复合阿伦磷酸钠骨水泥的制备和评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     无菌性松动是关节假体置换术后失败的主要原因,目前无特别有效的防治办法。二磷酸盐是一类人工合成的焦磷酸类似物,它可作用无菌性松动的多个环节如提高假体周围骨密度、抑制术后骨量丢失等,有望成为防治无菌性松动的理想药物。它的给药方式主要是口服,存在生物利用度低、服用时间长、治疗费用昂贵和上消化道溃疡等不足。局部用药是一个比较理想的给药途径。骨水泥是多种药物的良好载体,把阿伦磷酸钠加入骨水泥中是否安全、有效地防治无菌性松动,必须进行骨水泥生物力学、洗提特性、细胞生物学的研究,本文就从这几个方面初步探讨复合阿伦磷酸钠骨水泥的可行性并确定骨水泥中阿伦磷酸钠合适的加入量。
     方法
     1.生物力学研究
     (1)在50g骨水泥粉末中分别加入0 mg、10 mg、50 mg、100mg、500mg和1000mg制备骨水泥压缩、弯曲(模量)强度和疲劳实验标本。用INSTRON 8032型万用测试仪测定各组骨水泥浸提前和浸提4W后的压缩强度、弯曲(模量)强度和张力性疲劳寿命。四点弯曲试验标本断面和疲劳实验标本孔隙率分别用电镜和MCT检测。
     (2)用推出实验检测6组不同阿伦磷酸钠加入量的骨水泥-金属界面浸提前和浸提4W后的界面剪切强度,实验后骨水泥标本表面用电镜扫描。在大白兔股骨远端制备骨水泥-骨界面,在术后1天和60天用推出实验检测界面剪切强度并扫描界面周围骨密度。
     2.洗提实验
     在50g骨水泥粉末中分别加入10mg、50mg、100mg、500mg和1000mg阿伦磷酸钠制备浸提标本,每组1个标本放在30ml生理盐水中,在37℃恒温箱里浸提24周,在1、2、3、4、5、6、7、9、11、14、21、28、35、42、49、56、84、112、140、168d取样品5ml,在高效液相色谱仪串联质谱仪上测定阿伦磷酸钠的浓度,计算各时点的释放速率和释放总量百分比。
     3.细胞生物学研究
     (1)破骨前体细胞Raw264.7与不同浓度的阿伦磷酸钠(0M、10~(-9)M、10~(-8)M、10~(-7)M、10~(-6)M和10~(-5)M)在RANKL存在条件下培养8天,细胞计数检测破骨前体细胞向破骨细胞分化的功能;同条件下培养14天后取出培养板中的骨磨片行电镜扫描,观察骨吸收陷窝的数目并用Image-Pro(R)Plus软件分析骨吸收陷窝面积检测骨吸收功能。
     (2)在50g骨水泥粉末中分别加入0mg、10mg、50mg、100mg、500mg和1000mg阿伦磷酸钠制备浸提标本和粘附标本。各组骨水泥标本浸提液或未浸提培养液与成骨样细胞MG-63共培养,检测成骨样细胞MG-63增殖、细胞毒性、凋亡、碱性磷酸酶活性、蛋白合成及骨矿化能力。用电镜扫描与成骨样细胞MG-63共培养的粘附标本,观察细胞表面粘附情况。
     结果
     1.在50g骨水泥粉末中分别加入10 mg、50 mg、100 mg、500 mg和1000 mg阿伦磷酸钠对浸提前和浸提4W后的压缩强度、张力性疲劳寿命、疲劳标本和骨水泥-金属界面孔隙率,浸提前的弯曲模量和骨水泥-金属界面剪切强度,术后第1天骨-骨水泥界面的剪切强度和骨密度无明显影响;当分别加入50 mg、100 mg、500 mg、1000mg阿伦磷酸钠时可显著增大术后第60天骨-骨水泥界面的剪切强度和骨密度;当加入1000mg阿伦磷酸钠时浸提前和浸提4W后的弯曲强度、浸提后的弯曲模量、浸提后的骨水泥-金属界面剪切强度显著性减少。
     2.各组骨水泥中阿伦磷酸钠释放速率先快后慢,在同一时间点随加入量增加而增大。各组阿伦磷酸钠释放总量百分比在快速释放期相似,约11%;在缓慢释放期不同,但在24周时均不超过25%。释放总量百分比斜率在快速释放期相似,在缓慢释放期也不同:500mg组斜率最小,10mg组最大。
     3.阿伦磷酸钠随浓度(0M-10~(-5)M)增加呈剂量依赖性抑制破骨细胞骨吸收功能;高浓度(10~(-6)M和10~(-5)M)时明显抑制破骨细胞分化,而低浓度(10~(-9)M、10~(-8)M和10~(-7)M)时对细胞分化无影响。在50g骨水泥粉末中分别加入10 mg、50 mg、100 mg、500 mg和1000mg阿伦磷酸钠对成骨样细胞MG-63无毒性,对特异性碱性磷酸酶活性、胞体外钙化结节形成和增殖无显著性影响;前4组显著抑制细胞凋亡,而1000mg组使细胞凋亡加剧。
     结论
     1.各组骨水泥浸提前和浸提4W后的静态机械性能均符合骨水泥ISO5833(2002)标准。在50g骨水泥粉末中阿伦磷酸钠不超过500mg时不会降低浸提前和浸提4W后的压缩强度、弯曲(模量)强度、张力性疲劳寿命、骨水泥-金属界面剪切强度和术后1、60天骨-骨水泥界面的剪切强度。
     2.骨水泥是一种良好的阿伦磷酸钠的载体和缓释体,阿伦磷酸钠在骨水泥固化时未被破坏且可从骨水泥中缓慢释放,释放浓度随加入量增加而增加。
     3.各组复合阿伦磷酸钠骨水泥无成骨细胞毒性,其药物释放浓度在较长时间(至少24周)高于抑制破骨细胞的最小有效浓度。
OBJECTIVE
     Aseptic loosening is the main failure reason after prosthetic replacement for joints and there are no effective methods for its prevention and cure.Bisphosphonate is a class of compounds whose chemical constitution is similar with pyrophosphate.It can act on lots of steps during development of aseptic loosening such as periprosthetic bone density after operation et.al,and may become a ideal drug.Oral administration is the main way for alendronate and it have lots of shortcomings such as low bioavailability,long time's drug administration, expensive treatment cost,upper disgestive tract