铬污染土壤电动修复聚焦现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国经济飞速发展的同时,土壤重金属污染现象日益严重,已经成为了重要的环境问题之一。电动修复技术作为新兴的土壤原位修复技术,广受关注。虽然在前人的众多研究中认为电动修复技术对于处理重金属污染严重的土壤场地具有高效性及可行性,但是在电动修复实际应用过程中,浓度聚集现象无处不在,这种聚焦现象已经严重的阻碍了电动修复技术在实际工程中的应用。
     本试验选取铬为目标污染离子,凝胶及土壤为固态介质,探讨了在电动修复过程中引起了目标离子浓度聚集现象的主要机理及原因。本文的主要结论如下:
     (1)各种离子在凝胶中的迁移速率大小次序与在水中的基本一致。H+离子和OH-离子的迁移速率处于众离子的前列。
     (2)因为与目标离子共存的离子在某些区域的浓度较高,导致加载在这些区域的电压梯度变低,这将使得目标离子迁移到这些区域时迁移速度显著下降。随着反应的持续进行目标离子将会在这些区域聚集,在修复场地中形成高浓度的污染区域甚至“死区域”,造成电动修复的电耗及修复时间显著增加,把此称为由共存离子诱导电压梯度阱效应导致的聚焦现象。
     (3)研究发现虽然中和阳极端水解产生的H+离子能提高电动修复过程中的电流效率,但是聚焦现象仍不可避免。若使离子浓度一直维持较低数值,则能有效避免聚焦现象。另外当使离子浓度梯度方向与电流方向一致时亦能有效防止共存离子诱导电压梯度阱效应。
     (4)土壤中的聚焦现象与凝胶中一致,说明由于共存离子诱导电压梯度阱效应而引起聚焦现象等结论在土壤中也成立。即使是土壤重金属轻污染场地,若要降低电动修复的费用,建议运用组合工艺进行土壤重金属污染修复。
     本研究从离子的电迁移规律的角度,研究聚焦现象产生的机理和规律,为聚焦现象的消除和利用技术研究提供理论指导。
With the rapid development of China's economy, the growing phenomenon of heavy metal pollution has become an important environmental problem. In recent years, as the in situ remediation, Electrokinetic remediation has been wide concern. Concentration fluctuation and dead zones phenomena (CFDZP) are ubiquitous in the field, pilot and bench tests of electrokinetic remediation (EKR) of soils. CFDZP have severely impeded the application of EKR technology in fields though its effectiveness for many heavy metallic contaminants has been verified by numerous bench tests.
     In this study a series of deliberately designed experiments with spiked agar and soil were performed to explore the mechanism of CFDZP. To sum up, in the following aspects:
     (1) The mobilities of ions in agar are measured. It can be found that all ions involved keep their mobility tier in agar as in water. The transfer rates of H+ and OH- are in the front of other ions.
     (2) The mechanism of CFDZP caused by ion-induce trapping effect (ITE) which is interpreted as that the lower potential gradient caused by co-existing charged ions of high concentration in some zones will cause significant velocity drop for the charged target ions when they migrate into these zones from the zones of higher potential gradient. The accumulation of“trapped”target ions would result in“hot spots”or more severely,“dead zones”in the sites. The EKR duration and electric consumption will vary dramatically.
     (3) Though neutralizing the H+ ions generated by water electrolysis in anode compartment can improve the current efficiency of electrokinetic remediation process,“dead zone”phenomenon close to anode cannot be mitigated due to the increasing of total ion concentration in anolyte. An effective method was to keep the ion concentration at a low level in the entire electrokinetic remediation process. Modifying the arrangement of electrodes to let current direction normal to concentration gradient of ions can avoid the ion-induced trapping effect to go into effect and hence prevent the occurrence of“hot spots”on the target ion migration way.
     (4) CFDZP occurs in soil is same as in agar confirm that knowledge about CFDZP obtained from agar experiments is also basically valid in soils. We perhaps should abandon the wish that just resorting to the promising EKR technology a metallic contaminated site could be restored in a reasonable cost and duration, even though the site is just slightly contaminated. Instead, a combined process is more acceptable in field applications.
     From the perspective of ions’electro-migration mechanism, this study focuses on the mechanism and laws of CFDZP, in order to provide theoretical guidance for eliminating CFDZP and using the technology.
引文
[1]陈怀满.我国污染土壤现状、背景趋势及其对策建议[J].土壤学进展,1990 ,18(1) :53~57.
    [2]刘井军.土壤重金属污染现状与防治措施[J].中国环境管理,2008 ,1:37~38.
