高分辨率X射线成像技术与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高亮度的同步辐射光源的发展和纳米加工技术的飞速进步,基于波带片的高分辨率X射线成像技术在近十几年来发展极为迅速,其空间分辨率已达到15-50纳米。高分辨率同步辐射X射线成像技术具有穿透能力强、成像衬度来源丰富、无需复杂的制样和真空环境、三维成像能力等优势,弥补了其它显微术的不足(如光学显微镜和电镜),在生物医学、环境科学、材料科学和工业上有着广泛的应用前景。国家同步辐射实验室成功建造了一条高分辨率全场透射式X射线成像线站,空间分辨率达到50纳米。在此实验平台基础上,本论文主要开展了以下几个方面的工作:
     1.高分辨率X射线成像线站的建设、测试及其成像原理研究
     介绍了高分辨率X射线成像光束线和系统的光学设计。测试得到了光束线的能量分辨率、光子通量和实验站的成像空间分辨率等重要实际性能参数,测试结果表明高分辨率X射线成像线站的性能达到了设计指标。对高分辨率全场透射式X射线成像技术的工作原理进行了系统的研究。结合成像线站的设计,对系统的光路传播进行了分析,给出了光路传播方程的数学描述,简化了光路模拟过程。同时通过成像实验、理论分析和计算机模拟,分析成像系统的空间分辨与光学元件、照明光源、噪音和CCD探测器之间的关系。为将来发展新成像方法提供了理论基础。
     2.高分辨率X射线Zernike相位衬度成像
     衬度和分辨率是X射线成像系统的两个重要参数。提高系统的衬度,特别是对于生物样品或轻元素样品来说,具有非常重要的意义。因为轻元素折射率中的吸收项太小,X射线吸收衬度成像不能提供足够的衬度。而轻元素折射率中的相位项比吸收项大三到四个量级,利用相位衬度成像将能够提供比吸收衬度成像高得多的衬度。本工作在高分辨率X射线成像系统上实现了Zernike相位衬度成像实验方法,通过一系列样品分析了该方法的适用范围,并分析了halo现象。
     3.高分辨率X射线三维成像技术和大视场三维成像技术研究
     结合计算机辅助断层成像技术(computerized tomography,简称CT),发展了高分辨率X射线三维成像技术,具备了观测厚样品内部纳米三维结构的能力。然而在提高成像系统的分辨率同时也降低了视场。大多数样品在具备纳米结构特征的同时,其尺寸大多超过系统的视场(15微米)。这使得发展一种方法,既能得到样品的纳米三维结构信息,又能成像足够大的样品以得到有效的实验数据,颇为重要。结合系统的性能参数,通过电机扫描对样品等间隔角度进行大视场成像,利用迭代算法和标准滤波反投影算法进行三维重构,发展了大视场三维成像技术。实验结果表明该方法达到了预期要求。
     4.定量计算方法
     发展了对X射线三维数据进行定量计算的方法。根据Beer定律,X射线穿过物体后,物体对入射X射线的吸收效应是线性的。采集到得投影图的光强分布是物体吸收系数在X射线传播方向上积分(或投影)的信息。只要采集到完备的三维数据,重构后就可以定量地解出样品的吸收系数的三维分布。通过对断层数据进行取直方图、分析归类和统计计算等步骤,可以对样品的三维数据进行定量计算。
     5.纳米材料的三维结构表征研究
     设计、建模和表征始终是纳米材料科学设计流程中联系最紧密的三个环节。其中设计和建模最终指导制造,而表征(如成像)则是提供数据,证实设计和建模环节的可行性,或为优化设计提供依据。可见表征手段的重要性。本工作首次将高分辨率X射线三维成像技术成功应用到纳米材料科学中。通过对‘几何明星’凹陷Escher型硫化铜十四面体等纳米材料和燃料电池等纳米化器件进行了三维成像,得到了独特的样品三维信息。
     6.酵母细胞的三维结构表征研究
     新的成像方法,极大推进了我们对细胞的结构和功能的理解。每种成像方法都有其优缺点,没有一个成像方法能得到细胞的全部信息。本工作结合重金属染色的方法,在X射线能量为5.4 keV的条件下,成功得到了酵母细胞的三维结构。结合同步辐射高分辨率X射线成像技术和X射线荧光技术,成功得到了富硒酵母细胞中硒纳米球颗粒的形貌和三维分布。
     7.小鼠骨小梁的纳米三维结构表征研究
     骨头的三维结构和矿化度是其两个重要参数,与骨头的力学性能和骨质疏松症等疾病有着极为密切的关系。然而目前的大多数探测手段都局限于微米级的三维结构。本工作利用高分辨率X射线三维成像技术成功表征了小鼠骨小梁的纳米三维结构。得到了骨小梁中的腔隙和骨小管的三维结构和分布,并通过定量计算分析得到了骨小梁的矿化度。这为研究骨头的相关物理性能和骨质疏松症等疾病的病变原理提供了新的有力研究手段。
Due to the availability of synchrotron radiation source and the development of nano-fabrication technique, Fresnel zone-plates (FZPs) based X-ray microscopy has developed rapidly over the past decade, which offers spatial resolution in the 15-50 nm range. It complements other imaging techniques, such as optical and electron microscopy, by offering a unique set of capabilities including large penetration depth, high exposure efficiency, elemental and chemical specificity, magnetization sensitivity, as well as in-situ imaging with applied fields, overcoatings, and wet environments. The outstanding feature of this technique highlights its potential in a broad variety of fields, including life sciences, environmental science, materials science and industry. National Synchrotron Radiation Laboratory (NSRL) has successfully constructed a high resolution full-field, transmission x-ray microscope (TXM) beamline and endstation with a resolution of 50 nm. The main work and innovations are described as the following:
     1. Construction and test of high resolution x-ray microscope beamline and system, and theory of image formation