ulcer,et,al.Local application is a better route of administration.Bone cement had been proved as a good drug carrier.It is unknown that alendronate -impregnated bone cement is effective or not for aseptic loosening.In order to solve it,there are three questions to study which are mechanical properties of bone cement,drug-releasing law of alendronate in bone cement and effects on osteoblasts and osteoclasts.Therefore,this experiment studied these three aspects and according to these results, feasibility of alendronate-impregnated bone cement and the adapted addition of alendronate in bone cement were determined.
     METHODS
     1.Study of biomechanics
     (1)Samples of compression strength,bending strength,bending modulus and fatigue life were prepared with bone cements added 10mg,or 50mg、or 100mg、or 500mg,or 1000mg alendronate in 50g bone cement powders respectively.Compression strength,bending strength, bending modulus and tensive fatigue life of bone cements were examinated by INSTRON 8032 tester before elution and after elution for 4 weeks.Broken samples of four-point bending test were examinated by SEM and porosity rates of fatigue samples were determinated by MCT.
     (2)Cement-metal interface's shear strength of six groups with different alendronate in 50g bone cement powders were examinated before elution and after elution for 4 weeks.Surfaces of bone cement samples after test were observed by SEM.Cement-bone interfaces of six groups with different alendronate in 50g bone cement powders were prepared in distal femur of rabbits and their shear strength was examinated on 1d and 60d after operation.Bone densities around bone cement were evaluated.
     2.Elution experiments
     Samples Lixiviated were prepared with bone cement added 10mg,or 50mg、or 100mg、or 500mg,or 1000mg alendronate in 50g bone cement powders respectively.One sample of each group was dipped into 30ml 0.9%physiological saline and Lixiviated for 24 weeks.5 ml leaching liquor of each group was collected at 1、2、3、4、5、6、7、9、11、14、 21、28、35、42、49、56、84、112、140、168d,and concentrations of alendronate were detected by mass spectrometer combined with high performance liquid chromatograph.Alendronate's release percent of total amount and its releasing velocity of each group were determined at different time points.
     3.Cells bioresearch
     (1)Osteoclast precursor Raw264.7 were co-cultured with different concentrations of alendronate(0M、or 10~(-9)M、or10~(-8)M、or10~(-7)M、or10~(-6)M, or10~(-5)M)for 8 days in presence of RANKL and osteoclast differentiation was detected by cells account.After 14 days under the forementioned conditions,bone slices of each group were taken out of culture plates and examinated by SEM.Numbers and morphous of absorption lacuna were observed and their absorption areas were evaluated by image-Pro(?)Plus software.
