现状.中国科学院上海天文台年刊.2003年,第24期:39-47
    [49]严豪健,符养,洪振杰等.天基GPS气象学与反演技术.北京.中国科学技术出版社,2007
    [50]袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究.中国科学院研究生院博士学位论文,2002
    [51]杨剑,吴云,周义炎.利用GPS无线电掩星数据研究震前电离层异常.大地测量与地球动力学.2008,28(1):16-22
    [52]张大海,郭鹏,张贵霞,严豪健,黄珹.GPS掩星技术低轨卫星计划的现状及进展.2002,20(2):114-121
    [53]张贵霞,严豪健,郭鹏,刘敏.GPS掩星振幅反演中的天顶补偿项.中国科学院上海天文台年刊.2004年,第25期:33-40
    [54]曾桢,胡雄,张训械,万卫星.电离层GPS掩星观测反演技术,地球物理学报.2004,47(4):578-583.
    [55]邹玉华.GPS地面台网和掩星观测结合的时变三维电离层层析.2004.武汉大学博士学位论文
    [56]张训械,胡雄,曾桢.欧洲ACE+掩星观测.全球定位系统.2002年,6月:16-20
    [57]张训械,曾桢,胡雄.电离层水平不均匀性对无线电掩星资料反演的影响,地球物理学报2002,45, suppl.:24-29
    [58]张训械,张冬娅,胡雄,曾桢.星载掩星观测GPS接收机.全球定位系统.2004年1月:10-14
    [59]张训械,胡雄,吕级三.地球无线电掩星观测及其在航天技术中的应用.导弹与航天运载技术.2004年,第5期:1-8
    [60]章红平,平劲松,朱文耀,黄珹.电离层延迟改正模型综述.2006.天文学进展.24(1):16-26
    [61]周义炎,吴云,乔学军,张训诫.GPS掩星技术和电离层反演.2005,25(2):29-35
    [62]朱正平,宁百齐,万卫星,赵必强,王敏.2006年4月13-17日西太平洋地区电离层暴时特性研究.地球物理学报,2007,50(4):957-968
    [63]赵莹,张小红.COSMIC掩星观测数据反演电离层电子密度廓线.武汉大学学报(信息科学版),2010年6月:644-648
    [64]Antonio Rius, Giulio Ruffini, and August Romeo. Analysis of Ionospheric Electron Density
    [65]Afraimovich E.L., Palamartchouk K.S., Perevalova N.P., Chernukhov V.V., Lukhnev A.V., Zalutsky V.T.,1998. Ionospheric effects of the solar eclipse of March 9,1997, as deduced from GPS data. Geophysical Research Letters 25 (4),465-468.
    [66]Amalia Meza, Claudio Brunini and Alfred Kleusberg. Global ionospheric models in three dimensions from GPS measurements:Numerical simulation. Geofisica internacional,2000, 39(1):22-27
    [67]Ashraf Mousa and T.Tsuda. Inversion algorithms for GPS downward looking occultation data: simulation analysis. Journal of the meteorological society of Japan.2004,82:427-432
    [68]Bracewell, R., The Fourier Transform and its applications. McGraw-Hill Higher Education, 2000.
    [69]C.Arras,W.-K.Lee,J.Wickert,S.Heise,G.Beyerle,T.Schmidt,M.Rothacher,N.Jakowski. Ionospheric electron density profiles obtained with CHAMP/GPS occultation measurements-initial results from GFZ. Geophysical Research Abstracts.Vol.l0,EGU2008-A-02521,2008
    [70]C.Mayer, N. Jakowski. Enhanced E-layer ionization in the auroral zones observed by radio occultation measurements onboard CHAMP and Formosat-3/COSMIC. Ann. Geophys.,2009, 27:1207-1212
    [71]Cohen, E.A.,1984. The study of the effect of solar eclipses on the ionosphere based on satellite beacon observations. Radio Science 19,769-777.
    [72]D.Narayana Rao, M.Venkat Ratnam, B.V.Krishna Murthy, V.V.M.Jagannadha Rao, Sanjay Kumar Mehta, Debashis Nath, and S.Ghouse Basha. Identification of tropopause using bending angle profile from GPS radio occultation(RO):A radio tropopause. Geophysical research letters. VOL.34,L15809,doi:10.1029/2007GL029709,2007
    [73]Derek D.Feng and Benjamin M.Herman. Remotely Sensing the Earth's Atmosphere Using the Global Positioning System(GPS)—The GPS/MET Data Analysis. Journal of atmospheric and oceanic technology.1999.
