阿坝大骨节病区地表水同位素地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿坝州位于四川省西北部,是全国罕见的大骨节病重病区。大骨节病的病因在很大程度上和当地的水文环境有着密切的关系,大骨节病区的环境地质条件,特别是地表水体和发病几率之间存在紧密联系,查明病区的水化学特征,探讨水体的来源可为移民安置和打井工程提供科学依据。论文依托四川省政府与国土资源部合作项目《四川省大骨节病区地下水调查与安全供水示范工程》子课题《四川阿坝州生态地球化学调查》(1212010913022)。在查明研究区水文地球化学特征基础上,通过氢氧同位素分析,结合研究区的地层岩性、构造、水文地质,探讨了不同水体的来源及相互关系。
     主要取得如下成果:
     水化学特征分析表明,研究区水体基本上是以中-弱碱性、较低矿化度的软水为主,水化学类型为HCO_3-Ca和HCO_3-Ca·Mg型;主要河流中,杜柯河矿化度最高,可能有部分地下水的补给;不同水类型中,井水和自来水矿化度明显高于河水和溪水;区内水体常量离子自然起源的优势机制是岩石的风化作用,碳酸盐矿物和硅酸盐矿物的溶解是水化学形成的主要作用;地层岩性是控制水体矿化度,主要离子含量的主要因素。
     水体氢氧同位素特征分析显示,表明区内水体主要来源于大气降水,其次是地下水和冰雪融水;氘过量参数表明区内水体受到强烈的蒸发作用。
     不同流域水的来源不同,阿坝县境内的麻尔曲、阿曲河流域地区各水体同位素的δD和δ~(18)O为全区最大,显示河流源头高原湖泊补给的影响;杜柯河中下游流域河水的δD和δ~(18)O偏负,河水矿化度较高,显示有地下水的补给;红原白河水的δD和δ~(18)O相对则曲河偏正表现为强烈的蒸发特征;其它河流主要表现为大气降水补给。
The Aba Autonomous Region, the rare endemic area of KBD, is located in the Northwest part of Sichuan Province. The cause of KBD is closely to related to the hydrometrical-setting in that distinguish. Finding out the features about water chemistry, and going into the source of the water can offer a scientific proof for setting down the immigrant and digging well. This paper is based on the“the cooperation project between the government of Sichuan province and Ministry of Land Resources”which the sub-name is“the survey of the ecological geochemistry in Aba Sichuan province(1212010913022)”ascertaining the characteristic of hydro geochemistry, and the oxyhydrogen isotope analysis combined with the factors on lithology, structure, hydrogeololgy, we discussed the different origin of different water, and its relationship.
     The main achievements as below:
     The analysis of water chemistry shows that the water in study place is mostly middle alkalinity and light mineralization, and the water chemistyr’s type is HCO_3-Ca and HCO_3-Ca·Mg. The Duke rive has the highest mineralization among the all rives in search place. It maybe have some supply given by underground water. The mineralization of well water and the tap water are higher than the water from rives and brook. Dissolving of Carbonate and silicate helps to form the unique water chemistry. The key element in content of ion is layer lithology. And it also control the mineralization in wanter.
     Oxyhydrogen isotope feature analysis of water showed that the region water mainly derived from atmospheric precipitation ,followed by groundwater and snow melt water. Deuterium excess parameter showed that regional water is subject to certain evaporation.
     The sources of different river basin water in different, different river basin region water isotopesδD andδ~(18)O of Ma erqu and A qu rive in Aba County is maximum of all region, showed that the source of the river supplied by highland lakes. TheδD andδ~(18)O of middle and lower river in Duke river basin assume burden and mineralization high ,showing groundwater recharge. Compared with Zequ river,theδD andδ~(18)O of white river in Hongyuan assume large, indicate characteristics of strong evaporation. Other rivers mainly supplied from atmospheric precipitation.
引文
[1]沈照理等.水文地质学[M].北京:科学出版社,1985.653-656.
    [2]王钊.中国大骨节病研究与控制的历史回顾[J].中国地方病学志,1999,18(3):161-163.
    [3] J.J.Gibson,T.W.D.Edwards,S.J.Birks,N.A.St Amour,W.M.Buhay,P.McEachern ,B.B.Wolfe and D.L.Peters.Progress in isotope tracer hydrology in Canada.Hydrological Progresses,2005,19:303-327.
