内蒙古化德县三胜村钨钼矿床的成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三胜村钨钼矿床位于内蒙古集宁市化德县境内,是新近评价出的中型矿床,远景可达大型。本文在野外地质调研、矿床地质、岩相学、LA-ICP-MS锆石U-Pb和辉钼矿Re-Os年代学、元素地球化学、稳定同位素和流体包裹体的系统研究基础上,探讨了该钼多金属矿床成矿作用和成矿机制,建立了该钨钼矿床的成矿模式。赋矿的三胜村花岗岩具有高硅,富碱特征,为准铝质-弱过铝质和高钾钙碱性/钾玄岩系列的深源Ⅰ型花岗岩。这些花岗岩相对亏损Ba、K、Sr、P、Ti等元素,显示地幔来源。经LA-ICP-MS锆石U-Pb测年法新获得花岗岩成岩年龄137±1Ma,为早白垩世侵入体。赋矿地层三面井组砂岩、粉砂岩的轻重稀土分馏不明显,轻稀土轻度富集,重稀土走势平缓,并均出现K、P、Ti明显亏损。玛尼吐组安山玢岩轻重稀土分馏明显,轻稀土富集,重稀土分馏不显著。凝灰岩轻重稀土分馏不明显,曲线平缓。Eu均出现轻微富集。凝灰岩与安山玢岩均出现K、P、Ti强烈亏损。三胜村钨钼矿床矿体主要呈层状、似层状、透镜状产出,受岩浆岩和构造控制明显。矿石类型以石英脉型和细脉浸染状为主。根据矿物共生组合划分出了石英-黑钨矿,石英-辉钼矿-黄铁矿阶段和石英-碳酸岩三个成矿阶段。在辉钼矿-石英脉中主要见有三种流体包裹体,以富液相包裹体最为常见。主成矿阶段成矿流体温度集中在200~290℃之间,成矿流体成盐度为5.00~8.95wt%,密度为0.85~0.90g/cm3,对应成矿压力和成矿深度分别为6.12~16.49MPa和2.35-6.00km。矿石的铅同位素组成明显偏离地壳铅源区,成矿物质主要是来源于深源和造山带,这也与花岗岩源于深源的特征相吻合。采用辉钼矿Re-Os同位素定年新获得了三胜钨钼矿床的精确成矿年龄为138+1Ma,表明本区钼多金属矿床形成于早白垩世,与华北陆块北缘的主要钼矿床大规模成矿时间一致(140Ma)。这一年龄值在误差范围内与赋矿花岗岩的成岩年龄几乎等值(差值仅1Ma。)。表明花岗岩岩浆热液直接提供了成矿物质来源。三胜村钨钼矿的成矿模式为燕山晚期含矿热液侵位,在三胜村花岗岩体内、部分在三面井组砂岩、粉砂岩和玛尼吐组中酸性火山岩中、尤其在NNW向断裂构造裂隙中富集成矿。
The W-Mo deposit of Sansheng village is located in Jining County, Inner Mongolia, which is a recent evaluation of medium-sized deposits, can go much further. Based on system research as follows:field geological investigation, mineral deposit geology, petrography, LA-ICP-MS zircon U-Pb and Molybdenite Re-Os chronology, element geochemistry, stable isotopes and fluid inclusions, this paper has discussed the molybdenum polymetallic mineralization and metallogenic mechanism, set up a metallogenic model of the W-Mo deposit. The granite bearing ore of Sansheng village is characteristics with high silicon, rich alkali, metaluminous to weakly peraluminous and high K calc alkaline/shoshonite series, indicates deep source of I type granite. The granite relative loss of Ba, K, Sr, P, Ti and other elements, show the mantle origin. The newly obtained LA-ICP-MS zircon U-Pb dating granite diagenetic age is137±IMa, early Cretaceous intrusive body. The ore-bearing sandstone and siltstone formation of Sanmianjing group show no obvious REE fractionation, slight enrichment of LREE, flat curve of HREE and there are K, P, Ti apparent loss. The andesitic porphyrite of Manitu group has a significant REE fractionation, enrichment of LREE, not obvious HREE fractionation. The tuff of Manitu group has a slight REE fractionation, which curve is flat. Eu appeared slightly enriched in both. Tuff and andesitic porphyrite show strongly loss of K, P, Ti. The Sansheng W-Mo ore body presents mostly stratiform, stratoid and lenticular formation, obviously controlled by magmatic rocks and structures. Vein type in the quartz and veinlet are the main ore types. According to the mineral assemblages we can divide into three stages of mineralization, quartz-wolframite stage, quartz-molybdenite-pyrite stage, quartz and carbonate stage. In the molybdenite-quartz veins there are mainly three types of fluid inclusions, which the rich liquid inclusions is most in common. Temperature of ore-forming fluid in main metallogenic stage is between200~290℃, the salinity of ore-forming fluid is5.00~8.95wt%, density of0.85~0.90g/cm3, the metallogenic pressure and metallogenic depth are6.12~16.49MPa and2.35~6.00km respectively. The lead-isotope composition of ore deviates significantly from the crust, the metallogenic substance mainly derives from deep source and orogenic belt, which also coincides with that granite derived from the deep source. The newly obtained accurate Re-Os dating of Molybdenite for metallogenic age from Sansheng W-Mo deposit is138±1Ma, shows that the area of molybdenum polymetallic deposits formed in the early Cretaceous, is in line with the main molybdenum deposits in the northern margin of North China block of large scale mineralization time (140Ma). This data of age almost equivalent to granite rock and ore within the error (the difference is only1Ma.), shows that the granite magma hydrothermal directly provides the source of metallogenic material. Sansheng W-Mo deposit metallogenic model presents as follows:in the late Yanshan phrase hydrothermal ore bearing solution took emplacement, in Sansheng granitic pluton and partly in sandstone, siltstone of Sanmianjing group and acidic volcano rock of manitu group, especially enriched in NNW fault forming tectonic fissures.
