钴、钒化合物纳米材料的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钴、钒化合物纳米材料具有独特的结构与性能,被广泛的应用在电化学、磁记录材料、光学、催化、电池、传感等领域,从而成为化学、材料、物理等科学研究与探索的重要方向之一。本文在国内外大量文献调研的基础上,采用一步水热合成方法成功制备出不同形貌与组成的钴、钒化合物纳米材料,并探讨了它们的结构与性能。
     主要研究内容包括:
     1.选用亚硒酸钠以及五水合硝酸钴作为前驱物,水合肼作为还原剂,在水热条件下,通过调节反应物配比、反应时间、反应温度控制合成了多种形貌的Co(0.85)Se纳米晶体。通过水热法一步合成了银耳状的非整数比硒化钴,这种结构Co(0.85)Se纳米晶体的比表面积为55.1m2/g。磁性测试结果表明,在室温下这种银耳状的Co(0.85)Se具有顺磁性。将Co(0.85)Se用于催化分解N2H4H2O,实验证明,在最佳的反应条件合成的Co(0.85)Se对N2H4H2O的分解具有优良的催化活性和重复使用性。这对拓宽硒化钴的应用范围具有重要的意义。
     2.在前期研究工作的基础上,将银耳状Co(0.85)Se纳米晶体与硼氢化钠结合,应用于吸附亚甲基蓝的体系中。在硼氢化钠的作用下,Co(0.85)Se对亚甲基蓝的吸附性能得到了很大的提高。但是,当吸附脱附平衡达到一定时间后,亚甲基蓝会自发从Co(0.85)Se表面解析出来溶解到溶液中。这为染料的回收以及吸附剂的重复利用提供了良好的基础。通过测定吸附过程中溶液的pH以及吸附剂Co(0.85)Se表面的zeta电位,我们推测了可能的吸附机理。同时通过调节硼氢化钠的用量,探讨了硼氢化钠在改变Co(0.85)Se吸附亚甲基蓝性能中所起的作用,并进一步验证推测的吸附机理。
     3.结合离子液体与五氧化二钒的结构特点,运用水热反应方法,制备了宽度在200-300纳米,长度为几十微米的有机无机复合物V2O5/bmimBr纳米带。通过XRD、X射线光电子能谱(XPS)、元素分析(EA)、电感耦合离子体发射光谱(ICP)等测试手段,探讨了V2O5/bmimBr纳米复合物的组成与结构,以及离子液体与五氧化二钒的作用机制。通过调节离子液体的使用量,研究了离子液体在形成V2O5/bmimBr纳米带过程中的功能。实验证明,离子液插入到V205片层之间后使得产物的导电性得到了很大的提高。
Cobalt and vanadium compound nanomaterials show unique structure and special properties, which can be widely used in electrochemistry, magnetic recording materials, optics, catalysts, cell, sense and other fields, and become an important topic in the fields of chemistry, material sciences and physics. In this dissertation, cobalt, vanadium compound nanomaterials with different crystalline structures, composition and morphologies have been synthesized by hydrothermal synthesis process and their properties have been investigated.
     The main research contents of this dissertation are as follows:
     Firstly, we chose Co(NO3)26H2O, Na2SeO3as precursors, and N2H4H2O as a reducing agent. Co(0.85)Se with various shapes was synthesized under in the different hydrothermal conditions, including ratio between reactants, reaction temperature and reaction time. The tremelliform Co(0.85)Se nanosheets were obtained via one-step hydrothermal synthesis method in the typical synthesis condition. The tremelliform Coo.85Se nonosheets have a high specific surface area. And magnetism test results show that the tremelliform Co(0.85)Se possesses paramagnetic property at room temperature. Experiments have shown that the Co(0.85)Se nanosheets synthesized under the optimal reaction condition have excellent catalytic activity and reusability in the process of decomposition of N2H4· H2O. The Co(0.85)Se nonosheets were applied to catalyze decomposition of N2H4· H2O as catalyst. This was especially significant in widening the application ranges of cobalt selenide nanomaterials.
     Secondly, on the basis of previous studies, the tremelliform Co(0.85)Se nonosheets is applied to the adsorption-desorption equilibrium of methylene blue trihydrate in the presence of sodium borohydride. The results display that the Co(0.85)Se nonosheets have efficient catalysis for the decomposition of sodium borohydride. The adsorption capability of the Co(0.85)Se nonosheets for methylene blue trihydrate has been improved obviously due to the decomposition of sodium borohydride. And, after arriving at absorption and desorption balance time, the absorbed methylene blue trihydrate could be released from the surface of Co(0.85)Se nonosheets while sodium borohydride decreased. Thus, the dye and adsorbent can be easily reused and recycled. Zeta potential and the pH of the nanosheets in the equilibrium process has been tested to infer the adsorption mechanism. We explained the function of sodium borohydride by adjusting its amount
     Thirdly, based on the structural characteristics of both vanadium pentoxide and ionic liquid structure, organic-inorganic hybrid V2O5/bmimBr nanobelts with thicknesses of30-50nm and width of200-300nm have been synthesized via a hydrothermal reaction. The composition and structure of the V2O5/bmimBr nanocomposites have been characterized by elemental analysis and inductively coupled plasma (ICP), X-ray photo-electron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). And the function of ionic liquid in the formation of V2Os/bmimBr has been investigated via adjusting the dosage of ionic liquid in the hydrothermal reaction system. Experiments have shown that the conductivity of the products has got very great improvement after inserting the ionic liquid into the vanadium pentoxide.
引文
1 S.J. Ahn, K. Kim, A. Cho, et al. CuInSe2 (CIS) Thin Films Prepared from Amorphous Cu-In-Se Nanoparticle Precursors for Solar Cell Application [J], Applied Materials & Interfaces,2012,4 (3):1530-1536.