     (2)Lixiviating and adhesive samples were prepared with bone cement added 10mg,or50mg、or 100mg、or 500mg,or 1000mg alendronate in 50g bone cement powders respectively.Osteoblast-like cells MG-63 were co-cultured with leaching liquor of samples from different groups and their proliferation,apoptosis,alkaline phosphatase activities,protein synthesis ability and bone mineralization capability were evaluated. Adhesive samples cultured with osteoblast-like cells MG-63 were examinated by SEM and cell adhesion and morphous on samples' surfaces were observed.
     RESULTS
     1.10mg,or 50mg、or 100mg、or 500mg,or 1000mg alendronate added in 50g bone cement powders had no effects on compression strength,tensive fatigue life,porosity rates of fatigue samples and cement-metal interfaces before elution and after elution for 4 weeks, flexural modulus and shear strength of cement-metal interfaces before elution,shear strength and bone density in cement-bone interface of 1d after operation.When 50mg、or 100mg、or 500mg,or 1000mg alendronate was added,shear strength and bone density in cement-bone interface of 60d after operation increased remarkedly.When addition of alendronate was 1000mg,significant reduction was found in flexural strength before elution and after elution for 4 weeks,flexural modulus and shear strength of cement-metal interfaces after elution for 4 weeks.
     2.Alendronate in bone cement of all groups released quickly in early stage and then slowly in late stage,and its releasing velocity at the same time point increased step by step with more addition of alendronate.All groups had similar releasing percent of total amount and its slope in quick-release stage.However,in slow-release stage they became different. Maximal and minimal slope were found in 500mg group and 10mg group respectively.
     3.Alendronate with concentration range from 0M to 10~(-5)M inhibited bone absorption in dose-dependent way.However,alendronate inhibited osteoclast differentiation in high concentrations(10~(-5)M and 10~(-6)M)and there are no effects in low concentrations(10~(-7)M、10~(-8)M and 10~(-9)M). Alendronate whose addition was 10 mg,or 50 mg,or 100 mg,0r 500 mg,or 1000mg in 50g acrylic bone cement powders,had no cytotoxicity on osteoblast-like cells MG-63.Four groups with less amount of alendronate inhibited their apoptosis in dose-dependent way and largest amount group showed contrary effect on osteoblast-like cells MG-63.10mg,or 50mg、or 100mg、or 500mg,or 1000mg alendronate added in 50g bone cement powders had no effects on specific AKP activities,proliferation and formation of extracellular calcified tubercles.
     CONCLUSIONS
     1.Static mechanical properties of bone cement in all groups accorded to standard of ISO 5833(2002)for acrylic bone cement.Less than 500mg alendronate added in 50g bone cement powders didn't decrease compressive strength、flexural(modulus)strength,tensive fatigue life and shear strength of cement-metal interface before elution and after elution for 4 weeks,shear strength of cement-bone interface on 1d and 60d after operation significantly.
     2.Bone cement was a good slow-release carrier of alendronate.It wasn't destructed and released from cement slowly.When more alendronate was added,its releasing concentrations increased gradually.
     3.All alendronate-impregnated bone cement had no cytotoxicity on osteoblasts and their releasing concentration lasted for a long time(more than 24 weeks)above minimum effective drug concentration for osteoclasts.
引文
[1]Harris WH:The problem is osteolysis.Clin Orthop Rel Res.1995,311:46-53.
    [2]Dowd JE,Schwendeman LJ,Macaulay W,et,al.Aseptic loosening in uncemented total hip arthroplasty in a canine model.Clin Orthop Relat Res(1995)319:106-121.
    [3]范卫民,王青,陶松年,等.人工关节松动病因的研究[J].中华骨科杂志,1998,9:518-521.
    [4]T.N.Crotti,M.D.Smith,D.M,Findiay,et,al.Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss:expression of receptor activator NF-kB,RANK ligand and osteoprotegerin[J].Biomaterials.2004,25:565-573.
    [5]卢宏章,朱天岳,柴卫兵.人工关节无菌性松动界膜中的免疫反应.[J]中华骨科杂志,2001,21(6):371-374.
    [6]R.Lappalainen,M.Selenius,A.Anttila,et,al.Reduction of wear in total hip prostheses by amorphous diamond coating[J].J-Bio-Mater-Res(Br),2003(15)66:410-413.
    [7]Emerson RHJr,Sanders SB,Head WC,et,al.Effect of circumferential plasma spray porous coating on the rate of femoral osteolysis after total hip arthroplasty[J].J Bone Joint Surg Am,1999,81(9):1291-1298.