     This section introduces the optical design of the high-resolution x-ray microscope beamline and system. After the successful construction of beamline and system, we get the key parameters such as the energy resolution, photon flux and spatial resolution through a series of tests. The test results show that the performance of high-resolution x-ray microscope beamline and system achieves the design targets. The theory of image formation of the high-resolution x-ray imaging system is also presented in this section. The optical propagation equation is described here, which simplifys the computer simulation. Based on both theoretical and experimental studies, we study the relationship between spatial resolution and optics, illumination, noise, CCD detector. The results would provide fundamental principles for developing new imaging method.
     2. High-resolution x-ray Zernike phase-contrast imaging
     Contrast and resolution are two important parameters of the X-ray miscroscopy. It has an extremely important significance to improve the contrast, especially for biological samples or samples consisting of light elements. X-ray absorption-contrast imaging can not provide sufficient contrast, because the imaginary part of refractive index of light elements is too small. However, the real part of refractive index of light elements is three or four orders magnitude than the imaginary part. Thus phase contrast imaging would provide much higher contrast than absorption imaging for light elements. We study the Zernike phase-contrast imaging mechanism, which were also achieved on the high-resolution X-ray microscope. The halo effect was also investigated.
     3. High-resolution x-ray tomography and large field of view (FOV) tomography
     Combining computerized tomography (CT), we have developed high-resolution x-ray tomography, which enable us to observe the three-dimensional structure of sample at nanometer level. While increasing the the resolution of microscope, we sacrifice the field of view. However, the sizes of most samples with characteristics nano-structures beyond the field of view (15μm). Here we develop a large field of view (FOV) tomography, which can get the 3D structure of large enough volume with the same resolution. The reconstruction was performed using both the iterative algorithms and standard filtered-back-projection algorithm. The experimental results show that the method achieves the expected demand.
     4. Quantitative analysis of tomographic data
     According to Beer's Law, the x-ray absorption effect of the object is linear after it passes through objects. The intensity distribution of projection is the integration of absorption coefficient along the x-ray propagation direction. The three-dimensional distribution of absorption coefficient of the sample can be solved if a complete tomographic data is taken. Quantitative analysis can be performed on the tomographic data after procedures such as histogram, setting threshold and statistical calculation.