    2 Y.H. Lee, L.L. Yu, H. Wang, et al. Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces[J], Nano Letters,2013,13(4):1852-1857.
    3 C. Liang, K. Terabe, T. Hasegawa, et al. Template synthesis of M/M2S (M= Ag, Cu) hetero-nanowires by electrochemical technique[J], Solid State Ionics,2006,177(26-32): 2527-2531.
    4 N. Barreau and J.C. Bernede. MoS2 textured films grown on glass substrates through sodium sulfide based compounds[J], Journal of Physics D:Applied Physics,2002, 35(11):1197-1204.
    5 L.S. Li, R.G Cao, Z. J. Wang, et al. Template Synthesis of Hierarchical Bi2E3 (E= S, Se, Te) Core-Shell Microspheres and Their Electrochemical and Photoresponsive Properties [J], The Journal of Physical Chemistry C,2009,113 (42):18075-18081.
    6 H. Bottner, J. Nurnus, A. Gavrikov, et al. New thermoelectric components using microsystem technologies[J], Microelectromechanical Systems,2004,13(3):414-420.
    7 J.S. Meth, S.G. Zane, K.G Sharp, et al. Patterned thin film transistors incorporating chemical bath deposited cadmium sulfide as the active layer[J], Thin Solid Films,2003, 444(1-2):227-234.
    8 R. Dominko, M. Gaberscek, D. Arcon, et al. Electrochemical preparation and characterisation of LizMoS2-x nanotubes[J], Electrochim. Acta,2003,48 (20-22): 3079-3084.
    9 M. Nath, C.N.R. Rao, Nanotubes of the disulfides of groups 4 and 5 metals[J], Pure and Applied Chemistry,2002,74 (9):1545-1552.
    10 M. Chhowalla and G. Amaratunga. Thin films of fullerene-like MoS2 nanoparticles with ultra-low riction and wear[J], Nature,2000,407:164-167.
    11 W. Xingcai, T. Yourong, H. Yeming, et al. Tantalum disulfide nanobelts:preparation, superconductivity and field emission[J], Nanotechnology,2006,17 (1):201-205.
    12 C.W. Dunnill, H.K. Edwards, P.D. Brown, et al. Single-Step Synthesis and Surface-Assisted Growth of Superconducting TaS2Nanowires[J], Angewandte Chemie International Edition,2006,45(42):7060-7063.
    13 V.Ya. Pokrovskii, S.G. Zybtsev, V.B. Loginov, et al. Deformations of charge-density wave crystals under electric field[J], Physica B:Condensed Matter,2009,404(3-4): 437-443.
    14 A.P. Orlov, Y.I. Latyshev, A.M. Smolovich, et al. Interaction of Both Charge Density Waves in NbSe3 from Interlayer Tunneling Experiments[J], Letters to Jounal of Experimental and Theoretical Physics,2006,84(2):89-92.
    15 T. Toshima and S. Tanda. Synthesizing nanocrystals of metal di-chalcogenide charge density wave system[J], Physica C:Superconductivity,2005,426-431(1):426-430.
    16 Y.S. Hor, Z.L. Xiao, U. Welp, et al. Nanowires and Nanoribbons of Charge-Density-Wave Conductor NbSe3[J], Nano Letters,2005,5(2):397-401.
    17 E. Slot, M.A. Holst, H.S.J. Zant, et al. One-dimensional conduction in charge-density-wave nanowires[J], Physical Review Letters,2004,93(17): 176602-176606.
    18 CJ.Warren, D.M. Ho, A.B. Bocarsly, et al. Electrochemical synthesis of a new gold-tellurium polyanion by the cathodic dissolution of a gold telluride (AuTe2) electrode:structure of telluroaurate (Au3Te43-)[J], Journal of the American Chemical Society,1993,115:6416-6417.
    19 C.W. Park, M.A. Pell, J.A. Ibers. Electrochemical Synthesis of [NEt4]2[enH]2[Ge2Se6] and [Net4]4[Sn4Se10], Inorganic Chemistry,1996,35 (16):4555-4558.
    20 M. Takahashi, Y. Katou, K. Nagata, et al. The composition and conductivity of electrodeposited BiTe alloy films[J], Thin Solid Films,1994,240(1-2):70-72.
    21 Y. Miyazaki, T. Kajitani. Preparation of Bi2Te3 films by electrodeposition[J], Journal of Crystal Growth,2001,229(1-4):542-546.
    22 D. Banga, N. Jarayaju, L. Sheridan, et al. Electrodeposition of CuInSe2 (CIS) via Electrochemical Atomic Layer Deposition (E-ALD)[J], Langmuir,2012,28(5): 3024-3031.
    23 D.E. Bugaris, E.S. Choi, R. Copping, et al. Tl3Cu4USe6 and Tl2Ag2USe4:Syntheses, Characterization, and Structural Comparis onto Other Layered Actinide Chalcogenide Compounds[J], Inorganic Chemistry,2011,50(14):6656-6666.
    24 D.P. Shoemaker, D.Yo. Chung, J. F. Mitchell, et al. Understanding Fluxes as Media for Directed Synthesis:In Situ Local Structure of Molten Potassium Porysulfides[J], Journal of the American Chemical Society,2012,134(22):9456-9463.
    25 X. Cao, Q. Lu, X. Xu, et al. Single-crystal snowflake of Cu7S4:Low temperature, large scale synthesis and growth mechanism[J], Materials Letters,2008,62(17-18): 2567-2570.
    26 X. Wang, F. Wan, Y. Gao, et al. Synthesis of high-quality Ni2P hollow sphere via a template-free surfactant-assisted solvothermal route[J], Journal of Crystal Growth 2008, 310(10):2569-2574.
