硫铁矿烧渣脱硫脱砷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫铁矿烧渣是化工厂在以硫铁矿为原料煅烧生产硫酸时排出的废渣,其主要成份为铁,另外还含有硅、钙、镁、硫、砷、铜和银等其它元素,主要矿物为赤铁矿、磁铁矿、石英、硬石膏等。我国硫铁矿烧渣年排放量为1000~1500万吨左右。目前硫铁矿烧渣大都采用堆存或者填埋处理,不仅占用大量的土地,工厂还需支付土地征用费、运费、填埋费等,而且还会对大气、水体、土壤等造成环境污染。同时硫铁矿烧渣中富含铁元素,大约占40%~60%,同时还含有少量的Cu、Ag、Au等有价值的元素,是一种宝贵的二次资源,所以充分利用硫铁矿烧渣不仅可消除其对环境的污染,还会变废为宝,创造一定的经济效益以及社会效益。
     硫铁矿烧渣的综合利用已经受到各国的高度重视,而且很多发达国家对硫铁矿烧渣的综合利用研究已经进行了多年,虽然我国从70年代就开始对硫铁矿烧渣的综合利用进行了研究,由于我国硫铁矿烧渣质量差、技术水平低、经济落后等一系列因素,导致烧渣利用率很低。与国外一些国家相比仍有很大差距,我国硫铁矿烧渣的利用还存在着很多问题,其中最主要的是不能对烧渣中的杂质进行有效的处理,特别是砷元素和硫元素的存在对于烧渣综合利用(例如作为炼铁原料)所带来的危害。
     本论文采用硫酸溶液处理硫铁矿烧渣,可达到脱砷、部分脱硫的目的,同时还可使渣中的铁品位提高。研究表明采用硫酸溶液处理硫铁矿烧渣,烧渣经硫酸溶液处理后,As含量可降到0.036%,去除率高达98.7%,S含量降至0.319%,同时Fe品位可达到62.56%,经处理后的烧渣砷、铁含量均达到炼铁原料的质量要求。
     为探索试验的最佳工艺条件,设计进行了条件试验包括硫酸浓度的影响试验、温度的影响试验、矿浆浓度的影响试验、反应时间的影响试验、搅拌速度的影响试验;同时还对硫酸浓度、温度、反应时间以及搅拌速度这四个因素进行了正交试验的研究,最后确定最佳试验条件为:硫酸浓度为15%,温度为50℃,矿浆浓度为30%,反应时间为120分钟,搅拌速度为300转/分。
     由于硫酸浸出废液中含有大量的未反应的游离硫酸,为了有效利用这部分硫酸,降低硫酸使用量,本研究对硫酸溶液浸出硫铁矿烧渣得到的反应废液进行了循环利用研究,研究表明废液经配酸后,返回浸出阶段用于硫铁矿烧渣的浸出,可有效的利用浸出液中的游离硫酸,使工业硫酸的用量明显降低;反应废液经配酸后返回浸出阶段用于硫铁矿烧渣的浸出,经三次循环使用均可有效的降低处理样品中的砷、硫含量,其中砷和铁的含量均达到炼铁原料相应指标的要求,杂质脱出效果与直接使用硫酸处理原料时相当。
     由于单独采用硫酸溶液处理硫铁矿烧渣,样品中硫含量达不到炼铁原料质量要求,本论文进行了在硫酸溶液中加入添加剂共同作用处理硫铁矿烧渣的探索性研究,研究表明在硫酸溶液中添加重铬酸钾或氯酸钾处理硫铁矿烧渣,可使样品中的硫含量降至0.279~0.291%,可以同时达到脱砷脱硫的目的,脱砷、脱硫后的烧渣能很好的达到炼铁原料的质量要求。
     同时在本论文中,对硫酸溶液处理硫铁矿烧渣脱出其中砷的过程进行了动力学研究,动力学研究表明:采用硫酸溶液浸出硫铁矿烧渣脱砷的浸出过程可用粒径不变的收缩未反应核模型描述,浸出过程的化学反应速率受界面化学反应过程控制;浸出过程的化学反应的表观活化能Ea=140.075kJ/mol,化学反应级数为0.8287。
Pyrite slag is a kind of waste slag discharged from the process of producing sulfuric acid from pyrite in chemical factory, which contain mainly Fe and a few impurities such as Si, Ca, Mg, S, As, Cu and Ag etc. Its main minerals include hematite, magnetite, quartz, gypsum etc. The amount of pyrite slag discharged is about 1.0×107~1.5×107 t each year. At present a large amount of pyrite slag is stored up or filled in buries processing, not only it occupies plenty of land, but also the factory must pay the expense of the land, the transport expense, the filling spends in buries and so on. At the same time it also does pollution to air, water and earth. Meanwhile there are much Fe, about 40%-60%, and many useful materials such as Cu, Ag, Au in the pyrite slag, and it is a kind of valuable reused resource. Therefore, to reuse the slag not only can eliminate pollution, but also turn waste to useful material which can bring some economic profit and society profit.