     5. X-ray tomography of the nanomaterials
     Design, modeling, and characterization technologies together are intimate components of the design cycle in technology development. Design and modeling are closely intertwined, ultimately guiding fabrication. Characterization technologies, imaging and measurement, provide the data that validate or drive revision of both designs and models. Characterization technologies are crucial. We get unique 3D information of nanomaterials and nano-enabled devices such as concaved cuboctahedron copper sulfide crystal and solid oxide fuel cell.
     6. X-ray tomography of the yeast cells
     New imaging methods have greatly advanced our understanding of cell structure and function. However, each of these imaging methods has its pros and cons. No single imaging method proves to be the perfect solution. Combining simple chemical treatment with absorption contrast imaging at 5.4 keV, the ultrastructural details of S. pombe were well delineated. Combining high resolution X-ray tomography with X-ray fluorescent probe, the shape and 3D distribution of elemental selenium nano particles were detected in selenium enriched yeast.
     7. X-ray tomo graphy of the trabecula bone
     Three-dimensional structure and mineralization of bone are two important parameters, which are closely related to its mechanical parameters and symptoms such as osteoporosis. However, most of the current detection methods are limited to micron-level 3D structure. Here high-resolution x-ray microscopy has been used to characterize the nano 3D structure of trabecular bone. The 3D distribution of lacuna and canaliculi system in trabecular bone has been gotten. The mineralization degree of trabecular bone has also been gotten through quantitative analysis. It would be a powerful tool for studying the physical properties of bone and symptoms such as osteoporosis.
引文
[1]Tohoru Takeda,2005. Phase-contrast and fluorescent X-ray imaging for biomedical researches. Nuclear Instruments and Methods in Physics Research A.548:38-46.
    [2]M.J. Kitchena, D. Paganina, R.A. Lewisa, et al.2005. Analysis of speckle patterns in phase-contrast images of lung tissue. Nuclear Instruments and Methods in Physics Research A. 548:240-246.
    [3]G.Denbeauxa, E. Andersona, W. Chao, et al.2001. Soft X-ray microscopy to 25nm with applications to biology and magnetic materials. Nuclear Instruments and Methods in Physics Research A.467-468:841-844.
    [4]Nicolas Burlion, Dominique Bernard, Da Chen.2006. X-ray microtomography Application to microstructure analysis of a cementitious material during leaching process. Cement and Concrete Research.36(2):346-357.
    [5]Huang R and Bilderback D H.2006. J. Synchrotron Rad.13:74-84.
    [6]Snigirev A, Bjeoumikhov A, Erko A et al.2007. J. Synchrotron Rad.14:326-330.
    [7]B. Lai, W. B. Yun, D. Legnini, et al.1992. Hard x-ray phase zone plate fabricated by lithographic techniques. Appl.Phys.Lett.61(16):1877-1879.
    [8]C. David, B. Kaulich, R. Barrett, M. Salome, and J. Susini,2000. High-resolution lenses for sub-100 nm x-ray fluorescence microscopy. Appl.Phys.Lett.77(23):3851-3853.
    [9]D. Hambacha, M. Peukera, G. Schneider.2001. Nanostructured diffractive optical devices for soft X-ray Microscopes. Nuclear Instruments and Methods in Physics Research A.467-468: 877-880.
    [10]E. H. Anderson, D. L. Olynick, B. Harteneck, et al.2000. Nanofabrication and diffractive optics for high-resolution x-ray applications. J.Vac.Sci.Technol.B.18(6):2970-2975.
    [11]Matteo Altissimo, Filippo Romanato, Lisa Vaccari, Luca Businaro, Danut Cojoc, Burkhard Kaulich, Stefano Cabrini, Enzo Di Fabrizio.2002. X-ray lithography fabrication of a zone plate for X-rays in the range from 15 to 30 keV. Microelectronic Engineering.61-62:173-177.
    [12]M. Peuker,2001. High-efficiency nickel phase zone plates with 20 nm minimum outermost zone width. Applied Physics Letters.78(15):2208-2210.
    [13]B. Lai, W. Yun, Y. Xiao, et al.1995. Development of a hard x-ray imaging microscope. Rev.Sci.Instrum.66(2):2287-2289.