    27 W. Du, X. Qian, X. Niu, et al. Symmetrical Six-horn Nickel Diselenide Nanostars Growth from Oriented Attachment Mechanism[J], Crystal Growth & Design,2007, 7(12):2733-2737.
    28 J.S. Jirkovsky, A. Bjo' rling and E. Ahlberg. Reduction of Oxygen on Dispersed Nanocrystalline CoS2[J], The Journal of Physical Chemistry C,2012,116(46):24436-24444.
    29 C. Li, H. Li, L. Han, et al. Ionothermal/hydrothermal synthesis of the ternary metal chalcogenide ZnIn2S4[J], Materials Letters,2011,65(15-16):2537-2540.
    30 X. Jiang, W. Xu, R. Q. Tan, et al. Solvothermal synthesis of highly crystallized quaternary chalcogenide Cu2FeSnS4particles [J], Materials Letters,2013, on line.
    31 R.A. Wibowo, W.H. Jung, K.H. Kim, et al. Synthesis of Cu2ZnSnSe4 compound powders by solid state reaction using elemental powders [J], Journal of Physics and Chemistry of Solids,2010,71 (12):1702-1706.
    32 W.T. Chen, H.M. Kuang, H.L. Chen, et al. Solid-state syntheses, crystal structures and properties of two novel metal sulfur chlorides-ZneSsCl2 and Hg3ZnS2Cl4[J], Journal of Solid State Chemistry,2010,183(10):2411-2415.
    33 F. Hergert, R. Hock, Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4(X=S, Se) starting from binary chalcogenides[J], Thin Solid Films,2007,515(15):5953-5956.
    34 B. Vaidhyanathan, M. Ganguli, K.J. Rao, et al. Fast solid state synthesis of metal vanadates and chalcogenides using microwave irradiation[J], Materials Research Bulletin,1995,30 (9):1173-1177.
    35 S. Bhunia, D.N. Bose, Microwave synthesis, single crystal growth and characterization of ZnTe [J], Journal of Crystal Growth,1998,186(4):535-542.
    36 A. Kadhim, A. Hmood, H. Abu Hassan, et al. Novel hexagonal rods and characterization of using solid-state microwave synthesis[J], Materials Letters,2012, 81:31-33.
    37 Y.M. Wang, J.J. Wu, Y.F. Tang, et al. Phase-Controlled Synthesis of Cobalt Sulfides for Lithium Ion Batteries[J], Applied Materials Interfaces,2012,4(8):4246-4250.
    38 X.Y. Chen, Z. J. Zhang, Z. G Qiu, et al. Hydrothermal fabrication and characteri zation of polycrys talline linneite (Co3S4) nanotubes based on the Kirkendall effect [J], Journal of Colloid and Interface Science,2007,308(1):271-275.
    39 Y.D. Yin, C.K. Erdonmez, A. Cabot, et al. Colloidal synthesis of hollow cobalt sulfide nanocrystals[J], Advanced Functional Materials,2006,16(11):1389-1399.
    40 M. Lei, X.L. Fu, Y.B. Zhang, et al. Synthesis of CoS nanoplates and their ferromagnetic properties [J], Materials Letters,2012,71:11-14.
    41 J.H. Liu, Y. Xing, X.C Liu, et al. Hydrothermal synthesis and magnetic properties of nanoplate-assembled hierarchical structured Coi-xS microrods[J], Materials Characterization,2012,67:112-118.
    42 S.J. Bao,Y.B. Li, CM. Li, et al. Shape Evolution and Magnetic Properties of Cobalt Sulfide[J], Crystal Growth & Design,2008,8(10):3745-3749.
    43 C.E.M. Campos, J.C. de Lima, T.A. Grandi, et al. Hexagonal CoSe formation in mechanical alloyed Co7sSe25 mixture[J], Solid State Communications,2004,131(3-4): 265-270.
    44 W.X. Zhang, Z.H. Yang, J.W. Liu, et al. A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2[J], Materials Research Bulletin,2000,35 (14-15):2403-2408.
    45 M.Y.C. Teo, S.A. Kulinich, O.A. Plaksin, et al. Photoinduced Structural Conversions of Transition Metal Chalcogenide Materials [J], The Journal of Physical Chemistry A, 2010,114(12):4173-4180.
    46 W. Maneeprakora, M.A. Malik and P.O. Brien, The preparation of cobalt phosphide and cobalt chalcogenide(CoX, X= S, Se) nanoparticles from single source precursors [J], Journal of Materials Chemistry,2010,20:2329-2335.
    47 C.C. Liu, J.M. Song, J.F. Zhao, et al. Facile synthesis of tremelliform Co0.85Se nanosheets:An efficient catalyst for the decomposition of hydrazine hydrate[J], Applied Catalysis B:Environmental,2012,119-120:139-141.
    48 Y. Gu, Y. Xu and Y. Wang, Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage[J], Applied Materials & Interfaces,2013,5 (3):801-806.
    49 E. Vayner, R.A. Sidik, A.B. Anderson et al. Experimental and Theoretical Study of Cobalt Selenide as a Catalyst for O2 Electroreduction[J], The Journal of Physical Chemistry C,2007,111(28):10508-10513.
    50 D. Susac, A. Sode, L. Zhu, et al. A methodology for investigating new nonprecious metal catalysts for PEM fuel cell[J], The Journal of Physical Chemistry C,2006, 110(22):10762-10770.
    52 T.K. Carlisle, E.F. Wiesenauer, G.D. Nicodemus, et al. Ideal CO2/Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films[J], Industrial & Engineering Chemistry Research,2013,52 (3): 1023-1032.
    53 B. Liu, F. Wang, D. Zheng, et al. Hydrothermal synthesis and magnetic properties of CoS2 nano-octahedrons[J], Materials Letters,2011,65(17-18):2804-2807.