    [3]张瑞华,孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤[J].环境科学,2008,28(5):1131~1136.
    [4]杨福云,吴国防,刘清才等.城市垃圾焚烧飞灰理化性质及处理技术[J].重庆大学学报,2006,29(9):56~59.
    [5] USEPA. In Situ Treatment of Soil and Groundwater Contaminated with Chromium[J]. EPA625/R-00/004, October 2000.
    [6] US Environmental Protection Agency, Treatment Technologies for Site Cleanup[J]. Annual Status Report (Twelfth Edition), 2007, EPA-542-R-07-012 A-1.
    [7] Interstate Technology & Regulatory Council, Emerging technologies for the remediation of metals in soils[J]. - electrokinetic remediation, 1997:14~15.
    [8]蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理[J].中国工程科学,2000,12(14):89~92.
    [9] Chen T C and Hong A. Chelating extraction of lead and copper from an authentic contaminated soil using N-(2-acetamido)iminodiacetic acid and S-carboxymethy-L-cysteine[J]. Journal of Hazard Mater, 1994,41:147~160.
    [10]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社, 2004.
    [11]王文祥.山东省耕地重金属元素污染状况及其评价[J].土壤,1993,25(6):315~318.
    [12]乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤,2000,32(2):79~85.
    [13] ANTHONY CARPI. Methyl mereury eontamination and emission to the atmosphere from soil amended with municipal sewage sludge[J]. J Environ Qual,1997,26(6):1650~1654.
    [14]李永涛,吴启堂.土壤污染治理方法研究[J].农业环境保护,1997,16(3):118~122.
    [15] Forstner, U. In R. Leschber, et al. Chemical methods for assessing bioavailable metals in sludges and soils[J]. Elsevier, London, 1985,11(4):1~30.
    [16] Xian X. Chemical partitioning of cadmium, zinc, lead and copper in soils near smelters[J]. J. Environ Sci Health, 1987, 11(5):527~541.
    [17] Xian X. Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants[J]. Plant Soil, 1989, 113(2):257~264.
    [18] Clevenger T E, Mullins W. The toxic extraction procedure for hazardous waste. In: Trace substances in environmentalhealth XVI[J]. Univ. of Missouri, Columbia, MO,1982,77~82.
    [19] Lena Q M, Gade N Rao. Chemical Fractionation of Cadmium, Copper, Nickel, and Zinc in Contaminated Soils[J]. J. Environ. Qual, 1997,26(2):259-264.
    [20] Tessler A, Campbell P G C, Blsson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem, 1979,51(6):844~850.
    [21] McGregor R G, Blowes D W and Jambor J L, et al. The solid Phase controls on the mobility of heavy metals at the Copper Cliff tailingsarea, Sudbury, Ontario,Canada[J]. J. Comtam. Hydrol, 1998, 33: 247~271.
    [22] Blowes D W and Jambor J L. The porewater geochemistry and the mineralogy of the vadose zone of sulfide tailings[J].Waite Amulet, Quebec, Canada. A ppl.Geochem., 1990,5:327-346.
    [23]王红旗,刘新会.土壤环境学[M].北京:高等教育出版社, 2007:71~72.
    [24] Thornton E.C. and Amdnette J.E. Hydrogen sulfide gas treatment of Cr (VI) contaminatied sediment samples from a plating waste disposal site implication for in situ remediation[J]. Environment Sci Technol, 1999, 33: 4096~4101.
    [25]余贵芬,青长乐.重金属污染土壤治理研究现状[J].农业环境与发展,1998,15(4):22~24.
    [26]何益波,李立清,曾清如.重金属污染土壤修复技术的进展[J].广州环境科学,2006,21(4):26~31.
    [27]丁园.重金属污染土壤的治理方法[J].环境与开发,2000,2(15):25~28.
    [28]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72~76.
    [29] Diana C.G,Joseph T,Swartzbaugh,et al.The use of electrokinetics for hazardous waste site remediation[J].Air Waste Manage Assoc.1990,40:1670~1676.
    [30]韩怀芬,黄金柱,金漫彤.铬的固化/稳定化研究[J].环境污染与防治,2002,24(4): 199~200.
    [31] Zhuang J, Yu G R, Liu X Y, et al. Characteristics of lead sorption on clay minerals.in relation to metal oxides[J]. Pedosphere, 2000, 10(1): 11~20.
    [32] J.N.Meegoda, Kenneth Partymiller, and Marta K.Richards,et al.Remediation of Chromium Contaminated Soils -A Pilot Scale Investigation[J].ASCE Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2000,4,(1):7~15.