     Comprehensive utilizing pyrite slag has been paid more attention in many countries and many developed countries already have carried on the comprehensive utilization research of pyrite slag many years ago. Although people began to study the utilization of pyrite slag from 1970's in china, because of bad quality of our slag, lower level of technology and lag economy etc, the utilization ratio is still far lower than other countries. There are many difficulties in utilizing the slag, in which the most main one is the impurity of pyrite slag can not be removed of, specially the arsenic element and the sulfur element bring the harm to the comprehensive utilization of slag (such as Fe raw material).
     This paper researches the process that pyrite slag is leached by sulfuric acid solution, which can remove As and S element in pyrite slag effectively. The research indicates that after the slag is treated with sulfuric acid solution, As content is reduced to 0.036%, it's elimination eficiency is 98.7%, S content is reduced to 0.319%, Fe content of sample treated is raised to 62.56%, and As content and Fe content the in treated slag can satisfy quality achievements of iron-smelting raw material.
     To obtain optimum process conditions, the paper studied effect of sulfuric acid concentration, temperature, solid concentration, the reaction time, stirring speed on Fe, As and S content of sample, and conduct orthogonal experiment.The optimum technical conditions of removing of As and S are:the concentration of arsenic removal reagent is 15%, the temperature is 50℃, the solid concentration is 30%, the reaction time is 120 minutes, and the stirring speed is 300 rpm.
     The paper study circulation utilization of the waste liquid obtained from leaching pyrite slag with sulfuric acid by returning to leaching stage. The research indicates that when the waste liquid is returned to the leaching stage to leach pyrite slag, which is matched with acid, free sulfuric acid in leaching liquid can be utilized effectively and the amount of industry sulfuric acid used is reduced obviously. When circulation utilization of the waste liquid reaches three times which is returned to the leaching stage to leach pyrite slag, the As and S content in processing sample may be reduced effectively and the iron is concentrated simultaneously, As and Fe content in sample can achieve the quality requirement of raw material of iron-making.
     Because S content of sample do not achieve the quality requirement of raw material of iron-making when pyrite slag is leached by sulfuric acid solution, the paper study effect of additive in sulfuric acid solution on removing S from pyrite slag. The research indicates that when K2Cr2O7 or KClO3 is mixed into sulfuric acid solution and the solution is used treating pyrite slag, S content in sample may be reduced to 0.279~0.291%, and can achieve removal of As and S simultaneously. The pyrite slag of removing As and S can achieve the quality requirement of raw material of iron-making.