    [14]W. Yun, B. Lai, Z. Cai,et al.1999. Nanometer focusing of hard x rays by phase zone plates. Review of Scientific instruments.70(5):2238-2241.
    [15]Weilun Chao, B. D. Harteneck, J. Alexander Liddle, et al.2005. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature.435:1210-1213.
    [16]Lord Rayleigh. Wave Theory of Light, Encyclopedia Britannica, Ed.9th ed.,1940,421,1888.
    [17]Born and E. Wolf.1964. Principles of Optics, Pergamon Press, Oxford,3rd Edition, Chapter VIII.
    [18]Janos Kirz,1974. Phase zone plates for x rays and the extreme uv. Journal of the optical society of America.64(3):301-309.
    [19]Dynamical theory of x-ray diffraction,2001. Oxford University Press, P479-480.
    [20]D. Sayre,1972. IBM Research Report No.RC-3974,
    [21]C. Shaver and D. C. Flanders, N. M. Ceglio, et al.1979. X-ray zone plates fabricated using electron-beam and x-ray lithography. J.Vac.Sci.Technol.16(6):1626-1630.
    [22]N. M. Ceglio,1983. Recent Advances in X-ray Optics, Spring Series in Optical Sciences. X-ray Microscopy (XRM'83).43:97-108.
    [23]Y. Vladimirsky, D. Kern, and T. H. P. Chang, et al.1988. High-resolution Fresnel zone plates for soft x rays. J.Vac.Sci.Technol.B.6(1):311-315.
    [24]E. H. Anderson and D. Kern. Nanofabrication of Zone plates for X-Ray Microscopy. Spring Series in Optical Sciences, Vol.67, X-ray Microscopy III (XRM'90),75-78.
    [25]N. M. Ceglio, H. I. Smith.1978. Micro-Fresnel zone plate for coded imaging applications. Rev.Sci. Instrum.29(1):15-20.
    [26]N. M. Ceglio, G. F. Stone, A. M. Hawryluk.1981. Microstructures for high-energy x-ray and particle imaging applications. J.Vac.Sci.Technol.19(4):886-891.
    [27]H. I. Smith, E. H. Anderson, A. M. Hawryluk, and M. L. Schattenburg.1983. Planar Techniques for Fabricating X-Ray Diffraction Gratings and Zone Plates. Spring Series in Optical Sciences, X-ray Microscopy (XRM'83).43:51-61.
    [28]Dennis M. Mills,2002. Third-generation hard X-Ray synchrotron radiation sources. Chapter IV(Wen bing Yun and Gene Ice), John Wiley & Sons, inc, P133.
    [29]Z. G. Chen,1998. Chapter IV, Ph.D.thesis, Lithography based micro-fabrication:diffractive optics and ULSI nanostructures. University of Wisconsin-Madision.
    [30]Ralu Divan, Derrick C.Mancini, Nicolaie Moldovan, et al.2002. Progress in the Fabrication of High-Aspect-Ration Zone Plates by Soft X-ray Lithography. SPIE.4783:82-91.
    [31]http://www.xradia.com.
    [32]Yan Feng, Michael Feser, Alan Lyon, et al.2007. Nanofabrication of high aspect ratio 24nm x-ray zone plates for x-ray imaging applications. J. Vac. Sci. Technol. B.25(6):2004-2007.
    [33]傅绍军,洪义麟,陶小明等.1995.软X射线聚焦波带片制备工艺的研究.光学学报. 15(8):1148-1150.
    [34]洪义麟,田杨超,刘刚等.1999.LIGA技术制作Fresnel波带片的研究.微细加工技术.1:62-67.
    [35]Wang Deqiang, CaoLeifeng, Xie Changqing, et al.2006. Micro Zone Plates with High Aspect Ratio Fabricated by E-Beam and X-ray Lithography. Journal of Microlithography, Microfabrication, and Microsystem.5(1):013002.
    [36]王德强,康晓辉,谢常青,叶甜春.2005.电子束制作高分辨率波带片图形数据研究.微细加工技术.2:28-33.
