基于频域SBR无线信道的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会不断的进步和发展,使得人们对无线移动通信的质量要求也就越来越高。由于无线信道作为无线移动通信的最基本的媒介,因此,对无线信道的研究分析是非常有意义有必要的。室内环境是一个非常重要的应用环境,在室内无线电波不受气候因素影响,但是室内本身的环境却是非常复杂,要受到室内的墙壁、玻璃、家具、行人等一系列障碍物的影响,信号到达接收点时需要经过直射、反射、绕射等多种传播机制,这些都引起了许多研究学者对无线信道的研究产生了浓厚的兴趣。弹跳射线法(SBR, Shooting-and-Bouncing Ray)是一种被广泛应用在实际环境电磁分析里的高频算法,具有所需计算机内存少以及计算速度快的优点。它适用于对无线信道的特性参数进行深入的研究,能够快速有效的提供比较好的预测结果。本文运用弹跳射线法计算出部分区域的频率响应,并根据频率响应分析了无线信道的相关特性。
     本文的主要内容以及所作的贡献如下:
     (1)通过对国内外相关文献的阅读,掌握了无线信道、无线电波的传播、物理光学法以及几何光学法的基本理论,并对无线信道的一些特性进行了阐述。
     (2)对弹跳射线法进行了深入的研究,并给出散射问题的算例结果,通过与商业软件的结果比较以及与文献的结果比较,验证了基于弹跳射线法程序的正确性。
     (3)利用Fortran语言对弹跳射线法算法程序进行修改。从频域的角度对无线信道进行研究,运用基于该算法的程序计算出具有较复杂结构的特定无线信道的频域响应,并根据频域响应对无线信道的频率相关路径损耗、频域相关系数、相干带宽以及rms(均方根)时延与相干带宽的关系进行了深入的研究。
With the development of society, people’s demand of the quality of wireless communications have become increasingly. As the wireless channel is the wireless communication medium, so the study of the wireless channel is necessary. Indoor environment is a very important application environments, for radio waves in indoor can escape from climate factor, but the indoor environment is very complex and subject to interior walls, furniture, pedestrian and a series of obstructions, the signal has to Transmit through direct, reflection, diffraction, etc. to reach the receiving point, which are causing more and more interest in the study researchers .SBR is a widely used high-frequency algorithm with the benefit of high accuracy and fast calculation. It applies to research the characteristics of indoor radio channel, can provide higher accuracy predictions. In this paper, SBR gives the frequency response of the interior region, and analysis the characteristics of the wireless channel based on the frequency response.
     The paper's main content and contributions are as follows:
     (1) through the reading of relevant literature, mastered the wireless channel, radio wave propagation, the physical optics method and the basic theory of geometrical optics method, and some of the radio channel characteristics are described.
     (2) through the in-depth study of the SBR, give numerical results with the results of business software comparison chart and the numerical results with the results of the literature comparison chart to verify the correctness of the algorithm .
     (3) Use Fortran to modify the SBR algorithm. From the frequency domain angle of the indoor channel’s study, give the radio channel frequency response by high-frequency algorithm, and in-depth study about frequency-dependent path loss, frequency-domain correlation coefficient, coherence bandwidth, and the relationship of rms delay and coherence bandwidth based on frequency response of the wireless channel.
引文
[1]徐春秀,武穆清等译.无线与移动通信系统.人民邮电出版社,2005.10
    [2]罗仁泽编.新一代无线移动通信系统关键技术.北京邮电大学出版社,2007.7
    [3] I. E. Telatar. Capacity of Multi-Antenna Gaussian Channels[J]. Technical report, AT&T Bell Laboratories Internal Technical Memorandum, June 1995
    [4]李建东,郭梯云,邬国扬编.移动通信(第四版).西安电子科技大学出版社,2006.7
    [5] G. J. Foschini, M. J. Gans. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998(6), 311-335
    [6] Moe Z. Win,Robert A.Scholtz. Characterization of Ultra-Wide Bandwidth Wireless Indoor Channels: A Communication-Theoretic View[J]. IEEE Journal on Selected areas in Communications, Vol. 20, No. 9, 2002, pp: 1603-1627.