    [74]Distribution from GPS/MET Occultations. IEEE transactions on geoscience and remote sensing.1998,36(2):383-394
    [75]Dong L.Wu,Chi O.Ao,George A.Hajj,Manuel de la Torre Juarez,and Anthony J.Mannucci. Sporadic E morphology from GPS-CHAMP radio occultation. Journal of geophysical research. VOL.110,A01306,doi:10.1029/2004 JA010701,2005
    [76]E. L. Afraimovich, E. A. Kosogorov, and O. S. Lesyuta. Ionospheric effects of the August 11,1999 total solar eclipse as deduced from European GPS network data. Adv. Space Res. Vol. 27, Nos 6-7, pp.1351-1354,2001
    [77]Fjeldbo.G., A. J. Kliore, and V. R. Eshleman, The neutral atmosphere of Venus as studied with theMariner V radio occultation experiments, Astron. J.,76,123-140,1971.
    [78]Fatemeh Ghafoori. Correcting the Negative Values of the Retrieved Ionospheric Electron Density Profiles Using the NNLS Algorithm.22nd International Meeting of the Satellite Division of The Institute of Navigation, Savannah, GA, September 22-25,2009
    [79]Fjeldbo.G, A. J. Kliore, and V. R. Eshleman, The neutral atmosphere of Venus as studied with theMariner V radio occultation experiments, Astron. J.,76,123-140,1971.
    [80]Fox M.W.,A simple,convenient formalism for electron density profiles,Radio Sci.,1994, 29(6),1473-1491,.
    [81]Feng Ding, Weixing Wan, Baiqi Ning, Libo Liu, et al. GPS TEC response to the 22 July 2009 total solar eclipse in East Asia. Journal of Geophysical Research,2010, vol.115
    [82]GA.Hajj, E.R.Kursinski, L.J.Romans, W.I.Bertiger, S.S.Leroy. A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics.64(2002)451-469
    [83]GBeyerle, T.Schmidt, GMichalak, S.Heise, J.Wickert, and C.Reigber. GPS radio occultation with GRACE:Atmospheric profiling utilizing the zero difference technique. Geophysical Research Letters. Vol.32,L13806,doi:10.1029/2005GL023109,2005
    [84]George A. Hajj, Lou C. Lee, Xiaoqing Pi, Larry J. Romans et al. COSMIC GPS Ionospheric Sensing and Space Weather. TAO,2000,11(1):235-272
    [85]George Hajj and Larry Remans. Ionospheric Electron Density Profiles Obtained With the Global Positioning System:Results From the GPMMET Experiment. Jet Propulsion Laboratory,California Institute of Technology
    [86]Hajj.G.A., Ibanez-Meier, R., Kursinski, E.R., Romans, L.J.,1994. Imaging the ionosphere with the global positioning system. International Journal of Imaging Systems and Technology 5,174-184.
    [87]Hajj.G.A., E.R.Kursinski, L.J.Romans, W.I.Bertiger, S.S.Leroy, A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics,2001, vol.64:451-469
    [88]Hajj.G. and Romans.L.,1998. Ionospheric electron density profiles obtained with the Global Positioning System:Result from the GPS/MET experiment. Radio Science 33(1):175-190.
    [89]Hoeg P, Larson GB, Benzon H et al,1998. GPS atmosphere profiling methods and error assessments, scientific report 98-7, Danish Meteorological Institute, Copenhagen.