    54 G. Panthi, N.A.M. Barakat, K.A. Khalil et al. Encapsulation of CoS nanoparticles in PAN electrospun nanofibers:Effective and reusable catalyst for ammonia borane hydrolysis and dyes photodegradation[J], Ceramics International,2013,39:1469-1476
    55 F. Gong, H. Wang, X. Xu, et al. In Situ Growth of Co0.85Se and Ni0.85sSe on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells[J], Journal of the American Chemical Society,2012,134:10953-10958.
    56 T.K. Carlisle, E.F. Wiesenauer, G.D. Nicodemus, et al. Ideal CO2/Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films[J], Industrial & Engineering Chemistry Research,2013,52 (3): 1023-1032.
    57 J.W. Yang, X.R. Chen, B. Song, et al. Interaction of Graphene-on-Al (111) Composite with D-Glucopyranose and Its Application in Biodetection[J], The Journal of Physical Chemistry C,2013,117 (16):8475-8480.
    58 R. Long, Electronic Structure of Semiconducting and Metallic Tubes in v TiO2/Carbon Nanotube Heterojunctions:Density Functional Theory Calculations [J], The Journal of Physical Chemistry Letters,2013,4 (8):1340-1346.
    59 Y. Quan, H.L. Zhai, Z.S. Zhang et al. Lamellar organic-inorganic architecture via classical screw growth[J], CrystEngComm,2012,14:7184-7188.
    60 J. Kao, K. Thorkelsson, P. Bai, et al. Toward functional nanocomposites:taking the best of nanoparticles, polymers, and small molecules[J], Chemical Society Reviews, 2013,42:2654-2678
    61 J. Fu, B.B. Chang, Y.L. Tian et al. Novel C3N4-CdS composite photocatalysts with o rganic-inorganic heterojunctions:in situsynthesis, exceptional activity, high stability and photocatalytic mechanism[J], Journal of Materials Chemistry,2013,1:3083-3090.
    62 M. Tsapatsis, S. Maheshwari, Pores by Pillaring:Not Always a Maze[J], Angewandte Chemie International Edition,2008,47(23):4262-4263.
    63 R. Schollhorn, Reversible Topotactic Redox Reactions of Solids by Electron/Ion Transfer[J], Angewandte Chemie International Edition,1980,19(12):983-1003
    64 M. Sohmiya, S. Omata and M. Ogawa, Two dimensional size controlled confinement of poly(vinyl pyrrolidone) in the interlayer space of swelling clay mineral [J], Polymer Chemistry,2012,3,1069-1074.
    65 C.H. Chen, V.M.B. Crisostomo, A Designed Single-Step Method for Synthesis and Structural Study of Organic-Inorganic Hybrid Materials:Well Ordered Layered Manganese Oxide Nanocomposites [J], Journal of the American Chemical Society, 2008,130:14390-14391
    66 L.Y. Sun, W.J. Boo, R.L. Browning et al. Effect of Crystallinity on the Intercalation of Monoamine in a-Zirconium Phosphate Layer Structure[J], Materials Chemistry,2005, 17:5606-5609.
    67 F. Kopnov, Y. Feldman, R.P. Biro et al. Intercalation of Alkali Metal in WS2 Nanoparticles, Revisited[J], Materials Chemistry,2008,20:4099-4105.
    68 Y.L. Liao, C.W. Chu, and J.J. Lin. General Intercalation of Poly(oxyalkylene)-Amidoacids for Anionic and Cationic Layered Clays [J], Angewandte Chemie International Edition,2010,49:5001-5005.
    69许并社,张艳,石墨插层化合物的可控合成及表征[D],山西,太原理工大学.
    70 M. Malta, R.M. Torresi. Electrochemical and kinetic studies of lithium intercalation incomposite nanofibers of vanadium oxide/polyaniline[J], Electrochimica Acta,2005, 50:5009-5014.
    71 G Gannon, C.O. Dwyer, J. A. Larsson et al. Interdigitating Organic Bilayers Direct the Short Interlayer Spacing in Hybrid Organic Inorganic Layered Vanadium Oxide Nanostructures[J], The Journal of Physical Chemistry B,2011,115:14518-14525.
    72 C.G. Wu, D.C. DeGroot, H.O. Marcy, et al. Redox Intercalative Polymerization of Aniline in V2O5 Xerogel. The Postintercalative Intralamellar Polymer Growth in Poly aniline/Metal Oxide Nanocomposites Is Facilitated by Molecular Oxygen[J], Chemistry of Materials,1996,8:1992-2004.
    73 F. Huguenin, M. Ferreira, V. Zucolotto, et al. Molecular-Level Manipulation of V2O5/Polyaniline Layer-by-Layer Films To Control Electrochromogenic and Electrochemical Properties[J], Chemistry of Materials,2004,16:2293-2299.
    74 Y. Z. Li, T. Kunitake, and Y. Aoki, Synthesis and Li+Intercalation/Extraction in Ultrathin V2O5 Layer and Freestanding V2O5/Pt/PVA Multilayer Films[J], Chemistry of Materials,2007,19:575-580.
    75 Y. Wang, H.M. Shang, T. Chou, et al. Effects of Thermal Annealing on the Li+ Intercalation Properties of V2O53H2O Xerogel Films[J], The Journal of Physical Chemistry B,2005,109:11361-11366.
    76 J. Liu, X. Wang, Q. Peng, et al. Vanadium pentoxide Nanobelts:Highly Selective and Stable Ethanol Sensor Materials[J], Advanced Materials,2005,17:764-767.
    77 Y. Wang and G.Z. Cao, Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides[J], Chemistry of Materials,2006,18:2787-2804.
    78 O. Schilling and K. Colbow, A mechanism for sensing reducing gases with vanadium pentoxide films[J], Sensors and Actuators B,1994,21:151-157.
