渤、黄、东海沉积物中硫化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫是生命体的基本元素,硫酸盐的还原是生产力丰富的海岸沉积物矿化的主要途径之一,占有机质矿化的50%。硫化物作为海洋沉积物中硫酸盐还原的最主要成分,受到人们的关注。沉积物中的硫化物包括酸可挥发性硫(AVS)和黄铁矿(CRS),大陆架区域蕴含了硫酸盐的还原和硫化物的形成埋藏信息,黄、渤海和东海是西北太平洋的边缘海,在全球的硫循环中起着重要的作用。
     本文研究了黄、渤、东海三个海区柱状沉积物中酸可挥发性硫(AVS)和黄铁矿(CRS)的分布特征,因物质供给、沉积速率、沉积类型、埋藏时间等条件的差异,沉积物中硫化物的含量具有明显的时空变化。
     1)从整个调查区域来看,黄、渤海AVS空间分布特征为:东海最低,南黄海其次,渤海和北黄海较高,长江口最高;在长江口地区,由河流输入、高的沉积速率以及季节性缺氧的影响,AVS含量有较高值;由于强烈的水动力作用带来丰富洋的补充以及沉积物粒径较大,东海北部陆架区域绝大部分站位没有检测到AVS或者AVS含量很低(<2μmol/g dry);与世界其他海域比,黄、渤、东海AVS处于低值区。
     2)黄、渤海表层沉积物AVS含量普遍表现出春季高,秋季低的趋势,这与有机质的季节变化一致;在长江口区域,AVS与有机质则表现出春季低、秋季高的趋势,这主要是受长江冲淡水的季节变化所致。
     3)研究了渤、黄、东海典型站位柱状样沉积物中黄铁矿分布特征,表明绝大部分站位黄铁矿含量随深度逐渐增加,AVS:CRS比值也普遍小于0.3,反应了AVS在深处有效转化为黄铁矿的趋势。由于受硫酸盐扩散通量的限制以及高的沉积速率的影响,长江口AVS在深处转化为黄铁矿受到硫酸盐通量限制,黄铁矿含量低。
The reduction of sulfate is one of organic matter degradation pathways in coastal sediment with high primary productivity, it can account for 50% of organic matter degradation. Sulfide which is the main component of sulfate reduction draws scientists’attention. Continental shelves have the buried information of sulfate reduction and sulfide formation that plays an important role in the the global sulfur cycle. The Bohai, Yellow and East China Seas are the marginal sea of the northeast Pacific which plays an important role in the global sulfur cycle, but nowadays little references on them were reported. The distribution of sulfide from in investigation region shows obvious spatial and temporal variations for the complexity of marine environment.
     1)The concentrations of AVS in Bohai, Yellow and East China Seas are in a low level compared to other areas. Concentration of AVS is the minimum in the East China Sea, lower in the South Yellow Sea, the highest in the Changjiang Estuary, the Bohai and the North Yellow Sea between them. In addition, concentration of AVS in the Changjiang Estuary is also higher due to terrestrial materials input from the Changjiang and the estuary has a higher sedimentation rate, and seasonal hypoxia events in the estuary attributes to the formation of AVS. However, AVS is not detected in the north East China Sea or has a low level(<2μmol/g dry)due to silt or sand sediment with sufficient supplement of oxygen through vertical exchange in seawater.
     2)In generally, the concentrations of AVS in The Yellow and Bohai Seas are higher in spring than in autumn, and in accordance with seasonal change of organic matter content; in the Changjiang estuary, sulfides and organic matter concentrations are lower in spring than in autumn affected by the CDW transport.
     3)The distribution characteristics of pyrite in the Bohai, Yellow and the East China Seas are also studied. The results show that the concentrations of pyrite at most investigation stations increased with depth, and the AVS: CRS ratio is generally less than 0.3, reflecting the high conversion of AVS to pyrite. The low sulfate and high sedimentation rates limit the conversion of AVS to pyrite in the Changjiang estuary, so the concentration of pyrite is low.
引文
[1] J·rgensen B B. The sulfur cycle of coastal marine sediment in Limfjorden, Denmark. Limnology and Oceanography, 1977, 22: 814–832.
    [2] J·rgensen B B. Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature, 1982, 296: 643–645.
    [3] Canfield D E , J?rgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 1993b, 113:27–40.
    [4] Kostka J E, Thamdrup B, Glud R N, et al. Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Marine Ecology Progress Series, 1999, 180: 7–21.