    [7] Ted C.-K. Liu, Dong In Kim and Rodney G. Vaughan. A high-resolution,multi-template deconvolution algorithm for time-domain UWB channel characterization[J]. Can. J. Elect. Comput. Eng., Vol. 32, No. 4, 2007, pp: 207-213.
    [8] Robert J.C.,Bultitude. A Study of Coherence Bandwidth Measurements for Frequency Selective Radio Channels[C]. IEEE Vehicular Technology Conference, 1983, pp: 269-278.
    [9] Camillo Gentile and Alfred Kik, A Frequency-Dependence Model for the Ultra wide band Channel Based on Propagation Events[J]. IEEE Transactions on Antennas and Propagation, Vol. 56,No. 8, 2008, pp: 2775-2780.
    [10] M.Mrse, Z.Blazevie, I. Zanchi, I. Marinovie. Wideband Propagation Channel Parameters Measurement Inside an University Building[C]. IEEE International Conference on Software in Telecommunications and Computer Networks, 2006.
    [11] D. Gesbert, M. Shafi, D. S. Shiu, and P J. Smith etc. From Theory to Practice:An Overview of MIMO Space-Time Coded Wireless Systems. IEEE Journal on selected. areas in communications, 2003.21(3):281~301.
    [12] V. Tarokh, N. Seshadri and A. R. Calderbank. Space-time codes for high data rate wireless communications: performance criterion and code construction. IEEE Trans. on I. T., 1998, 44(2): 744~765.
    [13] W. C. Jakes. Microwave mobile communications. Piscateway: IEEE Press, 1999
    [14] W. Lee. Mobile communications enginering. New York: McGrow-Hill, 1982
    [15] V. Tarokh, N. Seshadri, A. R. Calderbank. Space-time codes for high data rate wirelesscommunication: performance citerion and code constrution[J]. IEEE Trans. on I. T., 1998, 44(2): 744-765
    [16]李旭,艾渤,钟章队编.移动通信原理与系统.科学出版社,2011.5
    [17] A.F Molisch. A generic model for MIMO propagation channels in macro- and microcells. IEEE Trans. Signal Processing, Jan.2004; 52(1):61~71.
    [18]谢益溪编.无线电波传播——原理与运用.人民邮电出版社,2008.7
    [19] Hampicke D, Landmann M, Schneider C, et al..MIMO capacities for different antenna array structures based on double directional wideband channel measurements, Proceedings of VTC 2002,1: pp.180-184.
    [20]谢处方,饶克谨.电磁场与电磁波[M].第二版.高等教育出版社, 1998
    [21]袁谨.基于PO/IPO技术快速分析电大复杂目标散射特性.南京理工大学硕士论文,2006.7.
    [22] Testu Shijo, Luis Rodriguez, Makoto Ando. The Modified Surface-Normal Vectors in the Physical Optics. IEEE transaction on antennas and propagation . Vol.56.No.12. December,2008
    [23] R.A.Shore,A.D.Yaghjian.Shadow Boundary Incremental Length Diffraction Coefficients Applied to Scattering from 3-D Bodies.IEEE Trans.Antennas Propagat.2001,40(2):200-210
    [24] Shung-Wu Lee, Paul Cramer.Jr, Kenneth Woo, Yahya Rahmat-Samii. Diffraction by an Arbitrary Subreflector: GTD Solution[J]. IEEE Trans. Antennas Propagat, 1979,27(3):305-316
    [25]安连生编.应用光学(第三版).北京理工大学出版社,2002.3
    [26]吴建,严高师编.光学原理教程.国防工业出版社,2007.1
    [27] Gordon W B.Far-Field Approximations to the Kirchhoff-Helmholtz Representation of Scattered fields. IEEE Trans. On Antennas Propagat. 1975(5):590-592
    [28]袁苏民.基于PO技术快速分析电大复杂载体天线辐射特性.东南大学硕士学位论文.2006.3.