    79 D. Manno, A. Serra, M. Di Giulio, et al. Structural and electrical properties of sputtered vanadium oxide thin films for applications as gas sensing material[J], Journal of Applied Physics,1997,81(6):2709-2714.
    80 J. Wollenstein, M. Scheulin, N. Herres, et al. Gas Sensitive Behaviour and Morphology of Reactive Evaporated V2O5 Thin Films[J], Sensors and Materials,2003,15(5): 239-246.
    81 H. Fu, Z.P. Liu, Z.H. Li, et al. Periodic Density Functional TheoryStudy of Propane Oxidative Dehydrogenation over V2Os(001) Surface[J], Journal of the American Chemical Society,2006,128(34):11114-11123.
    82 J. L. Bronkema, A.T. Bell, Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on MCM-48[J], The Journal of Physical Chemistry C,2007,111(1):420-430.
    83 H. Tian, E. I. Ross, I. E. Wachs, et al. Quantitative Determination of the Speciation of Surface Vanadium Oxides and Their Catalytic Activity[J], The Journal of Physical Chemistry B,2006,110:9593-9600.
    84 J.B. Xia, C.C.Yuan, and S. Yanagida, Novel Counter Electrode V2O5/Al for Solid Dye-Sensitized Solar Cells[J], Applied Materials & Interfaces,2010,2(7):2136-2139.
    85 L.F. Shen, H.S. Li, E. Uchaker, et al. General Strategy for Designing Core-Shell Nanostructured Materials for High-Power Lithium Ion Batteries[J], Nano Letters 2012, 12(11):5673-5678.
    86 FJ. Quites, C. Bisio, R.C.G Vinhas, et al. Vanadium oxide intercalated with polyelectrolytes:Novel layered hybrids with anion exchange properties[J], Journal of Colloid and Interface Science,2012,368(1):462-469.
    87 A.G Kong, Y.J. Ding, P. Wang, et al. Novel alkylimidazolium/vanadium pentoxide intercalation compounds with-excellent adsorption performance for methylene blue[J], Journal of Solid State Chemistry,2011,184 (2):331-336.
    88 A. Kuhn, M. Martin, F.G Alvarado, et al. New ramsdellites LiTi(2-y)VyO4(0≤y≤1): Synthesis, structure, magnetic properties and electrochemical performances as electrode materials for lithium batteries[J], Journal of Solid State Chemistry,2010,183 (1):20-26.
    1 H. Tong, Y.J. Zhu, L.X. Yang, et al. Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self-Assembly of Nanocrystals at Room Temperature[J], Angewandte Chemie International Edition,2006,45(46):7739-7742.
    2 I.U. Arachchige, S.L. Brock, Sol-Gel Methods for the Assembly of Metal Chalcogenide Quantum Dots[J], Accounts of Chemical Research,2007,40(9): 801-809.
    3 N. F. Zheng, X.H. Bu, H.W. Lu, et al. One-Dimensional Assembly of Chalcogenide Nanoclusters with Bifunctional Covalent Linkers [J], Journal of the American Chemical Society,2005,127(43):14990-14991.
    4 S. Bag, P.N. Trikalitis, P.J. Chupas, et al. Porous Semiconducting Gels and Aerogels from Chalcogenide Clusters[J], Science,2007,317(5837):490-493.
    5 M.V. Kovalenko, M. Scheele, D.V. Talapin, et al. Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands [J], Science,2009,324:1417-1420.
    6 S. Bag, M.G Kanatzidis., Chalcogels:Porous Metal-Chalcogenide Networks from Main-Group Metal Ions. Effect of Surface Polarizability on Selectivity in Gas Separation[J], Journal of the American Chemical Society,2010,132(5933): 14951-14959.
    7 M.R. Gao, S.A. Liu, J. Jiang, et al. In situ controllable synthesis of magnetite nanocrystals/CoSe2 hybrid nanobelts and their enhanced catalytic performance[J], Journal of Materials Chemistry,2010,20(42):9355-9361.
    8 W. Maneeprakorn, M.A. Malik, P. O'Brien, et al. The preparation of cobalt phosphide and cobalt chalcogenide (CoX, X= S, Se) nanoparticles from single source precursors[J], Journal of Materials Chemistry,2010,20(12):2329-2335.
    9 M. Hansen, Constitution of Binary Alloys [M], New York, Geminuim Publ.Co,1985: 502.
    10 X.H. Liu, N. Zhang, R. Yi, et al. Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals [J], Materials Science and Engineering:B,2007,140(1-2):38-43.
    11 J.H. Zhan, X.G. Yang, S.D. Li, et al. Synthesis of Nanocrystalline Cobalt Selenide in Nonaqueous Solvent[J], Journal of Solid State Chemistry,2000,152(2):537-539.
    12http://www.hydrogen.energy.gov/pdfs/progress05/vii_c_8_campbell.pdf
    13 J.F. Zhao, J.M. Song, C.C. Liu, et al. Graphene-like cobalt selenide nanostructures: template-free solvothermal synthesis, characterization and wastewater treatment[J], CrystEngComm,2011,13(19):5681-5684
    14 C.E.M. Campos, J.C. de Limaa, T.A. Grandi, et al. Structural studies of cobalt selenides prepared by mechanical alloying[J], Physica B:Condensed Matter,2002,324(1-4): 409-418.
    15 P. Nekooi, M. Akbari, M.K. Amini, CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst[J], International Journal of Hydrogen Energy,2010,35(12): 6392-6398.
    16 F.Y. Liu, B. Wang, Y.Q. Lai, et al. Electrodeposition of Cobalt Selenide Thin Films[J], Journal of The Electrochemical Society,2010,157(10):D523-D527.
    17 L. Zhu, M. Teo, P.C. Wong, et al. Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction[J], Applied Catalysis A:General,2010,386(1-2):157-165.