    [5]孙云明,宋金明.海洋沉积物一海水界面附近氮、磷、硅的生物地球化学.地质评论, 2001, 5:527-534.
    [6] Goldhaber M B, Kaplan I R. The sulfur cycle. In: Goldberg, E.D. (Ed.), Marine Chemistry. Wiley, New York, 1974:569-655.
    [7] Hennkee E. Sulfur speciation in anoxic hypersaline sediment from the eastern Mediterranean sea. Geochimica et Cosmoehiaca Acat., 1997, 61(2):307-321.
    [8]罗莎莎,万国江.云贵高原湖泊沉积物一水界面铁锰硫体系的研究进展.地质地球化学, 1999, 27(3): 47-52.
    [9] Ku T C W, Kay J, Browne E, et al. Pyritization of iron in tropical coastal sediments: Implication for the development of iron, sulfur, and carbon diagenetic properties, Saint Lucia, Lesser Antilles. Marine Geology, 2008, 249: 184-205.
    [10] Berner R A, Canfield D. A new model for atmospheric oxygen over phanerozoic time. American Journal of Science, 1989, 289:333-361.
    [11] Lin S, Huang K M, Chen S K. Sulfate reduction and iron mineral formation in the southern East China Sea continental slope sediment. Deep-Sea Research I, 2002, 49:1837-1852.
    [12] Sullivan L A, Bush R T, Fyfe D. Acid sulfate soil drain ooze: distribution, behaviour and implication for acidification and deoxygenation of waterways. In Acid sulfate soils in Australia and China; Lin C, Melville M D, Sullivan L A, Eds; Beijing: Science Press, 2002, pp: 91-99.
    [13]万国江,环境质量的地球化学原理.北京:中国环境科学出版社,1988.
    [14] Vairavamurthy A, Mopper K. Geochemical formation of organosulphur compounds by addition of H2S to sedimentary organic matter. Nature, 1987, 329: 623-625.
    [15] Francois R. A study of the extraction conditions of sedimentary humic acids to estimate their true in situ sulfur content. Limnology and Oceanography, 1987a, 32 (4):964-972.
    [16] Francois R. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochimica et Cosmochimica Acta, 1987b, 51: 17-27.
    [17] Luther G W, Church T M. An overview of the environmental chemistry of sulphur in wetland systems. In: Stewart H R W, Ivanov J W B, Ivanov M V (Eds). Sulphur Cycling on the Continents: New York (John Wiley and Sons), 1992, 125-142.
    [18] Passier H, Middelburg J J, De Lange G J , Bottcher M E. Modes of sapropel formation in the eastern Mediterranean: some constraints based on pyrite properties. Marine Geology, 1999, 153: 199–219.
    [19] Fossing H, J?rgensen B B. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark. Geochimica et Cosmochimica Acta, 1990, 54: 27-42.
    [20] Zhang J Z, Millero F J. The products from the oxidation of H2S in seawater. Geochimica et Cosmochimica Acta, 1993, 57: 1705–1718.
    [21] Henneke E, LutherⅢG W,Lange G J, Hoefs J. Surphur speciation in anoxic hypersalinesediment from the eastern Mediterranean sea. Geochimica et Cosmochimica Acta, 1997, 2(61):307-321.
    [22] Berner R A, Westrich J T. Bioturbation and the early diagenesis of carbon and sulfur. Amer. J. Sci., 1985, 285: 193-206.
    [23] Francois R. A study of the extraction conditions of sedimentary humic acids to estimate their true in situ sulphur content. Limnol. Oceanogr. 1987a, 32, 964-972.
    [24] Francois R. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim.Cosmochim. Acta, 1987b, 51: 17-27.
    [25]刘铁兵.碳硫生物地球化学与沉积环境分析.学科发展与研究, 1990, 3: 22-25.
    [26] Wang Y F, Cappellen V P. A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochirn. Cosmochirn. Acta, 1996, 60, 2993-3014.
    [27] Choi J H, Park S S, JafféP R. Simulating the dynamics of sulfur species and zinc in wetland sediment. Ecological modeling, 2006, 199:315-323.
    [28] Kristensen E, Bodenbender J, Jensen M H, Rennenberg H, and Jensen K M. Sulfur cycling of iintertidal Wadden Sea sediment (Konigshafen, Island of Sylt, Germany): sulfate reduction and sulfur gas emission. Journal of Sea Research, 2000, 2(43): 93-104.
    [29] Burton E D, Bush R D, Sullivan L A. Reduced inorganic sulfur speciation in drain sediment from acid sulfate soil landscapes.Environ. Sci. Technol, 2006, 40: 888-893.