    [29] T. Shijo, T. Itoh, and M. Ando, Visualization of high frequency diffraction based on physical optics, IEICE Trans. Electron., vol.E87-C, no. 9, pp. 1607–1614, Sep. 2004.
    [30] Claudio Gennarelli, Luigi Palumbo. A Uniform Asymptotic Expansion of a Typical Diffraction Integral with many Coalescing Simple Pole Singularities and a First-Order Saddle Point[J]. IEEE Trans. Antennas Propagat, 1984, 32(10):1122-1124
    [31] S.W.Lee,Ray-tube integration in shooting and bouncing ray method,Microwave Optical Tech.Letter,1988,1(8):286-289.
    [32] W.B. Gordon. Far-Field Approximations to the Kirchhoff Helmholtz Representations of Scattered Fields [J]. IEEE Trans. Antennas Propag, 1975, 23:864–876
    [33] D. Klement, J. Preissner, and V. Stein. Special problems in applying the physicaloptics method for backscatter computations of complicated objects [J]. IEEE Trans. Antennas Propagat., 1988, 36(2):228-237
    [34] Hao Ling, Ri-Chee Chou, Shuang-Wu Lee. Shooting and Bouncing Rays: Calculation the RCS of an Arbitrarily Shaped Cavity. IEEE Trans. Antennas Propagation vol. 37, no. 2,February 1989.
    [35] Joel T. Johnson. A Numerical Study of Scattering from an Object Above a Rough Surface. IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, October 2002.
    [36] Olav Breinbjerg. Higher Order Equivalent Edge Currents for Fringe Wave Radar Scattering by Perfectly Conducting Polygonal Plates[J]. IEEE Trans. Antennas Propagat.,1992, 40(12):1543-1554
    [37] Hermann Buddendick, Thomas F. Eibert, Acceleration of Ray-Based Radar Cross Section Predictions Using Monostatic-Bistatic Equivalence. IEEE Trans. Antennas Propag.2009
    [38] C. C. Lu. Indoor Radio-wave Propagation Modeling by Multilevel Fast Multipole Algorithm[J]. Microwave and Optical Technology Letters, Vol.29, No.3, 2001, pp: 168-175.
    [39] Reinaldo A.Valenzuela, Steven Fortune. Indoor Propagation Prediction Acuracy and Speed Versus Number of Reflection in Image-Based 3D Ray-Tracing. IEEE V.T.C.,1998, pp.539~543.
    [40]黄海燕,王秉中.UWB室内无线信道建模方法研究进展.电子科技大学应用物理研究所,成都610054.
    [41] Jarmo Kivinen, Xiongwen Zhao, Pertti Vainikainen. Empirical Characterization of Wideband Indoor Radio Channel at 5.3 GHz[J]. IEEE Transactions on Antennas and Propagation, Vol. 49, No. 8, 2001, pp: 1192-1203.
    [42] Robert J.C.,Bultitude. A Study of Coherence Bandwidth Measurements for Frequency Selective Radio Channels[C]. IEEE Vehicular Technology Conference, 1983, pp: 269-278.
    [43] Concettina Buccella, Mauro Feliziani and Giuliano Manzi. Detection and Localization of Defects in Shielded Cables by Time-Domain Measurements with UWB Pulse Injection and Clean Algorithm Postprocessing, IEEE Transactions on Electromagnetic Compatibility[J], Vol. 46, No. 4, 2004, pp: 597-605.
    [44]齐辉.井下电磁波宽带传输特性及调制解调方案的研究.中国矿业大学硕士论文,2008.5.
    [45]袁正午,赵瑞静,朱志慧.室内射线追踪定位技术.重庆邮电大学,GIS研究所,重庆400065.
    [46]张申.帐篷定律与隧道无线数字通信信道建模.中国矿业大学,2002.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700