    [8]Bhumbra RP,Walker PS,Berman AB,et,al.Prevention of loosening in total hip replacements using guided bone regeneration[J].Clin Orthop,2000,(372):192-204.
    [9]Childs LM,Goater JJ,O Keefe RL,et al.Effect of antitumor necrosis factor alpha gene therapy on wear deberis induced osteolysis[J].J Bone Joint Surgery Am,2001,83:1789-1797.
    [10]Soininvara TA,Jurvelin JS,Miettinen HJ,et,al.Effect of alendronate on periprosthetic bone loss after total knee arthroplasty:a one-year,randomized,controlled trial of 19 patients.Calcif Tissue Int.2002 Dec;71(6):472-7.
    [11]Nehme A,Maalouf G,Tricoire JL,et,al Effect of alendronate on periprosthetic bone loss after cemented primary total hip arthroplasty:a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot. 2003 Nov;89(7):593-8.
    [12] Wang Of, Wang JW, Weng LH, et,al. The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J Bone Joint Surg Am. 2003 Nov; 85-A(11):2121-6.
    [13] Wang CJ, Wang JW, Ko JY, et,al. Three-year changes in bone mineral density around the knee after a six-month course of oral alendronate following total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am. 2006 Feb;88(2):267-72.
    [14] Huk OL,Zukor DJ,Antomou J, et,al. Effect of pamidronate on the stimulation of macrophage TNF-alpha release by ultra-high molecular weight polyethylene particles :a role for apoptosis [J].J Orthop Res, 2003,21:81-87.
    [15] Igarashi K, Hirafuji M, Adachi H, et,al . Effects of bisphosphonates on alkaline Phosphatase activity, mineralization, and prostaglandin E2 synthesis in the clonal osteoblast-like cell line MC3T3-E1. Prostaglandins Leukot Essent Fatty Acids. 1997 Feb;56(2):121-5.
    [16] Giuliani N, Pedrazzoni M, Passed G, et, al. Bisphosphonates inhibit IL-6 production by human osteoblast-like cells. Scand J Rheumatol. 1998;27(1): 38-41.
    [17] Marius von Knoch, Christian Wedemeyer, Andreas Pingsmann,et,al The decrease of particle-induced osteolysis after a single dose of bisphosphonate.Biomaterials 26 (2005):1803-1808.
    [18] Giuliani N, Pedrazzoni M, Negri G, et, al. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998 May;22(5): 455-61.
    [19] Im GI, Qureshi SA, Kenney J,et,al. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004 Aug;25(18):4105-15.
    [20] Plotkin LI, Weinstein RS, Parfitt AM, et,al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and Calcitonin. J Clin Invest. 1999 Nov; 104 (10): 1363-74.
    [21] Kellinsalmi M, Monkkonen H, Monkkonen J. In vitro comparison of clodronate, pamidronate and zoledronic acid effects on rat osteoclasts and human stem cell-derived osteoblasts. Basic Clin Pharmacol Toxicol. 2005 Dec;97(6):382-91.
    [22] Gonzalez-Moles MA, Bagan-Sebastian JV. Alendronate-related oral mucosa ulcerationsJ Oral Pathol Med. 2000 Nov;29(10):514-8.
    [23] de Groen PC, Lubbe DF, Hirsch LJ,et,al. Esophagitis associated with the use of alendronate. N Engl J Med. 1996 Oct 3;335(14):1016-21.
    [24] Afsaneh Sabokbar, Yosuke Fujikawa, David W Murray,et,al. Bisphosph- onates in bone cement inhibit PMMA particle induced bone resorption. Ann. Rheum Dis, 1998;57:614-618.
    [25] Greiner S, Kadow-Romacker A, Wildemann B, et,al. Bisphosphonates incorporated in a poly(D,L-lactide) implant coating inhibit osteoclast like cells in vitro. J Biomed Mater Res A. 2007 Dec 15;83(4): 1184-91.
    [26] van't Hof RJ, Macphee J, Libouban H, et,al . Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology. (2004)145: 5068-5074.
    
    [27] Peter B, Pioletti DP, Laib S, et,al. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36:52-60.
    
    [28] Lewis G, Janna S. Alendronate in bone cement: fatigue life degraded by liquid, not by powder. Clin Orthop Relat Res. 2006 Apr;445:233-8.
    [29] British Standards Institution. International Standard ISO 5833 Implants for surgery - Acrylic resin cements. 2002.