    [4]汪集旸.同位素水文学与水资源、水环境[J].地球科学,2002,7(5).
    [5] H.Craig.The Isotopic geochemistry of water and carbon in geothermal areas [A].Nuclear Geology on Geothermal Areas[M].Spoleto,1963.
    [6] R N.Calyton.The origin of saline formation waters.Isotopic composition [J].Geophys. Res,1966,71:3869-3882.
    [7] H. Craig. Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines[J]. Science,1966,154:1544-1548.
    [8] Chao Yang,Kevin Telmer,and Jan Veizer. Chemical dynamics of the“St. Lawrence”riverine system:δDH2O,δ18OH2O,δ13CDIC,δ18Ssulfate,and dissoved 87Sr/86Sr. Geochimica et Cosmochimica Aeta,1996,60(5):851-866.
    [9] B.Hitchon,H.R.Krouse. Hydrogeochemistry of surface Waters of the Maekenzie River drainage basin,Canada-Ⅲ.Stable isotopes of oxygen,earbon and sulphur.1972, Geochimica et Cosmochimica Acta 36:1337-1357.
    [10] T.A.Stadnyk,N.A.St Amour,N.Kouwen,T. W.D.Edwards,A.Pietroniro,J.J Gibson. A groundwater separation study in boreal wetland terrain: the WATFLOOD hydrological model compared with stable isotope tracers.Isotopes in Environmental and Health Studies,2005.
    [11] A.Luiz.Martinelli,R.J.Gat,B.Plinio,De Camargo,Lucienne,L.Lara and P.H.B. Ometto Jean. The Piracicaba River basin: isotope hydrology of a tropical river basin under anthropogenic stress.Isotopes in Environmental and Health Studies,2004,40(l):45-56.
    [12]苏小四,林学钮,廖资生,王金生.黄河水δ18O、δD和3H的沿程变化特征及其影响因素研究.地球化学,2003,32(4).
    [13]顾慰祖.论流量过程线划分的环境同位素方法.水科学进展,1996,7(2):105-111.
    [14]尹观,范晓,郭建强,杨俊义.四川九寨沟水循环系统的同位素示踪.地理学报,2000,55(4):487-494.
    [15]高志发.环境同位素法在西北地区地下水资源评价中的应用.甘肃地质学报,1995,4(l):62-72.
    [16]洪业汤,顾爱良,王宏卫等.黄河硫同位素组成与青藏高原隆起[J1.第四纪研究,1995,(4):360-366.
    [17]李学礼,刘金辉,史维浚等.新疆准噶尔盆地北部天然水的同位素研究及其应用[J].地球学报,2000,21(4):401-406.
    [18]刘丹,刘世青,徐则民.应用环境同位素方法研究塔里木河下游浅层地下水[J].成都理工学院学报,1997,24(3):89-95.
    [19]顾慰祖,陆家驹,谢民等.乌兰布和沙漠北部地下水资源的环境同位素探讨[J].水科学进展,2002,13(3):326-332.
    [20]王毛兰,胡春华,周文斌.同位素及其在环境科学中的应用[J].安全与环境工程,2006,13(l):9-11.
    [21]聂振龙,陈宗宇,等.黑河干流浅层地下水与地表水相互转化的水化学特征[J].吉林大学学报(地球科学版),2005,35(1):48-53.
    [22] Helegeson H.C..Evaluation of irreversible reactions in geochemical processes involving minerals and aqueons solufions.Ⅰ.Thermodynamic relations[J].Geochim. Cosmochim Acta.1968,32:853-877.
    [23] Osmond J.K.,Kaufan,M.I.,& Cowart.J.B.. Mixing volume calculations,sources and aging trends of florida aquifer water by uranium isotopic methods[J].J.Geochim Cosmochim.Acta,1976,38:1083-1100.
    [24] Stumm W.水化学-天然水体化学平衡导论[M].北京:科学出版社,1987.
    [25] Frengstad B. The pH-dependence of element concentration in crystalline bedrock groundwater[J].The Science of the Total Environment,277:101-117.
    [26] Edmunds W.M.,Carrillo-Rivera J.J,&Acardona. Geochemical evolution groundwater beneath Mexico City[J].Journal of Hydrology,2002,258:1-24.
    [27]宋长春,邓伟.吉林西部地下水特征及其与土壤盐渍化的关系[J].地理科学,2000,20(3):246-250.