    18 Y.J. Feng, T. He, N. Alonso-Vante, Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium[J], Electrochimica Acta,2009,54: 5252-5256.
    19 A. Besada, A Simple Spectrophotometric Method for the Determination of Hydrazine Salts by Reaction with Phosphomolybdic Acid[J], Microchimica Acta,1985,87(5-6): 343-346.
    20 R. Kaveeshwar, V.K. Gupta, A new spectrophotometric method for the determination of hydrazine in environmental samples [J], Fresenius' Journal of Analytical Chemistry, 1992,344(3):114-117.
    21 H.W. Schiessl, Encyclopedia of Chemical Technology[M], New York, Othmer Wiley, 1980,12:734
    22 R. Maurel, J.C. Menezo., Catalytic decomposition of 15N-labeled hydrazine on alumina-supported metals[J], Journal of Catalysis,1978,51(2):293-295。
    23 S.K. Singh, X.B. Zhang, Q. Xu, Room-Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage [J], Journal of the American Chemical Society,2009,131(29):9894-9895.
    24 X.W. Chen,T. Zhang, M. Y. Zheng, et al. The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst[J], Journal of Catalysis, 2004,224(2):473-478.
    25 J.B.O. Santos, G.P. Valenca, J.A.J. Rodrigues, Catalytic Decomposition of Hydrazine on Tungsten Carbide:The Influence of Adsorbed Oxygen[J], Journal of Catalysis, 2002,210(1):1-6.
    26 M.Y. Zheng, X.W. Chen, R.H. Cheng, et al. Catalytic decomposition of hydrazine on iron nitride catalysts[J], Catalysis Communications,2006,7(3):187-191.
    27 Y.B. Jang, T.H. Kim, M.H. Sun, et al. Preparation of iridium catalyst and its catalytic activity over hydrazine hydrate decomposition for hydrogen production and storage[J], Catalysis Today,2009,146(1-2):196-201.
    28 S.K. Singh, Q. Xu, Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine[J], Chemical Communications,2010,46(35): 6545-6547.
    29 S.K. Singh, Q. Xu, Bimetallic Ni-Pt Nanocatalysts for Selective Decomposition of Hydrazine in Aqueous Solution to Hydrogen at Room Temperature for Chemical Hydrogen Storage[J], Inorganic Chemistry,2010,49(13):6148-6152.
    30 L. N. Ding, Y.Y. Shu, A.Q. Wang, et al. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition[J], Applied Catalysis A: General, A,2010,385(1-2):232-237
    31 GW. Watt, J.D. Chrisp, Spectrophotometric Method for Determination of Hydrazine[J], Analytical Chemistry,1952,24(12):2006-2008.
    32 F. Cao, R.P. Deng, J.K. Tang, et al. Cobalt and nickel with various morphologies: mineralizer-assisted synthesis, formation mechanism, and magnetic properties [J], CrystEngComm,2011,13(1):223-229.
    33 J.M. Song, J.H. Zhu, S.H. Yu, Crystallization and Shape Evolution of Single Crystalline Selenium Nanorods at Liquid-Liquid Interface:From Monodisperse Amorphous Se Nanospheres toward Se Nanorods[J], The Journal of Physical Chemistry B,2006, 110(47):23790-23795.
    34 A.V. Ananiev, J.C. Broudic, P. Brossard, The platinum catalyzed hydrazine decomposition in non-nitrate acidic media[J], Applied Catalysis A:General,2003, 242(1):1-10.
    1 A.M.D. Jesus, L.P.C. Romao, B.R. Araujo,et al. Use of humin as an alternative material for adsorption/desorption of reactive dyes [J], Desalination,2011,274(1-3):13-21.
    2 Md. Tamez Uddin, Md. Akhtarul Islam, Shaheen Mahmud, et al. Adsorptive removal of methylene blue by tea waste [J], Journal of Hazardous Materials,2009,164(1):53-60.
    3 J.W. Lee, S.P. Choi, R. Thiruvenkatachari, et al. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes[J], Dyes and Pigments,2006,69(3):196-203
    4 T.H. Kim, C. Park, S. Kim, et al. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration[J], Journal of Cleaner Production,2005,13(8):779-786.
    5 V. Lopez-Grimau and M. C. Gutierrez. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light[J], Chemosphere,2006, 62(1):106-112.
    6 Y. Xing, D. Liu, L.P. Zhang, et al. Enhanced adsorption of Methylene Blue by EDTAD-modified sugarcane bagasse and photocatalytic regeneration of the adsorbent[J], Desalination,2010,259(1-3):187-191.
    7 N.d. Feng, Q. Wang, A. Zheng, et al. Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO2 under Solar-Light Irradiation with XPS, Solid-State NMR, and DFT Calculations[J], Journal of the American Chemical Society,2013,135(4): 1607-1616.
    8 L. Ayed, K. Chaieb, A. Cheref, et al. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis[J], Desalination,2010,260(1-3): 137-146.
    9 R. Pratibha, P. Malar, T. Rajapriya, et al. Statistical and equilibrium studies on enhancing biosorption capacity of Saccharomyces cerevisiae through acid treatment[J], Desalination,2010,264(1-2):102-107.
    10 E.E. Baldez, N.F. Robaina, R.J. Cassella, et al. Employment of polyurethane foam for the adsorption of Methylene Blue in aqueous medium[J], Journal of Hazardous Materials,2008,159(2-3):580-6.
    11 C.W. Hu, J.L. Li, Y. Zhou, et al. Enhanced removal of methylene blue from aqueous solution by pummelo peel pretreated with sodium hydroxide[J], Journal of Health Science,2009,55(4):619-624.
    12 R.M. Gong, K.D. Zhong, Y. Hua, et al. Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw[J], Journal of Environment Management,2008,88(4):875-880.