    [33]周国华,黄怀曾,何红蓼等.北京市东南郊自然土壤和模拟污染影响下Cd赋存形态及其变化[J].农业环境科学学报,2003,22(1):25~27.
    [34] Casagrande,L. The application of electro一osmosis to practical problems in foundations and earthworks[J]. Building Technical Paper No.30; H.M.S.O.,London.
    [35] Tang S, Huang C, Zhu Z.A hyper accumulator of copper[J].J.Zhejiang Agric.Univ, 1997, 23(2): 228~235.
    [36] Acar Y.B, Alshawabkeh A.N.Principles of electrokinetic remediation.Environ[J].Sci Technol, 1993, 27(13): 2638~2647.
    [37]于天仁等,土壤电化学性质及其研究方法,第二版[M].北京:科学出版社.1976.5.
    [38] Pau1C.Hiemenz,周祖康,马季铭译.胶体与表面化学原理,第一版[M].北京:北京大学出版社.1986.3.
    [39]傅献彩,沈文霞,姚天扬.物理化学,第一版[M].北京:高等教育出版社.1990.10.
    [40]杨建永,黄文锢.胶结充填电渗脱水实验研究[J].黄金.19%,17(3):24~26.
    [41] Hamed J, Acar Y.B.Gale R.J. Pb(Ⅱ) removal from kaolinite by electrokinetics[J]. Geotech Eng, 1991, 117(2): 241~271.
    [42]马莉,张国庆,曾彩明.化学强化剂在电动修复技术中的应用研究进展[J].化工进展,2008,27(1):38~43.
    [43]尹晋,马小东,孙红文.电动修复不同形态铬污染土壤的研究[J].环境工程学报,2008,2(5):684~689.
    [44]郑燊燊,申哲民等.逼近阳极法电动力学修复重金属污染土壤[J].农业环境科学学报.2007,6(1):240~245.
    [45]孙红文.电动力和铁克可渗透反应格栅联合修复重金属污染土壤工艺[J].中国,18997A[P].2004.01.29.
    [46]陈涛,吴燕玉,孔庆新等.农业镉污染与防治[J].生态学杂志,1985,(2):24~30.
    [47]杨丽琴,陆泗进,王红旗.污染土壤的物理化学修复技术研究进展[J].环境保护科学,2008,34(5):42~45.
    [48] Van C L. Electrokinetics: Technology Overview Report〔R〕[J]. Groundwater Remediation Technologies Analysis Centre, 1997.1~17.
    [49] Probstein R F, Hicks R E. Removal of contaminants from soils by electric fields[J]. Science, 1993,(260): 498~503.
    [50]孟凡生,王业耀,陈锋.施加电压对铬污染土壤电动修复的影响[J].环境工程学报,2007,1(3):111~115.
    [51] Chung H I, Lee M H.A new metod for remedial treatment of contaminated clayey soils by electrokinetics coupled with permeable reactive barriers [J]. Electrochimica Acta, 2007,52: 3427~3431.
    [52] GENT D B, BR ICKA R M, ALSHAWABKEH A N, et al. Bench and field-scale evaluation of chromium and cadmium extraction by electrokinetics [J]. Journal of Hazardous Materials, 2004, 110: 53~62.
    [53] ALSHAWABKEH A N, BR ICKA R M, GENT D B.Pilot - Scale Electrokinetic Cleanup of Lead–Contaminated Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 3: 283~291.
    [54] POPOV K, YACHMENEV V, KOLOSOV A, et al. Effect of soil electroosmotic flowenhancement by chelating reagents [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999,160: 135~140.
    [55] PAZOS M, SANROMA M A, CAMESELLE C. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique [J]. Chemosphere, 2006, 62: 817~822.
    [56] LEE H H, YANG J W. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation [J]. Journal of Hazardous Materials, 2000, B77: 227~240.
    [57]路平.交换电极法强化电动修复铬污染土壤[J].环境工程学报,2009, 3(2): 354~358.
    [58] Colleen N. Block, Tomoyuki Shibata, Helena M. Solo-Gabriele, Timothy G. Townsend. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood[J]. Environmental Pollution 148 (2007):L627-633.
    [59] Lange's Handbook of Chemistry 15th Ed, 1999 P8.157.
    [60] Chih-Huang Weng, Yao-Tung Lin, T.Y. Lin, C.M. Kao, Enhancement of electrokinetic remediation of hyper-contaminated clay by zero-valent iron[J]. Journal of Hazardous Materials 149 (2007):292–302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700