    [30] Ferdelman T G, Church T M. and Luther III G W. Sulfur enrichment of humic substances in a Delaware salt marsh sediment core. Geochim. Cosmochim. Acta, 1991, 55, 979-988.
    [31] Philipp S, Willian S. Chemical composition, pH, and redox state of sulfur and iron in complete verticalporewater profiles from two sphagnum peat bogs, Jura Mountans, Swizherland. Geochimca et Cosmochica Acta, 1997, 61(6): 1143—1163.
    [32]赵由之.高原湖泊沉积物中硫形态分布与微生物地球化学行为—以云南洱海和贵州阿哈湖为例.中国科学院硕士论文, 2006.
    [33]刘景春,严重玲,胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展.生态学报, 2004, 24(4):812-817.
    [34] Leonard E N, Mattson V R, Benoit D A, et al. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeast Minnesota lakes. Hydrobiologia, 1993, 271: 87–95.
    [35] Rickard D, Oldroyd G A. The composition Of annopartculate mackinawite, tetragonal iron (Ⅱ) monosulfide. Chemical Geology, 2006, 235:286-298.
    [36] Rickard D T. Kinetics and mechanisms of pyrite formation at low temperatures. American Journal of Science, 1975, 275:636-652.
    [37] Luther G W. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 1991, 55 2839–2849.
    [38] Rickard D T, Luthe G W. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 C: the mechanism. Geochimica et Cosmochimica Acta, 1997, 61 (1): 135–147.
    [39] Rickard D T. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 C: The rate equation. Geochimica et Cosmochimica Acta, 1997, 61 (1): 115–134.
    [40] Raiswell R, Buckley F, Berner R A. Degree of pyritization of iron as a palaeo Environmental indicator of bottom-water oxygenation. Sediment Petrol, 1998, 58: 812-819.
    [41] Ryu J h, Zierenberg R A, Dahlgren R A, et al. Sulfur biogeochemistry and isotopic franctionation in shallow groundwater and sediments of Owens Dry Lake. California Chemical Geology, 2006, 229: 257-272.
    [42]蒲晓强.中国边缘海典型海域沉积物早期成岩过程中硫的循环.中国科学院博士论文, 2005.
    [43]刘升发,石学法,刘焱光,等.东海内陆架泥质区沉积速率.海洋地质与第四纪地质, 2009, 6(29): 1-7.
    [44]李风业,史玉兰,申顺喜,等.同位素记录南黄海现代沉积环境.海洋与湖沼, 1996, 27(6): 584-589.
    [45] Sievert S M, Kiene R P, Schulz-vogt H N. The sulfur cycle. Oceanography, 2007, 2(20): 117-123.
    [46] Hu D X. Some striking features of circulation in Huanghai Sea and East China Sea. In: Zhou D et al. Oceanology of China Seas. Volume 1.Netherlands: Kluwer Academic Publishers, 1994:27-28.
    [47]中中国海湾志编纂委员会.国海湾志(Ⅲ、Ⅳ分册).n北京:海洋出版社, 1998.
    [48] MiddelburgJ J. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochimica et Cosmochimica Acta, 1991, 55: 815~828.
    [49] Howard D E, Evans R D. Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake:seasonal and spatial changes in sediment AVS. Environmental Toxicology and Chemistry, 1993, 12: 1051~1057.
    [50] Leonard E N, Mattson V R, Benoit D A, et a1. Seasonal variation of acid volatile sulfide concentration in sediment cores from three northeastern M innesoda lakes. Hydrobiologia, 1993, 71: 87~95.
    [51] Fang T, Zhang X H, Xu X Q. Seasonal and vertical distribution of acid volatile sulphide (AVS)in Lake DongHu sediments. Acta Hydrobiologica Sinica.2002, 26(3): 239~245.
    [52] Rey J R, Shafer J, Kain T, et a1. Sulfide variation in the pore and surface waters of artificial salt march ditches and a natural tidal creek.Estuary, 1992, 15: 257~269.
    [53] Van den Hoop M A G T, Den Hollander H A, Kerdijk H N. Spatial and seasonal variations of acid volatile sulfide(AVS)and simultaneously extracted metals(SEM )in Dutch marine and freshwater sediments.Chemosphere, 1997, 35: 2307~2316.
    [54] Ankley G T, Liber K. A field investigation of the relationship between zinc and acid volatile sulfide concentration in freshwater sediments. J. Aquat. Ecosyst. Health, 1996, 5(4): 255~264.