    13 F. Shi, Z.Q. Wang, N. Zhao, et al. Patterned Polyelectrolyte Multilayer:Surface Modification for Enhancing Selective Adsorption[J], Langmuir,2005,21(4): 1599-1602.
    14 M. Ozacar, I. Sengil, A two stage batch adsorber design for methylene blue removal to minimize contact time[J], Journal of Environment Management,2006,80(4):372-379.
    15 L.Z. Zhu, X.G Ren, S.B. Yu, et al. Use of Cetyltrimethylammonium Bromide-Bentonite To Remove Organic Contaminants of Varying Polar Character from Water[J], Environmental Science and Technology,1998,32(21):3374-3378.
    16 C.C. Liu, J.M. Song, J.F. Zhao, et al. Facile synthesis of tremelliform Co(0.85)sSe nanosheets:An efficient catalyst for the decomposition of hydrazine hydrate [J], Applied Catalysis B:Environmental,2012,119-120:139-145.
    17 J.F. Zhao, J.M. Song, C.C. Liu, et al. Graphene-like cobalt selenide nanostructures: template-free solvothermal synthesis, characterization and wastewater treatment[J], CrystEngComm,2011,13(19):5681-5684.
    18 B.H. Hameed, A.T.M. Din, A.L. Ahmad, et al. Adsorption of methylene blue onto bamboo-based activated carbon:Kinetics and equilibrium studies [J], Journal of Hazardous Materials,2007,141(3):819-825.
    19 T.H. Liu, Y.H. Li, Q.J. Dua, et al. Adsorption of methylene blue from aqueous solution by graphene[J], Colloids and Surfaces B:Biointerfaces,2012,90:197-203.
    20 J.X. Yu, B.H. Li, X.M. Sun,et al. Polymer modified biomass of baker's yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta[J], Journal of Hazardous Materials,2009,168(2-3):1147-1154.
    21 Q. Kang, W.Z. Zhou, Q. Li, et al. Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions[J], Applied Clay Science,2009,45(4):280-287.
    22 A.W.M. Ip, J.P. Barford, G. McKay, et al. Reactive Black dye adsorption/desorption onto different adsorbents:Effect of salt, surface chemistry, pore size and surface area[J], Journal of Colloid and Interface Science,2009,337(1):32-38.
    23 R.C. Wu, J.H. Qu, Y.S. Chen, et al. Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water [J], Water Research,2005,39(4): 630-638.
    24 S. Pal, S. Ghorai, C. Das, et al. Carboxymethyl Tamarind-g-poly(acrylamide)/Silica:A High Performance Hybrid Nanocomposite for Adsorption of Methylene Blue Dyes[J], Industrial & Engineering Chemistry Research,2012,51(48):15546-15556.
    25 P. Liu, L.X. Zhang. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents[J], Separation and Purification Technology,2007,58(1):32-39.
    26 K.Y. Ho, G McKay, K.L. Yeung, et al. Selective Adsorbents from Ordered Mesoporous Silica[J], Langmuir,2003,19(7):3019-3024.
    27 Z.M. Qi, N. Matsuda, A. Takastu, et al. In Situ Investigation of Coadsorption of Myoglobin and Methylene Blue to Hydrophilic Glass by Broadband Time-Resolved Optical Waveguide Spectroscopy[J], Langmuir,2004,20(3):778-784.
    28 A. Mittal, L. Krishnan, V.K. Gupta, et al. Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya[J], Separation and Purification Technology,2005,43(2):125-133.
    29 L. Wang, J.P. Zhang, A.Q. Wang, et al. Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite[J], Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2008,322(1-3):47-53.
    30 M. Rakap, S. Ozkar. Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride[J], Applied Catalysis B:Environmental,2009,91(1-2):21-29.
    31 C.R. Cloutier, A. Alfantazi, E. Gyenge, et al. Physicochemical Properties of Alkaline Aqueous Sodium Metaborate Solutions [J], Journal of Fuel Cell Science and Technology,2006,4(1):88-98.
    32 L. Xiong, Y. Yang, J.X. Mai, et al. Adsorption behavior of methylene blue onto titanate nanotubes[J], Chemical Engineering Journal,2010,156(2):313-320.
    33 L.L. Zheng, Y.L. Su, LJ. Wang et al.. Adsorption and recovery of methylene blue from aqueous solution through ultrafiltration technique[J], Separation and Purification Technology,2009,68(2):244-249.
    1 B.B. Jiang, Y. Yang, L.J. Du, et al. Advanced Catalyst Technology for Broad/Bimodal polyethylene,Achieved by Polymer-Coated Particles Supporting Hybrid Catalyst[J], Industrial & Engineering Chemistry Research,2013,52(7):2501-2509.
    2 T. Shunsuke, K. Koji, F. Haruki, et al. Self-Assembling Imidazolium-Based Ionic Liquid in Rigid Nanopor esInduces Anomalous CO2 Adsorption at Low Pressure [J], Langmuir,2011,27(13):7991-7995.
    3 A. Tercjak, J. Gutierrez, I. Mondragon, et al. Conductive Properties of Photolumine scent Au/Ps-b-PEO Inorganic/Organic Hybrids Containing Nematic Liquid Crystals [J], The Journal of Physical Chemistry C,2011,115(5):1643-1648.
    4 J.H. Wang, H. Wang, J.J. Jiang, et al. Nonpolar Solvothermal Fabrication and Electromagnetic Properties of Magnetic Fe3O4 Encapsulated Semimetal Bi Nanocomposites[J], Crystal Growth & Design,2012,12(7):3499-3504.