    [30] Armstrong MS, Spencer RF, Cunningham JL, et,al. (2002) Mechanical characteristics of antibiotic-loaden bone cement.J Acta Orthop Scand. 73(6):688-690.
    [31] Gogus A, Akman S, Goksan SB, et,al. (2002) Mechanical strength of antibiotic-impregnated bone cement on day 0 and day 15: a biomechanical study with Surgical Simplex P and teicoplanin. Acta Orthop Traumatol Turc. 36:63-71.
    [32] Nottrott M, Molster AO, Gjerdet NR . Time dependent mechanical properties of bone cement. An in vitro study over one year. J Biomed Mater Res B Appl Biomater. 2007 Nov;83(2):416-21.
    [33] Gladius Lewis. Fatigue Testing and Performance of Acrylic Bone-Cement Materials: State-of-the-Art Review. J Biomed Mater Res B Appl Biomater. 2003 Jul 15;66(1):457-86.
    [34] Marrs B, Andrews R, Rantell T,et,al. Augmentation of acrylic bone cement with multiwall carbon nanotubes. J Biomed Mater Res A. 2006 May;77(2):269-76.
    [35] Davies JP, O'Connor D, Burke DW, et,al. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation. J Biomed Mater Res. 1989;23:379 -397.
    [36] Davies JP, Harris WH. Effect of hand mixing tobramycin on the fatigue strength of Simplex-P. J Biomed Mater Res. 1991; 25:1409 -1414.
    [37] Klekamp J,Dawson JM,Haas DW,et,al.The use of Vancomycin and tobra- mycin in acrylic bone cement. J Arthroplasty. 1999; 14:339 -346.
    [38] N.DUNNE,J. F. ORR, M. T. MUSHIPE, et,al. Biomaterials. 24 (2003) 239.
    [39]GLEWIS,J.Biomed.Mater.Res.48(1999)143.
    [40] S.D. MULLER,S. M.GREEN ,A.W.MCCASKJE. Acta Orthop. Scand. 73 (2002) 684.
    [41] W. MACAULAY, C. W. DIGIOVANNI, A. RESTREPO, et,al. J. Arthroplasty. 17 (2002) 569.
    [42] M. JASTY, J ., P. DAVIES, D. O. O' CONNOR, et,al. Clin. Orthop. Rel. Res. 259 (1990) 122.
    
    [43] N. J . DUNNE,J . F. ORR. Biomaterials. 22 (2001) 1819.
    [44] Benjamin D. Cox , Ruth K. Wilcox , Martin C. Levesley, et,al. Assessment of a three-dimensional measurement technique for the porosity evaluation of PMMA bone cement. J Mater Sci: Mater Med. (2006) 17: 553-557.
    [45] Harrigan TP, Kareh JA, O'Connor DO, et,al. (1992) A finite element study of the initiation of failure of fixation in cemented femoral total hip components. J Orthop Res. 10:134-144.
    [46] Harris WH. (1992) Is it advantageous to strengthen the cement-metal interface and use a collar for cemented femoral components of total hip replacement? Clin Orthop.285:67-72
    [47] Jasty M, Maloney WJ, Bragdon CR,et,al. (1991) The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg Br.73:551-558.
    [48] Verdonshot N, Huiskes R .(1997) The effects of cement-stem debonding in THA on long-term failure probability of cement. J Biomech .30: 795-802.
    
    [49] Kilicoglu O, Koyuncu LO, Ozden VE,et,al. Effect of antibiotic loading on the shear strength at the stem-cement interface (Shear strength of antibiotic loaded cement). Int Orthop. 2007 Mar 14. [Epub ahead of print]
    [50] Bundy KJ, Penn RW .(1987) The effect of surface preparation on metal -bone cement interfacial strength. J Biomed Mater Res.21:773-805.
    [51] Wang JS, Taylor M, Flivik G, et,al. (2003) Factors affecting the static shear strength of the prosthetic stem-bone cement interface. J Mater Sci Mater Med. 14:55-61.
    [52] Welsh RP, Pilliar RM, McNab D. (1971) Surgical implants: the role of surface porosity in fixation to bone and acrylics. J Bone Joint Surg Am 53:963-977.
    [53] Muller RT, Schumann N. (1999) Shear strength of the cement-metal interface- an experimental study. Arch Orthop Trauma Surg. 119:133-138.
    [54] Ieseka K, Jaffe WL, Kummer FJ. (2003) Effects of the initial temperature of acrylic bone cement liquid monomer on the properties of the stem-cement interface and cement polymerization. J Biomed Mater Res. Part B Appl Biomater 68B: 186-190.