    [55]甘居利,李纯厚,贾晓平,等.南海北部渔场表层沉积物中的硫化物.湛江海洋大学学报, 2001, 21(2):44-47.
    [56] Lin S, Huang K M, Chen S K.Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments. Continental Shelf Research, 2000, 20:619-635.
    [57]胡蕾,刘素美,任景玲,等.东海近岸沉积物中酸可挥发性硫化物的分布研究.海洋环境科学, 2009, 28(5): 482-486.
    [58]潘玉球,黄大吉,李峰.东、黄海的水团消长与锋区变异特性.中国海洋生态系统动力学研究I :关键科学问题与研究发展战略.科学出版社:唐启升, 2000:113-117.
    [59] Teague W J, Jacobs G A, Ko D S, et al. Connectivity of the Taiwan, Cheju, and Korea straits. Continental Shelf Research, 2003, 23:63-77.
    [60]武倩倩,马启敏,王继纲等.黄河口近岸海域沉积物酸可挥发性硫化物(AVS)的研究.海洋环境科学, 2007, 26(2): 126-129.
    [61]蒲新明,吴玉霖,张永山, 2001.长江口区浮游植物营养限制因子的研究II:春季的营养限制情况.海洋学报, 23:57-63.
    [62]杨庆霄,董娅婕,蒋岳文等.黄海和东海海域溶解氧的分布特征.海洋环境科学, 2001,20(3): 9-13.
    [63]李道季,张经,黄大吉,等.长江口外氧的亏损.中国科学(D辑), 2002, 32(8):686—694.
    [64]陈东,张丽旭,刘汉奇,等.长江口海域春夏季溶解氧分布特征及其相关因素分析.海洋环境科学, 2008, supp.1(27):49-53.
    [65] Tian R C, Hu F X, Martin J M. Summer nutrient front in the Changjiang (Yangtze River) Estuary. Estuarine, Coastal and Shelf Science, 1993, 37:27-41.
    [66] Limeburner R, Beardsley R C, Zhao J. Water Masses and Circulation in the East China Sea. Proceedings of International symPosium on sedimentation on the continental shelf, with special reference to the East China Sea. APril 12-16, 1983 Hangzhou, China, Vo1.1.Beijing: China Ocean Press, 1983, 285-294.
    [67]陈吉余,陈祥禄,杨启伦.上海海岸带和海洋资源综合调查报告.上海:科技出版社, 1988, 114-116.
    [68]顾宏堪.黄海溶解氧垂直分布中的最大值.海洋学报, 1980, 2:70-79.
    [69]张竹琦.黄海和东海北部夏季底层溶解氧最大值和最小值特征分析.海洋通报, 1990, 9(4): 22-26.
    [70] Beardsley R C, Limeburber R, Yu H, et al. Discharging of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 1985, 4 (1-2): 57~76.
    [71]段凌云,王张华,李茂田,等.长江口沉积物210Pb分布及沉积环境解释.沉积学报, 2005, 23(3):514-521.
    [72] Milliman John D, Shen H, Yang Zuosheng, et al.TransPort and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Researeh, 1985, 4(l-2):37-45.
    [73]李凡,张秀荣.晚更新世末期南黄海中部埋藏古三角洲的研究.海洋与湖沼, 1998, 29(1):67一72.
    [74]李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼, 2002, 4(33): 364-369.
    [75]齐君,李凤业,宋金明,等.北黄海沉积速率及其沉积通量.海洋地质与第四纪地质, 2004, 24(2):9-14.
    [76]秦蕴珊,赵一阳,陈丽蓉,等.黄海地质.北京:海洋出版社, 1989.
    [77]苏纪兰,袁业立.中国近海水文.北京:海洋出版社, 2004.
    [78] Yücel M, Konovalov S K, Moore T S et al. Sulfur speciation in the upper Black Sea sediments . Chemical Geology 2010, 269:364-375.
    [79] Rickard D, Morse J W. Acid volatile sulfide (AVS), Marine Chemistry, 2005, 97:141–197.
    [80] Wijsman J W M, Middelburg J J, Herman P M J, et al. Sulfur and iron speciation in Surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 2001, 74:261-278.
    [81] Henrichs S M, Reeburgh, W S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 1987, 5: 191–238.
    [82] Giblin A E, Likens G E, White D, et al. Sulfur storage and alkalinity generation in New England lake sediments. Limnology and Oceanography, 1990, 35(4):852-869.