    [37]王德强,曹磊峰,谢常青,叶甜春.2006.电子束和X射线光刻制作高分辨率微波带片.半导体学报.27(6):1147-1150.
    [38]CHEN Jie, LIU Long-hua, LIU Gang, TIAN Yang-chao.2007. X-ray Imaging Fresnel Zone Plates and Fabrication. Optics and Precision Engineering.15(12):86-91.
    [39]Longhua Liu, Gang Liu, Ying Xiong, Jie Chen, Chunlei Kang, Xinlong Huang, Yangchao Tian.2008. Fabrication of Fresnel Zone Plates with High Aspect Ratio by Soft X-ray Lithography. Microsystem Technology.14:1251-1255.
    [40]柳龙华,刘刚,熊瑛,黄新龙,陈洁,李文杰,田金萍,田扬超.2009.大高宽比、高线密度X射线透射光栅的制作.光学精密工程.17(1):72-77.
    [41]H. Rarback, J. M. Kenney, J. Kirz, M. R. Howells, P. Chang, P. J. Coane, R. Feder, P. J. Houzego, D. P. Kern, and D. Sayre.1984. Recent results from the Stony Brook scanning microscope. In G. Schmahl and D. Rudolph, editors, X-ray Microscopy, volume 43 of Springer Series in Optical Sciences, Berlin, Springer-Verlag, P203-P215.
    [42]http://www.esrf.eu/
    [43]Larabell C A, Le Gros M A.2004. X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Molecular Biology of the Cell. 15:957-962.
    [44]Meyer-Ilse W, Hamamoto D, Nair A, Lelievre S A, Denbeaux G, Johnson L, Pearson A L, Yager D, Legros M A, Larabell C A.2001. High resolution protein localization using soft X-ray microscopy. J Microsc.201:395-403.
    [45]Schneider G,Anderson E, Vogt S, Knochel C, Weiss D, Legros M, Larabell C.2002. Computed tomography of cryogenic cells. Surface Review & Letters.9:177-183.
    [46]Le Gros M A, McDermott G, Larabell C A.2005. X-ray tomography of whole cells. Current Opinion in Structural Biology.15:593-600.
    [47]Weiwei Gu, Laurence D Etkin, Mark A Le Gros, Carolyn A Larabell.2007. X-ray tomography of Schizosaccharomyces pombe. Differentiation.75:529-535.
    [48]Parkinson D Y, McDermott G, Etkin L D, Le Gros M A, Larabell C A.2008. Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. Journal of Structural Biology. 162(3):380-386.
    [49]Le Gros M A, McDermott G, Uchida M, Knoechel C G, Larabell C A.2009. High numerical-aperture cryogenic light microscopy. Journal of Microscopy-Oxford.235:1-8.
    [50]McDermott G, Le Gros M A, Knochel C, Uchida M, Larabell C.2009. Soft X-ray tomography and cryogenic light microscopy:the cool combination in cellular imaging. Trends in Cell Biology. In press
    [51]Uchida M, McDermott G, Wetzler M, Le Gros M A, Myllys M, Knochel C, Barron A E, Larabell C.2009. Soft x-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. PNAS. In press
    [52]Cathleen Magowan, John T. Brown, Joy Liang, John Heck, Ross L. Coppel, Narla Mohandas, and Werner Meyer-Ilse,1997. Intracellular structures of normal and aberrant Plasmodium falciparum malaria parasites imaged by soft x-ray microscopy. PNAS 94:6222-6227
    [53]G. Schneider, D. Hambach, B. Niemann, B. Kaulich, J. Susini, N. Hoffmann, W. Hasse,2001, In situ x-ray microscopic observation of the electromigration in passivated Cu interconnects. Appl.Phys.Lett Vol.78, No.13.
    [54]G. Schneider, M.A. Meyer, G. Denbeaux, E. H. Anderson, B. Bates, A. Pearson, D. Hambach, E. A. Stach, E. Zschech,2001. Dynamical x-ray microscopy investigation of electromigration in passivated inlaid Cu interconnect structures, Appl. Phys.Lett Vol.81, No.14.