    [55] Wilde A, Greenwald AS .(1975) Shear strength of self-curing acrylic cement. Clin Orthop Rel Res.l06:126-130.
    [56] Ahmed AM, Raab S, Miller JE. (1984) Metal/cement interface strength in cemented stem fixation. J Orthop Res. 2:105-118.
    [57] Crowninshield RD, Jennings JD, Laurent ML, et,al. (1998) Cemented femoral component surface finish mechanics. Clin Orthop Rel Res. 355: 90-102.
    [58] Malchau H, Herberts P, Eisler T, et,al. The Swedish Total Hip Replacement Register. J Bone Joint Surg. 2002;84(suppl 2):2-20.
    [59] Erli HJ, Marx R, Paar O, et,al. (2003) Surface pretreatments for medical application of adhesion. Biomed Eng Online. 18:15
    [60] Ralf Muller-Rath,Dieter C. Wirtz,Christian H. Siebert, et,al. Amphiphilic bonder improves adhesion at the acrylic bone cement-bone interface of cemented acetabular components in total hip arthroplasty: in vivo tests in an ovine model. Arch Orthop Trauma Surg .2007 Jul 25 [Epub ahead of print]
    [61] Jove Graham, Michael Ries , lisa Pruitt . Effect of Bone Porosity on the Mechanical Integrity of the Bone-Cement Interface . J Bone Joint Surg Am. 2003;85:1901-1908.
    
    [62] Moran MJ, Greenwald AS, Matejczyk MB. (1978) Effect of gentamicin on shear and interface strengths of bone cement. Clin Orthop Rel Res. 141:96-101.
    
    [63] John A. Handal, Richard F. Frisch, William L. Weaver, et,al. Method for the Physical Analysis of Drug-bone Cement Composite.CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 459: 105-109.
    
    [64] Mulroy WF, Harris WH. Revision total hip arthroplasty with use of so-called second-generation cementing techniques for aseptic loosening of the femoral component. A fifteen-year-average follow-up study. J Bone Joint Surg Am .1996; 78: 325-330.
    
    [65] Healey JH, Shannon F, Boland P, et,al. PMMA to stabilize bone and deliver antineoplastic and antiresorptive agents. Clin Orthop Relat Res. 2003; 415(Suppl):S263-S275.
    
    [66] Halasy-Nagy JM, Rodan GA, Reszka AA. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis . Bone 2001 Dec;29(6):553-9.
    
    [67] Breuil V, Cosman F, Stein L,et,al.Human osteoclast formation and activity in vitro: effects of alendronate. J Bone Miner Res. 1998 Nov;13(11):1721-9.
    
    [68] Lehenkari, M. Kellinsalmi, J. N. Napankangas, et,al. Further insight into mechanism of action of clodronate: Inhibition of mitochodrial ADP/ATP translocase by a nonhydrolyzable, adenine containing metabolite. Mol. Pharmacol. 2002, 61:1255-1262.
    [69] Fisher JE, Rogers MJ, Halasy JM , et,al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Nat Acad Sci USA 1999;96(1):133-8.
    [70] van beek E, Lowik C, van der PG, et,al. The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res 1999; 14(5): 722-9.
    [71] Luckman SP, Hughes DE, Coxon FP, et,al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP binding proteins, including Ras. J Bone Miner Res. 1998;13(4):581-9.
    [72] Russell RGG Determinants of structure-function relationships among bisphosphonates. Bone 2007;40:S21-5.
    [73] Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899-911.
    [74] Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev 2003;17:2481-95.
    [75] Lacey DL, Timms E, Tan H-L. Osteoprotegerin (OPG) ligand is a cytokine that regulates osteoclast differentiation and activation. J Cell (1998) 93:165-176.
    [76] Rodan G, Reszka A , Golub E , et,al. Bone safety of long term bisphosphonate treatment. Curr Med Res Opin, 2004,20 (8) :1291-1300.
    [77] Yang M, Bimbaum MJ, Mackay CA, et,al. Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. J Cell Physiol. 2008 May; 215(2): 497-505.
    [78] Srinivasan S, Avadhani NG Hypoxia-Mediated Mitochondrial Stress in RAW264.7 Cells Induces Osteoclast-Like TRAP-Positive Cells. Ann N Y Acad Sci. 2007 Nov;1117:51-61.