    5 J.M. Gong, T. Zhou, D.D. Song, et al. Stripping Voltammetric Detection of Mercury(II) Based on a Bimetallic Au-Pt Inorganic-Organic Hybrid Nanocomposite Modified Glassy Carbon Electrode [J], Analytical Chemistry,2010,82(2):567-573.
    6 J.H. Noh, S.H. Im, J.H. Heo, et al. Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells [J], Nano Letters,13(4): 1764-1769.
    7 V.V. Chaban, V.V. Prezhdo, O.V. Prezhdo. Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study [J], The Journal of Physical Chemistry Letters,2013, 4(1):1-6.
    8 CM. Ban, M.S. Whittingham. Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydro thermal methods [J], Solid State Ionics,2008, 179(27-32):1721-1724.
    9 L. Roi, B.S. Maya, A.Y. Ana, et al. Hollow V2O5 Nanoparticles (Fullerene-Like Analogues) Prepared by Laser Ablation[J], Journal of the American Chemical Society, 2010,132(32):11214-11222.
    10 M. Li, F.Y. Kong, H.Q. Wang, et al. Synthesis of vanadium pentoxide (V2O5) ultralong nanobelts via an oriented attachment growth mechanism [J], CrystEngComm,2011,13: 5317-5320.
    11 F. Krumeich, HJ. Muhr, M. Niederberger, et al. Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes [J], Journal of the American Chemical Society,1999,121(36):8324-8331.
    12 K.Q. Lai, A.G Kong, F. Yang, et al. Intercalation of alkylviologen dications into the layered vanadium pentoxide [J], Inorganica Chimica Acta,2006,359(4):1050-1054.
    13 H. Kaper, M.G Willinger, I. Djerdj, et al. IL-assisted synthesis of V2O5 nanocomposites and VO2 nanosheets [J], Journal of Materials Chemistry,2008,18:5761-5769.
    14 W.D. Li, C.Y. Xu, X.L. Pan, et al. High capacity and enhanced structural reversibility of b-LixV2O5 nanorods as the lithium battery cathode [J], Journal of Materials Chemistry A,2013,1:5361-6369.
    15 A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, et al. Energy storage studies of bare and doped vanadium pentoxide, (V1.95 M(0.05))Os,M= Nb, Ta, for lithium ion batteries [J], Energy & Environmental Science,2011,4:1712-1725.
    16 I. Karatchevtseva, Z.M. Zhang, J. Hanna, et al. Electrosynthesis of Macroporous Polyaniline-VaO5 Nanocomposites and Their Unusual Magnetic Properties [J], Chemistry of Materials,2006,18(20):4908-4916.
    17 K.P. Nam, C.B. Young, Electrochemical Properties for Ionic Liquid/Polymer Electrolyte Systems [J], Journal of Polymer Science:Part B:Polymer Physics,2010,48(2): 212-219.
    18 M.D. Green, T.E. Long, Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies [J], Journal of Macromolecular Science, Part C: Polymer Reviews,2009,49(4):291-314.
    19 H. Zhu, J. F. Huang, Z.Pan, et al. Ionothermal Synthesis of Hierarchical ZnO Nanostructures from Ionic-Liquid Precursors [J], Chemistry of Materials,2006,18(18): 4473.4477.
    20 A. Taubert, CuCl Nanoplatelets from an Ionic Liquid-Crystal Precursor [J], Angewandte Chemie International Edition,2004,43(40):5380-5382.
    21 G.R. Paul, R.A. Mark, A.F. Millicent, et al. Tetraalkylphosphonium Polyoxometalate Ionic Liquids:Novel, Organic-Inorganic Hybrid Materials [J], Journal of Physical Chemistry B,2007,111(18):4685-4692.
    22 P. Bonhote, A.P. Dias, N. Papageorgiou, et al. Hydrophobic highly conductive ambient-temperature molten salts [J], Inorganic. Chemistry,1996,35(5):1168-1178.
    23 Z.Y. Li, Y. C. Pei, L. Liu, et al. (Liquid+ liquid) equilibria for (acetate-based ionic liquids+ inorganic salts) aqueous two-phase systems [J], The Journal of Chemical Thermodynamics,2010,42(7):932-937.
    24 S. Madhulata, S. Nitin, S. Satyen, et al. Theoretical and spectroscopic studies of 1-butyl-3-methylimidazolium iodide room temperature ionic liquid:Its differences with chloride and bromide derivatives [J], Journal of Molecular Structure,2010,975(1-3): 349-356.
    25 M. Shukla, Theoretical and spectroscopic studies of 1-butyl-3-methylimidazolium iodide room temperature ionic liquid:Its differences with chloride and bromide derivatives [J]. Journal of Molecular Structure,2010,975(1-3):349-356.
    26梁蕾,宣爱国,吴元欣等,离子液体[bmim] Br的制备及应用[J].2009,31(19):63-66.
    27 C.P. Fredlake, J. M. Crosthwaite, D. G Hert, et al. Thermophysical Properties of Imidazolium-Based Ionic Liquids [J]. Journal of Chemical and Engineering Data,2004, 49(4):954-964.
    28 R. Casanova, J. Mendialdua, Y. Barbaux, et al. XPS studies of V2O5, V6O13, VO2 and V2O3 [J], Journal of electron spectroscopy and related phenomena,1995,71,249-261.
    29 R.Y. Wang, D.Z. Jia, Y.L. Cao, et al. Facile synthesis and enhanced electrocatalytic activities of organi-inorganic hybrid ionic liquid polyoxometalate nanomaterials by solid-state chemical reaction [J]. Electrochimica Acta 2012,72:101-107.
    30 C.R. Xiong, A.E. Eliev, B.Gnade, et al. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics [J]. ACS Nano,2008,2(2):293-301.
    31 M. Antonietti, D. Kuang, B. Smarsly, et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures [J], Angewandte Chemie International Edition,2004,43(38):4988-4992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700