引文
Batchelor R.A, Bowden P.1985. Petrogenetic interpretation of granitoid rock series using multicationicparameters. Chemical Geology,48(1-4):43-55.
    Boynton W. V.,1984. Geochemistry of the rare earth elements:meteorite studies. In:Henderson P.(ed.), Rare earth element geochemistry. Elservier, pp.63-114.
    DavisG A,郑亚东,王琮等.2002.中生代燕山褶皱冲断带的构造演化-以河北省和辽宁省为重点的研究[J].汪洋,李凯明译.北京地质,14(4):1-40.
    Faure G. Principles of isotope geology. New York:John wiley and Sons,1986.
    Feng R, Kerrich R.1992. Geochemical evolution of granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superior Procince, Canada:implications for tectonic history and source regions. Chemical Geology,98(1-2):23-70.
    Harris N. B.W., Pearce J. A, and Tindle A.G.1986. Geochemical characteristics of collision-zone magmatism. In Coward M.P. and Reis A.C.(eds.),Collision tectonics. Spec.Publ.Grol. Soc.Lond.,19, 67-81.
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257 (1-2):34-43.
    Ohmoto H., Rye RO.1979. Isotopes of sulfur and carbon In Barnes H L(ed), Geochemistry of hydrothermal ore deposits, John Wiley & Sons, New York.509-567.
    Pearce J. A, Harris N. B.W and Tindle A.G.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956-983.
    Peccerillo R and Taylor S R.1976. Geochemistry of Eocene calalkaline volcanic rocks from the Kastamonu area, northern Turkey. Cont rib Mineral Petrol,58:63-81.
    Rickwood P C.1989. Boundary lines within petrologic diagrams which use oxides major and minor elements. Lithos,22:247-263
    Roche H. D., Leterrier, P, Grandclaude and Marchal M.1980. A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses-its relationships with current nomenclature, Chemical Geology,29:183-210.
    Samson lain M., Bas Bulent, Holm Paul E.1997. Hydrothermal evolution of auriferous shear zones, Wawa, Ontario[J]. Economic Geology,92(3):325-342.
    Sun S S and McDonough W F.1989. Chemical and isotopic system attics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication,42: 313-345.
    Whalen J.B, Currie K.L, Chappe B W.1987. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and petrology,95:407-419.
    Wilkinson J.2001. Fluid inclusions in hydrothermal ore deposit[J]. Lithos,55:229-272. Zartman R E, Doe B R. Plumbltectonics:the model[J]. Tectonophysics,1981,75:135-162.
    蔡明海,张志刚,屈文俊等.2011.内蒙古乌拉特后旗查干花钼矿床地质特征及Re-Os测年[J].地球学报,32(1):64-68.
    陈昌勇.1998.华北地块北缘金、多金属成矿地质背景[J].辽宁地质,(4):241-250.
    代军治,毛景文,杨富全等.2006.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,25(5):598-611.
    代军治,毛景文,杨富全等.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,2006,25(5):598-612.
    代军治.燕辽成矿带钼(铜)矿床成矿作用与成矿动力学背景[D].中国地质科学院博士论文,2008:1-107.
    邓晋福,冯艳芳,刘翠等.太行-燕辽地区燕山期造山过程、岩浆源区与成矿作用[J].中国地质,2009,36(3):623-633.
    邓晋福,苏尚国,刘翠等.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?[J].地学前缘,2006,13(2):105-119.