    [90]Hocke.K.. Inversion of GPS meteorology data. Ann. Geophys.,1997,15:443-450
    [91]Huijun Le, Libo Liu, Feng Ding, Zhipeng Ren, et al. Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse. Journal of Geophysical Research,2010, vol.115:1-7
    [92]H. Le, L. Liu, X. Yue, and W. Wan. The ionospheric responses to the 11 August 1999 solar eclipse:observations and modeling. Ann. Geophys.,26,107-116,2008
    [93]J.Wickert,G.Beyerle,R,Konig,S.Heise,L.Grunwaldt,G.Michalak,Ch.Reigber,and T.Schmidt. GPS radio occultation with CHAMP and GRACE:A first look at a new and promising satellite configuration for global atmospheric sounding. Annales Geophysicae.23,653-658, 2005
    [94]Jens.Wickert,Christoph..Reigber,Georg.Beyerlel,Rolf.Konig,Christian.Marquardt,Torsten.Sc hmidt,LudwigGrunwaldt,RomanGalas1,ThomasK.Meehan,William.G.Melbourne,Klemens Hocke. Atmosphere sounding by GPS radio occultation:First results from CHAMP. Geophysical Research Letters,2001
    [95]Jiuhou Lei, Stig Syndergaard, Alan G. Burns, et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions:Preliminary results, Journal of Geophysical research,112, A07308
    [96]J.Wickert. GPS radio occultation with CHAMP:First comparision of occultation data analysis result from GFZ, JPL and UCAR. Geophysical Research Abstracts. Vol.5,03096,2003
    [97]J.Y.Liu, H.F.Tsai, L.-C. Tsai, M.Q.Chen, Ionospheric total electron content observed during the 24 Octorber 1995 solar eclipse. Adv. Space Res. Vol.24, No.11, pp.1495-1498,1999
    [98]Kaiti Wang, Sunny W. Y. Tam. Analysis of ionospheric electron parameters versus geomagnetic index Dst from RO data of FORMOSAT-3/COSMIC. GPS Solut (2010) 14: 99-108
    [99]K.C.Yeh, D.C.Yu, K.H.Lin, C.G.Liu, et al. Ionospheric response to a solar eclipse in the equatorial anomaly region. TAO,Vol.8, No.2,165-178, June 1997
    [100]K.Tsybulya and N.Jakowski. Medium-and small-scale ionospheric irregularities detected by GPS radio occultation method. Geophysical Research Letters. VOL.32,L09103,2005
    [101]K. Hocke and K. Igarashi. Structure of the Earth's lower ionosphere observed by GPS/MET radio occultation. Journal of geophysical research,2002,107(45):1-10
    [102]Kusrinski.E.R., G.A.Hajj, K.R.Hardy, L.J.Romans and J.T.Sehofield. Obsevring tropospheric water vapor by radio occultation using the Global Positioning System. GeoPhys.Res.Lett.,1995,22:2365 - 2368
    [103]Kursinski.E.R., GA.Hajj, S.S.Leroy, and B.Hemrna. The GPS radio occultation technique. Terrestrial, Atmospheric and Oceanic Sciences(TAO),2000,11(1):53-114
    [104]Kursinski.E.R. "The GPS rdaio occultation concept:theoretical performance and initial results", Ph.D. thesis, CIT.Pasadena. California.1997
    [105]Lawson and Hanson, "Solving Least Squares Problems", Prentice-Hall, Chapter 23,1974
    [106]L.Liu, W.Wan and B.Ning. A study of the ionogram derived effective scale height around the ionospheric hmF2. Ann. Geophys,2006,24:851-860
    [107]M Hern'andez-Pajares, J. M. Juan and J. Sanz. Improving the Abel inversion by adding ground GPS data to LEO radio occultations in ionospheric sounding. Geophysical Research Letters,2000,27(16):2473-2476
    [108]M. J. Angling. First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM). Ann. Geophys.,26,353-359,2008
    [109]M. Q. Chenl, C. M. Huangl, Y. H. Chul, A. D. Richmond2, and W. S. Schreiner. An Application of GPS/MET Radio Occultation Data in the Ionosphere:A TIEGCM Investigation on Nighttime F-Region Equatorial Ion Drift. Institute of Space Science, National Central University, Chung-Li, Taiwan, R.O.C.2 High Altitude Observatory, National Center for Atmospheric Research, USA..3 University Corporation for Atmospheric Research, USA..