    [28]郭占荣.三屯河流域平原区地下水化学组成特征及变化[J].勘察科学技术,2002,2:34-38.
    [29]钱家忠,汪家权,吴剑锋等.徐州张集水源地裂隙岩溶水化学特征及影响[J].环境科学研究,2003,16(2):23-26.
    [30]李向全,张发旺,毕二平,等.宁夏南部“南北古脊梁”岩溶裂隙水流系统分析[J].地球学报,2004,25(5):571-574.
    [31]丁宏伟,张举.河西走廊地下水水化学特征及其演化规律[J].干旱区研究,2005,22(1):24-28.
    [32]辛宝东.北京市房山区岩溶地下水水文地球化学特征[J].水文地质工程地质,2005,3:74-75.
    [33] Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170 (3962): 1088-1090 , DOI: 10. 1126/science. 170. 3962. 1088.
    [34] Meybeck M. Global occurrence of major elements in rivers[M ]//Drever JI.Treatise on Geochemistry,Surface and Ground Water, Weathering, and Soils.Amsterdam: Elsevier, 2003: 207-223.
    [35]陈静生.中国河流水质原理[M].北京:科学出版社,2006:13-17.
    [36]陈静生,夏星辉.我国河流水化学研究进展[J].地理科学,1963,19:290-293.
    [37]乐嘉祥,王德春.中国河流水化学特征[J].地理学报,1963,29(1):2-11.
    [38]刘亚传.石羊河流域的水文化学特征分布规律及演变[J].地理科学,1986,6 (4):348-356.
    [39]周福俊,李绪谦,杜全友.水文地球化学[M].长春:吉林大学出版社,1993.
    [40]王晓娟.银川平原地下水化学成分演化规律及其形成机制研究[J].长安大学硕士学位论文,2005.
    [41]郝爱兵,李文鹏.利用TDS和确定溶滤和蒸发作用对内陆干旱区地下水咸化贡献的一种方法[J].水文地质和工程地质,27(1):4-6.
    [42]陈静生.河流水质原理及中国河流水质[M].北京:科学出版社,2007.
    [43]姜凌,李佩成,郭建青.贺兰山西麓典型干旱区绿洲地下水水化学特征与演变规律[J].地球科学与环境学报,2009,31(3):285-290.
    [44]章光新,邓伟,何岩,等.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,( 1):20-28.
    [45] Sun Yaqiao,Qian Hui,Wu Xuehua.Hydrogeochemical characteristics of groundwater depression cones in Yinchuan City,Northwest China[J].Chinese Journal of Geochemist ry,2007,26(4):350-355.
    [46]温小虎,许彦卿,苏建平等.额济纳盆地地下水盐化特征及机理分析[J].中国沙漠,2006,26(5):836-841.
    [47]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [48]陈静生,陶澎,邓宝山,等.水环境化学[M].北京:高等教育出版社,1987:87.
    [49]杨忠耀.硒的水文地球化学与人体健康的关系[J].桂林冶金地质学院学报,1994,14(2);201-207.
    [50]张本仁.地球化学进展[M].北京:化学工业出版社,2005.
    [51]王恒纯.同位素水文地质概论[M].北京:地质出版社,1991,48-49.
    [52]张洪平等.中国大气降水稳定同位素组成及影响因素[J].中国地质科学院水文地质工程地质研究所所刊,1991,(7):101-110.
    [53]尹观.同位素水文地球化学[M].成都:成都科技大学出版社,1988,87-89.
    [54] Gat J R,Gonfiantini R. Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle[M].Vienna:IAEA,1981,103-139.
    [55]A.Luiz.Martinelli,R.J.Gat,B.plinio,De Camargo,Lucienne,L.Lara and P.H. B.Ometto Jean.The Piracicaba River basin:isotope hydrology of a tropical river basin under anthropogenic stress. Isotopes in Environmental and Health Studies,2004,40(l):45-56.
    [56] L.Araguas-Araguas,K.Froehlich and K.Rozanski.Deuterium and oxygen-18 isotope composition of Precipitation and atmospheric moisture. Hydrological Proeesses.2000(14):1341-1355.
    [57] Kusakabe,M.,et al.:1970,Oxygen and hydrogen isotope ratios of monthly collected waters from nasudake vocanic area,Japan,“J.Geophy.res”Vol.75,No,30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700