    [79] Nicolin V, Bareggi R, Baldini G, et,al . Effects of neridronic acid on osteoclasts derived by physiological dual-cell cultures. Acta Histochem. 2007; 109(5): 397-402
    [80] Rissanen JP, Suominen MI, Peng Z, et,al. Secreted Tartrate-Resistant Acid Phosphatase 5b is a Marker of Osteoclast Number in Human Osteoclast Cultures and the Rat Ovariectomy Model. Calcif Tissue Int. 2008 Feb; 82(2):108-15.
    [81] Selander K, Lehenkari P. The effects of bisphosphonates on the resorption cycle of isolated osteoclasts. Calcif Tissue Int (1994) 55:368-375.
    [82] Fromigue O, Body JJ. Bisphosphonates influence the proliferation and the maturation of normal human osteoblasts. J Endocrinol Invest. 2002 Jun;25(6): 539-46.
    [83] Lin JT, Lane JM. Bisphosphonates. J Am Acad Orthop Surg .(2003) 11:1-4.
    [84] Madore GR, Sherman PJ, Lane JM. Parathyroid hormone . J Am Acad Orthop Surg.(2004)12:67-71.
    [85] Balena, R. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J. Clin. Invest. (1993)92: 2577-2586.
    [86] Storm, T., Steiniche, T, Thamsborg, G.,et,al . (1993) Changes in bone histomorphometry after long-term treatment with intermittent,cyclic etidronate for postmenopausal osteoporosis. J. Bone Miner. Res.8:199-208.
    [87] Mathov I, Plotkin LI, Sgarlata CL, et,al. Extracellular signal- regulated kinases and calcium channels are involved in the proliferative effect of bisphosphonates on osteoblastic cells in vitro. J Bone Miner Res. 2001;16(11): 2050-6.
    [88] Viereck V, Emons G, Lauck V, et,al. Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 2002;291(3):680-6.
    [89] Garcia-Moreno C, Serrano S, Nacher M , et,al. Effect of alendronate on cultured normal human osteoblasts. Bone 1998;22(3):233-9.
    [90] Milena Romanello , Nicoletta Bivi, Alex Pines, et, al.Bisphosphonates activate nucleotide receptors signaling and induce the expression of Hsp90 in osteoblast-like cell lines. Bone 39 (2006) 739-753.
    [91] Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival by connexin-43 hemichannels. J Biol Chem. 2002;277:8648-57.
    [92] Iwata K, Li J, Follet H, et,al.Bisphosphonates suppress periosteal osteoblast activity independently of resorption in rat femur and tibia. Bone. 2006 Nov;39(5): 1053-8.
    [93] Gasser, A. B., Morgan, D. B., Fleisch, H. A., et,al. The influence of two diphosphonates on calcium metabolism in the rat. Clin. Sci. (Lond.), 1972,43: 31-45.
    [94] Reitsma, P. H., Bijovoet, O. L. M., Verlinden-Ooms, et,al . Kinetic studies of bone and mineral metabolism during treatment with 3-amino- 1- hydroxypro -pylidene-l,l-bisphosphonate (APK) in rats. Calcif. Tissue Int., 1980,32: 145-157.
    [95] Chavassieux PM, Arlot ME, Reda C, et,al. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 1997; 100 (6): 1475-80.
    [96] Grynpas, M. D., Acito, A., Dimitriu, M., et,al. Changes in bone mineralization, architecture and mechanical properties due to long-term (1 year) administration of pamidronate (APD) to adult dogs. Osteoporos. Int., (1992)2: 74-81.
    [97] Coxon FP, Thompson K, Ebetino FH, et,al. Resorbing osteoclasts increase the availability of mineral-bound bisphosphonates to nonresorbing cells. J Bone Miner Res. 2005;20:s260.
    [98] Gasser JA, Ingold P, Rebmann A, et,al . The blunting of the bone anabolic response to PTH observed after frequently dosed bisphosphonates in rats may be explained by inhibition of farnesyl diphosphate synthase in osteoblasts. J Bone Miner Res. 2005;20:s78.
    
    [99] Wang W, Ferguson DJ, Quinn JM, et,al. (1997) Biomaterial particle phagocytosis by bone-resorbing osteoclasts. J Bone Joint Surg Br. 79: 849-856.
    
    [100] Bobyn JD, Glassman AH, Goto H, et,al. (1990) The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop Relat Res. 261:196-213.
    [101] Hilding M, Aspenberg P. Local peroperative treatment with a bisphosphonate improves the fixation of total knee Prostheses: a randomized, double-blind radiostereometric study of 50 patients.Acta Orthop.2007 Dec;78(6):795-799.