    [110]Mark A.Ringer and Sean B.Healy. Monitoring twenty-first century climate using GPS radio occultation bending angles. Geophysical Research Letters. VOL.35,2008
    [111]Michael E.Gorbunov,Luis Kornblueh. Principles of variational assimilation of GNSS radio occultation data. Max-Planck-Institut fur Meteorologie. December 2003
    [112]Miquel Garcia-Fernandez. Contributions to the 3D ionospheric sounding with GPS data. Research group of Astronomy and Geomatics(gAGE) Depts.of Applied Mathematics IV and Applied Physics Universitat Polit'ecnica de Catalunya(UPC),Spain. January 22,2004
    [113]M.C.Kelly, V.K.Wong, Nestor Aponte, Clayton Coker. A.J.Mannucci and A.Komjathy. Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio science,2009,44:1-13
    [114]Norbert Jakowski, Reinhart Leitinger, Matthew Angling,2004. Radio occultation techniques for probing the ionosphere, Annals of Geophysics,47 (suppl. to no.2/3): 1049-1066
    [115]N.Jakowski, A.Wehrenpfennig, S.Heise, Ch.Reigber, H.Lu'hr, L.Grunwaldt, and T.K.Meehan. GPS radio occultation measurements of the ionosphere from CHAMP:Early results. Geophysical Research Letters. VOL.29,NO.10,1457,10.1029/2001 GL014364,2002
    [116]N. Jakowski, K. Tsybulya, S. Heise, Y.Beniguel. Ionospheric irregularities detected by radio occultation measurements onboard CHAMP
    [117]N. Jakowski and K. Tsybulya. Comparison of ionospheric radio occultation CHAMP data with IRI 2001. Advances in Radio Science (2004) 2:275-279
    [118]N. Jakowski, A. Wehrenpfennig, S. Heise, Ch. Reigber, H. Luhr. GPS radio occultation measurements of the ionosphere from CHAMP:Early results. Geophysical Research Letters, 2002,29(10)
    [119]N. Jakowski, A. Wehrenpfennig, S. Heise, Ch. Reigber, H. Luhr. Status of Ionospheric Radio Occultation CHAMP Data Analysis and Validation of Higher Level Data Products
    [120]N. Jakowski, S.M. Stankova, V. Wilkena, C. Borries, et al. Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 836-853
    [121]O.Lesne, J.Haasea, G.Kirchengast, J.Ramsauer, W.Poetzi. Sensitivity analysis for airborne sounding of the troposphere by GNSS radio occultation. Physics and Chemistry of the Earth.27(2002)291-299
    [122]Oliver Montenbruck and Eberhard Gill. Ionospheric correction for GPS tracking of LEO satellite. The journal of navigation.2002,55:293-3-4
    [123]P.R.Straus and P.C.Anderson. GPS occultation sensor observations of ionospheric scintillation. Geophysical Research Letters. VOL.30,NO.8,2003
    [124]P.R.Straus. Ionospheric climatology derived from GPS occultation observations made by the ionospheric occultation experiment. Advances in Space Research.39(2007)793-802
    [125]P. Poli. A fast forward model for simulating GPS radio occultation bending angles and refractivity in a two dimensional plane:Implementation and simulations. NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Code 910.3,Joint Center for Earth Systems Technology, Greenbelt, MD 20771, USA
    [126]Paul A. Bernhardt, Carl L. Siefring, Ivan J. Galysh and Douglas E. Koch. A new technique for absolute total electron content determination using the CITRIS instrument on STPSatl and the CERTO beacon on COSMIC. Radio science.2010,45:1-7
    [127]Rashid Z A A. GPS ionospheric TEC measurement during the 23rd November 2003 total solar eclipse at Scott Base Antarctica.2006
    [128]Rocken, C., R. Ware, T. Van Hove, F. Solheim, C. Alber, J. Johnson, M. Bevis, and S. Businger. "Sensing Atmospheric Water Vapor with the Global Positioning System." Geophys. Res. Lett., Vol.20, No.23,14 December 1993, pp.2631-2634
    [129]S.M.Stankov, N.Jakowski, S.Heise. Reconstruction of ion and electron density profiles from space-based measurements of the upper electron content. Planetary and Space Science.53(2005)945-957