    侯万荣,聂凤军,徐斌等.2010.内蒙古中西部钼多金属矿床地质特征及其动力学背景[J].地质与 勘探,46(5):751-764.
    黄崇轲,白冶,朱裕生.2001.中国铜矿床[M].北京,地质出版社:572-582.
    李智,俞波,裴翔等.2012.内蒙古赤峰市喀喇沁旗金蟾山金矿床成矿特征及找矿标志分析[J].西部资源,5:64-68.
    刘斌,沈昆.1999.流体包裹体热力学[M].北京:地质出版社,1-290.
    刘斌.1987NaCl-H20溶液包裹体的密度式和等容式及其应用[J].矿物学报,7(4):345-352.
    刘翼飞,聂凤军,江思宏等.内蒙古苏尼特左旗准苏吉花钼矿床成岩成矿年代学及其地质意义[J].矿床地质,31(1):119-128.
    卢焕章,范宏瑞,倪培等.2004.流体包裹体[M].北京:北京科学技术出版社.1-497
    卢焕章.1997.成矿流体[M].北京;北京科学技术出版社.1-210.
    马星华,陈斌,赖勇等.2009.内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义[J].岩石学报,25(11):2939-2950.
    马寅生,崔盛芹,赵越等.2002.华北北部中新生代构造体制的转换过程[J].地质力学报,8(1):15-25.
    聂凤军,江思宏,张义,刘妍,胡朋.2004.中蒙边境及邻区斑岩型铜矿床地质特征及成因[J].矿床地质,23(2):176-191.
    聂凤军,江思宏,张义等.2007b.中蒙边境中东段金属矿床成矿规律和找矿方向[M].北京:地质出版社.
    裴荣富,吕凤翔,范继璋等.1998.华北地块北缘及其北侧金属矿床成矿系列与勘查[M].北京:地质出版社.1-237.
    任纪舜,王作勋,陈炳蔚.1997.新一代中国大地构造图[J].中国区域地质,16(3):226-230.
    任继舜,陈廷愚,牛宝贵等.1988.中国东部及邻区大陆岩石圈的构造演化及成矿[M].北京:科学出版社.217.
    芮宗瑶,黄崇轲,齐国明等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社,1-350.
    沈保丰,李俊建,翟安民等.2001.地壳演化和成矿耦合-以华北陆块北缘中段为例[J].前寒武纪研究进展,24(1):9-16.
    沈存利,黄占起,苏宏伟,王守光.2004.内蒙古铜矿床区域成矿特征初步研究[J].西北地质,(3):44-50
    沈存利,张梅,杨帅师.2009.华北陆块北缘西段狼山-渣尔泰山裂陷槽西延的地质依据及其意义[J].地质与勘探,45(6):661-668
    沈存利,张梅,于玺卿等.2010.内蒙古钼矿找矿新进展及成矿远景分析[J].地质与勘探,46(4):561-575.
    陶继雄,王弢,陈郑辉等.2009.内蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定年及其地质特征[J].岩矿测试,28(3):249-253.
    席忠,张志刚,贾立炯等.2010.内蒙古马尼图-查干花大型钼-铋-钨矿化区的发现及地质意义[J].矿床地质,31(3):466-468.
    杨庚,柴育成,吴正文.2001.燕山造山带东段-辽西地区薄皮逆冲推覆构造[J].地质学报,75(3):321-332.
    翟裕生.2002.中国区域成矿特征探讨[J].地质与勘探,38(5):1-4.
    翟裕生.2002.中国区域成矿特征探讨[J].地质与勘探,38(5):1-4.
    张德会.1997.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,12(6):546-552.
    张理刚.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿[M].1985.西安:陕西科学技术出版社,54-250.
    张彤,陈志勇,许立权等.2009.内蒙古卓资县大苏计钼矿辉钼矿铼-锇同位素定年及其地质意义[J].岩矿测试,28(3):279-282.
    张晓晖,李铁胜,蒲志平.2002.辽西医巫闾山两条韧性剪切带的40Ar-39Ar年龄:中生代构造热事件的年代学约束[J].科学通报,47(9):697-701.
    郑亚东,Davis G A,王琮等.1998.内蒙古大青山大型逆冲推覆构造[J].中国科学(D辑),28(4):289-295.
    郑永飞,陈江峰.2000.稳定同位素地球化学[M].北京:科学出版社,143-245.
    朱裕生,王全明,张晓华.1999.中国成矿区带划分及有关问题[J].地质与勘探,35(4):1-4.
    周勇,李俊建,宋雪龙等.2012.内蒙古三胜樯钨钼矿地质特征[J].矿床地质,31(增刊):411-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700