    [83] Jeroen W M, Wijsman Jack J, Middelburg Peter M J, et al. Sulfur and iron speciation in Surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 2001, 74:261-278.
    [84] Cook R B, Kelly C A, Schindler D W, et al. Mechanisms of hydrogen ion neutralization in an experimentally acidified lake. Limnology and Oceanography, 1986, 31:134-148.
    [85] Oehm N J, Luben T J, Ostrofsky M L. Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiologia, 1997, 345: 79–85.
    [86] Meriane E. Metal and aquatic cantanmination workshop. Environ Sci Technol, 1994, 28(3): 144-146(A).
    [87]尹希杰,杨群慧,王虎,等.珠江口海岸带沉积物中酸可挥发性硫化物与重金属生物毒效性研究.海洋科学进展,2007,3(25):302-309.
    [88]李庆召,颜昌宙,李国新,等.厦门湾海域沉积物中酸可挥发性硫化物与重金属生态风险评价.海洋环境科学, 2009, 3:257-260.
    [89]方涛,张晓华,徐小清.东湖沉积物中酸挥发性硫化物的季节、深度分布特征研究.水生生物学报, 2002, 3, 26:239-245.
    [90]李金城,王晓蓉.博斯腾湖沉积物中的酸可挥发性硫化物.环境科学与技术, 2008, 12(31): 121-124.
    [91]郑利,徐小清.武汉东湖沉积物中酸挥发性硫化物(AVS)的深度分布及其影响因素.湖泊科学, 2003, 3(15): 245-251.
    [92]王菊英.海洋沉积物的环境质量评价研究.中国海洋大学大学博士论文.
    [93] Cline J D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 1969, 14, 454–458.
    [94]赵一阳,李凤业.南黄海沉积速率和沉积通量的初步研究.海洋与湖沼, 1991, 22(1), 38-43.
    [95] Burton G A, Green A, Baudo R, et al. Characterizing sediment acid volatile sulfide concentrations in European streams. Environmental Chemistry, 2006, 1(26): 1-12.
    [96] Capone D C, Kiene R P. Comparison of microbial dynamics in marine and freshwater sediments: contrast in anaerobic carbon metabolism. Limnology and Oceanography, 1988, 33:725-749.
    [97]李凤业,高抒,贾建军等.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼, 2002, 33(4):364-369.
    [98]苏纪兰,袁业立.中国近海水文北京:海洋出版社, 2004.
    [99] Jian L, Yoshiki S. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology, 2007, 236: 165—187.
    [100]王伟,李安春,徐方建,等.北黄海表层沉积物粒度分布特征及其沉积环境分析.海洋与湖沼, 2009, 40(5): 525-531.
    [101]齐君,李凤业,宋金明,等.北黄海沉积速率及其沉积通量.海洋地质与第四纪地质, 2004, 24(2):9-14.
    [102]张荣敏,张桂林,黄博,等.山东半岛近岸海区现代沉积速率分析.海洋地质动态, 2009, 9(25):15-18.
    [103]胡颢琰,黄备,唐静亮,等.渤、黄海近岸海域底栖生物生态研究.东海海洋, 2000, 4(18):39-46.
    [104] Westrich J T, Berner R A. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol. Oceanogr. , 1984, 29: 236–249.
    [105] Hong G H, Zhang J, Chung C S. Biogeochemical Processes in the Bohai and Yellow Sea [M]. Dongjing: The Dojing publication Asssociation, 1999, 27(6):584-589.
    [106] Smith R L, Klug M J. Reduction of sulfur compounds in the sediments of a eutrophic lake basin. Appl. Envir.Microbiol, 1981, 41: 1230–1237.
    [107] Billon G, Ouddane B, Boughriet A. Chemical speciation of sulfur compounds in surface sediments from three bays (Fresnaye, Seine and Authie) in northern France, and identification of some factors controlling their generation. Talanta, 2001, 53:971-981.
    [108] Nriagu J O, Soon Y K. Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geochim. Cosmochim. Acta 1985, 49: 823–834.
    [109] Hadas O, Pinkas R. Sulfate reduction processes in sediments at different sites in Lake Kinneret, Israel. Microb. Ecol, 1995, 30: 55–66.
    [110]李凤业,史玉兰,申顺喜,等.同位素记录南黄海现代沉积环境,海洋与湖沼, 1996, 27:584-589.
    [111] Backlund K, Boman A, Frojdo S, et al. An analytical procedure determination of sulphur species and isotopes in boreal acid sulphate soil and sediments. Agric. Food Sci., 2005, 14: 70-82.