    [130]S.S.Leroy, J.GAnderson and J.A.Dykema. Testing climate models using GPS radio occultation:A sensitivity analysis. Journal of geophysical research. VOL.111, D17105, doi:10.1029/2005 JD006145,2006
    [131]Schreiner, W., Sokolovskiy, S., Rocken, C. and Hunt, D.,1999. Anagysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Science 34(4):949-966
    [132]Stig Syndergaard. On the ionosphere calibration in GPS radio occultation. Radio Science, Volume 35, Number 3, Pages 865-883, May-June 2000
    [133]S.Heise, N.Jakowski, A.Wehrenpfennig, Ch.Rrigber, and H.Luhr. Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP:Initial results. G eophysical research letters,2002,29(14):1-4
    [134]Stanimir M. Stankov, Norbert Jaowski, and Stefan Heise. A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmasphere. Journal of geophysical research,2003,108:1-21
    [135]S.B.Healy. Smoothing radio occultation bending angles above 40 km. Annales geophysicae. 2001,19:459-468
    [136]T.L.Beach,C.S.Lin,and M.J.Starks. Automated Data Retrieval for Ionospheric GPS Occultation Measurements. COSMIC Workshop.22-24 Oct 2007
    [137]T.Schmidt,J.Wickert,G.Beyerle,and C.Reigber. Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. Journal of geophysical research. VOL.109,D13105,doi:10.1029/2004JD004566,2004
    [138]Thomas M.Schroder,Chi O.Ao and Manuel de la Torre Juarez. Sensitivity of GPS occultation to the stratopause height. Journal of geophysical research. VOL.112,D06119, doi:10.1029/2006JD007330,2007
    [139]Wu X C, Hu X, Zhang X X, et al. A calibrated TEC method for inversion of ionospheric GPS occultation data. Chinese J. Geophys. (in Chinese),2006,49 (2):328-334.
    [140]Walker, GO., Li, T.Y.Y, Wong, Y.W., Kikuchi, T., Huang, Y.H.,1991. Ionospheric and geomagnetic effects of the solar eclipseof 18 March 1988 in East Asia. Journal of Atmospheric and Terrestrial Physics 53(1/2),25-37.
    [141]Ware.R.H., M.L. Exner, B.M. Herman, Y-H Kuo, T.K. Meehan, C. Rocken. "GPS/MET Preliminary Report, July 1995." On the web.
    [142]Ware.R., M.Exner, D.Feng, M.Gorbunov, K.Hardy, B.Herman, Y.Kuo, T.K.Meehan, W.G.Melbourne, C.Rocken, W.Schreiner, S.Sokolovskiy, F.Solheim, A.Zou, R.Anthes, S.Businger and K.Trenberth, GPS sounding of the atmosphere from low earth orbit: preliminary results, Bull.Am.Met.Soc.,77,19,1996
    [143]X.Zou,H.Liu, R.A.Anthes, H.Shao, J.C.Chang, Y.-J.Zhu. Impact of CHAMP Radio Occultation Observations on Global Analysis and Forecasts in the Absence of AMSU Radiance Data. Journal of the Meteorological Society of Japan. Vol.82,No.1B,pp.533-549, 2004
    [144]Xiaocheng Wu, Xiong Hu, Xiaoyan Gong, Xunxie Zhang and Xin Wang. An asymmetry correction method for ionospheric radio occultation. Journal of geophysical research.2009, vol114:1-8
    [145]Y.-H.Kuo, T.-K.Wee, S.Sokolovskiy, C.Rocken, W.Schreiner, D.Hunt and R.A. Anthes. Inversion and Error Estimation of GPS Radio Occultation Data. Journal of the Meteorological Society of Japan. Vol.82,No.lB,pp.507--531,2004
    [146]YuiChi Yasutomo, Katsuyuki Miyata, Shun-Ichi Himeno, Takeaki Enoto. A New Numerical Method for Asymmetrical Abel Inversion, IEEE Transactions on plasma science,1981, vol. PS-9,No.l:18-21
    [147]Yuhua Zou, Zihui Wang. Sounding of Sporadic E layers by the GPS-COSMIC Radio Occultation Experiment.2010 2nd Conference on Environmental Science and Information Application Technology:203-206
    [148]Zainol Abidin Abdul Rashida, Mohammad Awad Momani, Sumazly Sulaimana, et al. GPS ionospheric TEC measurement during the 23rd November 2003 total solar eclipse at Scott Base Antarctica. Journal of Atmospheric and Solar-Terrestrial Physics 68 (2006) 1219-1236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700