    [102]Kwan Tat S,Padrines M,Theoleyre S,et,al.IL-6,RANKL,TNF-alPha/IL-1:interrelations in bone resorption pathophysiology[J].Cytokine Growth Factor Rev,2004,15(1):49-60.
    [103]Granchi D,Amato I,Battistelli L,et,al.Molecular basis of osteoclastogenesis induced by osteoblasts exposed towear particles[J].Biomaterials,2005,26(15):2371-2379.
    [104]Konttinen YT,Li TF,Michelsson O,et,al.Expression of tenascin-Cin aseptic loosening of total hip replacement.Ann Rheum Dis,1998,1998 Oct;57(10):619-23.
    [105]Kim KJ,Chiba J,Rubash HE.Invivo and in vitro analysis of membranes from hip prostheses inserted without cement.J Bone Joint Surg(Am),1994,76:172-180.
    [106]Li TF,Xu JW,Santavirts S,et,al.Distribution of fibronectins and their integrin receptors in interface tissue from aseptic loosening of hip prostheses.Clin Exp Rheumatol,2000,18:221-225.
    [107]Konttinen YT,Li TF,Xu JW,et,al.Expression of laminins and their integrin receptors in different conditions of synovial membrane andsynovial membranelike interface tissue.Ann Rheum Dis,1999,58:683-690.
    [108]马益民,范卫民二磷酸盐对骨水泥微粒刺激单核细胞分泌肿瘤坏死因子的影响[J].南京医科大学学报.2001.5:201-210.
    [109]Coxon FP,Thompson K,Rogers MJ.Recent advances in understanding the mechanism of action of bisphosphonates.Curr Opin Pharm,2006;6:307-12.
    [110]Leu CT,Luegrnayr E,Freedman LP,et al.Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy.Bone,2006;38:628-36.
    [111]Fleisch,H.Bisphosphonates:mechanisms of action.Endocr.Rev.1998,19:80-100.
    [112]Evans,C.E.,Braidman,I.P.Effects of two novel bisphosphonates on bone cells in vitro.Bone Miner.1994,26:95-107.
    [113]Ito,M.,Amizuka,N.,Nakajima,T.,et,al.Ultrastructural and cytochemical studies on cell death of osteoclasts induced by bisphosphonate treatment.Bone, 1999,25: 447-152.
    [114] Reszka, A. A., Halasy-Nagy, J. M., Masarachia, et,al. Bisphosp- honates act directly on the osteoclast to induce caspase cleavage of Mstl kinase during apoptosis. J. Biol. Chem, 1999, 274: 34967- 34973.
    [115] Rodan G.A, Fleisch H. Bisphosphonates:Mechanism of action. J Clin Invest 1996;97:2692-6.
    [116] Nishikawa M, Akatsu T, Katayama Y, et,al. Bisphosphonates act on osteoblastic cells and inhibit osteoclast formation in mouse marrow cultures. Bone,1996,18:9-14.
    [117] Vitte C, Fleisch H, Guenther HL. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated dose-dependent effect. Endocrinology, 1996;137:2324-33.
    [118] KobayashiA,Hirano F,Makino I.The inhibitory effect of bisphosphonates on glucocorticoid-induced RANKL expression in human cells.[J]. Scand J Rheumatol, 2005, 34(6): 480-484.
    [119] B. Pan, L.B. To, A.N. Farrugia, et,al. The nitrogencontaining bisphosphonate, zoledronic acid, increases mineralization of human bone-derived cells in vitro, Bone. 34 (2004) : 112-123.
    [120] B. Peter, P.Y. Zambelli, J. Guicheux, et,al. The effect of bisphosphonates and titanium particles on osteoblasts: an in vitro study. J. Bone Joint Surg. Br. 87 (2005): 1157-1163.
    [121] J. Yu, S.S. Chang, S. Suratwala, et,al. Zoledronate induces apoptosis in cells from fibrocellular membrane of unicameral bone cyst (UBC). J. Orthop. Res. 23 (2005):1004-1012.
    [122] C.V. Odvina, J.E. Zerwekh, D.S. Rao, et,al.Severely suppressed bone turnover: a potential complication of alendronate therapy. J. Clin. Endocrinol. Metab. 90 (2005):1294-1301.
    [123] Aaron Schindeler, David G.Little osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro. Biochemical and Biophysical Research Communications. 338 (2005): 710-716.
    [124]von Knoch F,Jaquiery C,Kowalsky M,et,al.Effects of bisphospho-nates on proliferation and osteoblast differentiation of human bone marrow stromal cells.Biomaterials.2005 Dec;26(34):6941-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700