    [112] Sullivna L A, Bush R T, McConchie D, et al. Comparison of peroxide oxidisable sulfur and chromium sulfur methods for determination of reduced inorganicsulfur in soil. Aust. J. Soil Res, 1999, 37: 255–265.
    [113] Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol., 1986, 54: 149–155.
    [114] Cornwell J C, Morse J W. The characteristics of iron sulphide minerals in anoxic marine sediments. Marine Chem., 1987, 22: 193–206.
    [115] NewtonR J, Bottrell S H, Dean S P , Hatfield D, Raiswell R. An evaluation of the use of the chromous chloride reduction method for isotopic analyses of pyrite in rocks and sediment. Chem. Geol., 1995, 125:317–320.
    [116] Sievert S M, Kiene R P, Schulz-vogt H N. The surful cycle. Oceanography, 2007, 2(20): 117-123.
    [117] Di Toro D M, Mahony J D, Hansen D J, et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Technol. 1992, 26:96-101.
    [118]郑利,徐小清.武汉东湖沉积物中酸挥发性硫化物(AVS)的深度分布及其影响因素.湖泊科学, 2003, 15(3):245-251.
    [119] Blomqvist S, Gunnurs A, Elmgren R. Why the limiting nutrient differs between temperate coastsl seas and freshwater lakes: A matter of salt. Limnol Oceanogr, 2004, 49(6): 2236-2241.
    [120] Ankley G T. Predicting the acute toxicity of copper in freshwater sediment: evaluation of the role of acid-volatile sulfide. Environ. Toxico1. Chem., 1993, 12: 315-320.
    [121] Allen H E, Fu G and Deng B. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ. Toxico1. Chem., 1993, 12: 1441-1453.
    [122]何孟常.水体沉积物重金属生物有效性及评价方法.环境科学进展, 1998, 6(5): 9-19.
    [123]文湘华, Allen H E.乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响.环境科学, 1997, 18(4): 32-34.
    [124]陈淑梅,菊英,马德毅,等.酸溶硫化物与沉积物中重金属化学活性的关系.海洋环境科学, 1999, 18(3): 16-21.
    [125] Carlson A R. The role of acid—volatile sulfide in determining cadmium bioavailability and toxicity in fresh-water sediments.Environ. Toxico1. Chem., 1991, 10: 1309-1319.
    [126]陈春峰,刘焱光,等.南黄海中部沉积物粒径趋势分析及搬运.科学通报, 2002, 6(47): 452-456.
    [127]辛宝恒.黄海渤海大风概论,北京:气象出版社, 1991.
    [128] Sievert S M, Kiene R P, Schulz-Vogt H N. The sulfur cycle. Oceanography, 2007, 2(20):117-123.
    [129]宋金明,李鹏程.南沙群岛海域泻湖及礁外沉积物间隙水中的-2价硫.海洋与湖沼, 1996, 6(27):590-597.
    [130]李安春,陈丽蓉,申顺喜.南黄海H-106岩柱中自生黄铁矿的硫同位素研究.科学通报,1991, 12:928-930.
    [131] Berner A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science, 1982, 282:451–473.
    [132]许东禹,刘锡清,张训华,等.中国近海地质,北京:地质出版社, 1997.
    [133] Karlin R, Levi S. Diagenesis of magnetic minerals in recent hemipelagic sediments. Nature, 1983, 303:327-330.
    [134]尹希杰,周怀阳,杨群慧,等.珠江口淇澳岛海岸带沉积物中酸盐还原和不同形态硫的分布.海洋学报, 2010, 3(32):31-39.
    [135] Fossing H, Jorgensen B B. Oxidation and reduction of radiolabeled inorganic sulfur compounds in estuarine sediment, Kysing Fjord, Denmark. Geochim. Cosmochim. Acta 1990, 54: 2731-2742.
    [136] Middelburg J J. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochim. Cosmochim. Acta, 1991, 55: 815-828.
    [137] Morse J W, Cornwell J C. Analysis and distribution ofiron sulfide minerals in recent anoxic marine sediments. Mar. Chem., 1987, 22:55-69.
    [138] Gagnon C, Mucci A, Pelletier E. Anomalous accumulation of acid—volatile sulphides (AVS )in a coastal marine sediment, Saguenay Fjord, Canada. Geochim et Cosmochim Acta, 1995, 59: 2663-2675.
    [139]朱媛媛.东、黄海沉积物中各形态磷的分布特征及其生物地球化学初步研究.中国海洋大学硕士论文, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700