    [55]Gung-Chian Yin, Mau-Tsu Tang, Yen-Fang Song, Fu-Rong Chen, Keng S. Liang, Frederick W. Duewer, Wenbing Yun, Chen-Hao Ko, Han-Ping D. Shieh.2006. Energy-tunable transmission x-ray microscope for differential contrast imaging with near 60 nm resolution tomography. Appl. Phys.Lett.88:241115
    [56]S. C. B. Myneni, J. T. Brown, G. A. Martinez, W. Meyer-Ilse.1999. Imaging of Humic Substance Macromolecular Structures in Water and Soils. Science.286:1335-1337
    [57]Prietzel J, Thieme J, Neuhausler U, Susini J, Kogel-Knabner I.2003. Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. European Journal of Soil Science.54:423-433
    [58]Jurgen Thieme, Gerd Schneider, Christian Knochel.2003. X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution. Micron.34: 339-344
    [59]柳龙华.X射线显微成像纳米光学元件制作与应用研究[D].中国科学技术大学,2009
    [60]David Attwood.1999. Soft x-rays and extreme ultraviolet radiation:Principles and Applications, Cambridge University Press.
    [61]Kriz J. Phase zone plates for X-rays and the extreme UV. Journal of the Optical Society of American.1974,64(3):301-309.
    [62]Joseph W. Goodman.2005. Introduction to Fourier Optics,3rd Edition. Roberts and Company Publishers, Inc.
    [63]Weilun Chao,1999. Resolution Characterization and Nanofabrication for Soft X-ray Zone Plate Microscopy. UNIVERSITY of CALIFORNIA, BERKELEY.
    [64]F. Zernike,1935. Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Z. Tech.Phys.11:454-457.
    [65]G. Schmahl, D. Rudolph, P. Guttmann, G. Schneider, J. Thieme, and B. Niemann.1995. Phase contrast studies of biological specimens with the x-ray microscope at BESSY. Rev. Sci. Instrum.66:1282-1286.
    [66]U. Neuhausler, G. Schneider, W. Ludwig and D. Hambach.2003. X-ray microscopy in Zernike phase contrast mode at 4 keV photon energy with 60 nm resolution. J. Phys. D:Appl. Phys.36:A79-A82.
    [67]G. Schneider,1998. Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy 75:85-104.
    [68]Z. Hu, S. Liu, Z. Yue, L. Yan, M. Yang, H. Yu, Environ. Sci. Technol.42,276-281 (2008).
    [69]http://www.microscopyu.com/tutorials/java/phasecontrast/shadeoff/index.html
    [70]A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, New York,1988).
    [7l]庄天戈.CT原理与算法.上海:上海交通大学出版社,1992.154
    [72]Bonse U, Busch F.1996. X-ray computed microtomography (microCT) using synchrotron radiation (SR). Prog.Biophys.Molec.Biol.65:133-169.
    [73]Eberhardt C N, Clarke A R.2002. Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray micro-tomography. J.Microscopy.206:41-53.
    [74]Midgley P A, Weyland M.2003.3D electron microscopy in the physical sciences:the development of Z-contrast. Ultramicroscopy.96:413-431.
    [75]Weiβ D et al.2000. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy.84:185-197.
    [76]Scheneider G et al.2002. COMPUTED TOMOGRAPHY OF CRYOGENIC CELLS. Surf. Rev. Lett.9:177-183.
    [77]A. C. Thompson, D. T. Attwood, E. M. Gullikson, M. R. Howells, J. B. Kortright, A. L. Robinson, J. H. Underwood, K.-J. Kim, J. Kirz, I. Lindau, P. Pianetta, H. Winick, G. P. Williams, and J. H. Scofield. X-ray data booklet (2nd ed.). Technical report, Lawrence Berkeley National Laboratory and University of California,2001.
    [78]http://www.zyvex.com/nanotech/feynman.html
    [79]Geoffrey A. Ozin, Ludovico Cademartiri.2009. Nanochemistry:What Is Next? Small.11: 1240-1244.
    [80]Drexler, K. Eric and Randall, John and Corchnoy, Stephanie and Kawczak, Alex and Steve, Michael L., eds. (2007) Productive Nanosystems:A Technology Roadmap. Technical Report. Battelle Memorial Institute and Foresight Nanotech Institute.Productive.
    [81]S. Mann and G. A. Ozin.1996. Synthesis of inorganic materials with complex form. Nature (London).382:313-318.
    [82]J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler.2001. Calcitic microlenses as part of thephotoreceptor system in brittlestars. Nature (London).412:819-822.
    [83]S. H. Yu,2007. Bio-inspired Crystal Growth by Synthetic Templates. Top. Curr. Chem.271: 79-118.
    [84]C. Y. Wu, S. H. Yu, and M. Antonietti.2006. Complex Concaved Cuboctahedrons of Copper Sulfide Crystals with Highly Geometrical Symmetry Created by a Solution Process Chem. Mater.18:3599-3601.
    [85]Y. Wan, C. Y. Wu, Y. L. Min, and S. H. Yu.2007. Loading of Silica Spheres on Concaved CuS Cuboctahedrons Using 3-Aminopropyltrimethoxysilane as a Linker. Langmuir 23: 8526-8530.
    [86]A. Tkachuk, F. Duewer, H. Cui, M. Feser, S. Wang, and W. Yun.2007. Z. Kristallogr.222,: 650.
    [87]W. Yun, B. Lai, Z. Cai, et al.1999. Nanometer focusing of hard x rays by phase zone plates, Review of Scientific instruments.5:2238-2241.
    [88]F. Liang, L. Guo, Q. Zhong, X. Wen, S. Yang, W. Zheng, C. Chen, N. Zhang and W. Chu. 2006. Appl. Phys. Lett.89:103105.
    [89]J. Kirz, C. Jacobsen, and M. Howells.1995. Soft x-ray microscopes and their biological applications. Quarterly Reviews of Biophysics.28(1):33-130.
    [90]D. Sayer, J. Kriz, R. Feder, D. M. Kim, and E. Spiller.1977. Transsmission microscopy of unmodified biological materials:Comparative radiation dosages with electrons and ultrasoft x-ray photons. Ultramicroscopy.2:337-341.
    [91]D. Sayer, J. Kriz, R. Feder, D. M. Kim, and E. Spiller.1977. Potential operating region for ultrasoft x-ray microscopy of biological specimens. Science.1996:1339-1342.
    [92]B. Niemann, D. Rudolph, and G. Schmahl.1976. X-ray microscopy with syn-chrotron radiation. Applied Optics.15:1883-1884.
    [93]Jian-Qiu Wu and Thomas D.2005. Pollardl Counting Cytokinesis Proteins Globally and Locally in Fission Yeast. Science.310:310-314.
    [94]Ubaidus S, Li M, Sultana S et al.2009. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J Electron Microsc.58:381-392.
    [95]http://www.ndt-educational.org/coenslide.asp.
    [96]Koester KJ, Ager JW 3rd, Ritchie RO.2008. Nat Mater.7(8):672-7.
    [97]Philipp Schneider, Martin Stauber, Romain Voide, Marco Stampanoni, Leah Rae Donahue, and Ralph Miiller.2007. Ultrastructural Properties in Cortical Bone Vary Greatly in Two Inbred Strains of Mice as Assessed by Synchrotron Light Based Micro-and Nano-CT. J Bone Miner. Res.22:1557-1570.
    [98]P. Thurner, P. Wyss, R. Voide, M. Stauber, M. Stampanoni, U. Sennhauser, R. Muller.2006. Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light. Bone.39:289-299.
    [99]http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=endocrin&part=A742&rendertype=bo x&id=A822.
    [100]J.C. Andrews, S. Brennan, C. Patty, K. Luening, P. Pianetta, E. Almeida, M.C.H. van der Meulen, M. Feser, J. Gelb, J. Rudati, A. Tkachuk and W.B. Yun.2008. A high resolution, hard x-ray bio-imaging facility at SSRL. Synchrotron Radiation News 21,17-26.
    [101]http://www-cxro.lbl.gov/
    [102]H. K. Genant, K. Engelke and S. Prevrhal.2008. Advanced CT bone imaging in osteoporosis Rheumatology.47:iv9-iv16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700