     Meanwhile the paper carried on dynamics research of the processing of removing the arsenic element from pyrite slag by sulfuric acid.Simultaneously dynamics research indicated that, the leaching process of removing arsenic from pyrite slag by sulfuric acid may be described by the unreacted shrink core model with solid resultant (inert material) and the invariable particle size, chemical reaction speed of leaching process was controlled by surface chemical reaction process, the chemical reaction apparent activation energy of leaching process Ea=140.075kJ/mol, the chemical reaction order is 0.8287.
引文
[1]刘荫桐,文国华等.矿山地质手册[M].北京:冶金工业出版社,1996.
    [2]周乐伦,段志毅,王鹤峰.硫铁矿选别方法及应用中存在的问题[J].矿业快报,2007,23(8):49-50.
    [3]李振飞,文书明,周兴龙等.我国硫铁矿加工业现状及硫铁矿烧渣利用综述[J].国外金属矿选矿,2006,43(6):10-12,33.
    [4]Dimitrova M A. Possibility for Obtaining Iron Concentrate From Pyrite Cind er[J]. Verlag Stahleisen,1986,121-122.
    [5]化工部组编.化工环境保护设计手册[M].北京:化学工业出版社,1998,250-263.
    [6]胡宾生,张景智.铜陵市硫酸渣的综合利用[J].环境工程,1996,14(5):53-57.
    [7]杨国清.固体废物处理工程[M].北京:科学出版社,2001.
    [8]米庆良,黄小琴,欧家国.利用硫铁矿烧渣生产铁精粉的研究与探讨[J].环境工程,2007,25(2):67-68.
    [9]Mijangos F, Varona F, Lombrana J I, etal. Pressure Drop Changes During Dis solution of Pyrite Cinder in a Fixed Bed [J]. Powder Technology,2001,115(1): 75-83.
    [10]胡鸿飞,吉红兵.纳米氧化铁的制备方法及进展[J].四川有色金属,2001,(1):15-20.
    [11]郑晓虹,何晓云,苏爱勤等.用熟化法从硫铁矿烧渣中提取铁[J].环境工程,2003,21(3):49-51.
    [12]郑晓虹,林智虹,杨乔平等.用还原焙烧法从硫铁矿烧渣中提取铁的研究[J].河南科学,2003,21(6):713-716.
    [13]Bermhand R. Method for the Manufacture of Ferric Sulphate by Treatment Ferric oxide with sulfuric acid. SE45,999CCI,1987-09-04.
    [14]Nummelu W, Iwasaki I. Iron ore flotation, Advances in mineral processing [J]. New York,1986,308-342
    [15]Gaudin A M, Fuerstenau D W, Tran W. AIME,1955, (202):958-962
    [16]Gaudin A M. Flotation,1957.
    [17]金士威,易琼,包传平等.硫铁矿烧渣制备高纯氧化铁红的研究[J].化工矿物 与加工,2003,32(12):12-13,15.
    [18]周敏,冯业铭.用硫铁矿烧渣生产氧化铁黄新工艺[J].环境工程,1996,14(5):49-53.
    [19]王彦华,何安西,罗裕厚等.亚铁盐溶液提取方法[P].中国专利:CN1367137A,2002-09-04.
    [20]李春华.用硫铁矿烧渣生产液体三氯化铁新工艺[J].广东化工,2004,31(5):5,14.
    [21]Tugrul E N, Derun E M, Piskin M B, etal. Pelletization of Pyrite Ash Waste s for Utilization in Iron Production Industry [J]. Journal of Engineering and Nat ural Sciences,2005.
    [22]李家瑞.工业企业环境保护[M].北京:冶金工业出版社,1992.
    [23]朱申红.黄铁矿烧渣综合利用前景可观[J].国外金属矿选矿,1998,(5):35-37.
    [24]高志钢,郑吉建.硫铁矿烧渣回收再利用[J].无机盐工业,1999,31(2):36-37.
    [25]Bristow N J. Sintering properties of iron ore mikes containing titanium [J]. ISIJ International,1992,32(7):819.
    [26]Loo C E. Mechanism of low-temperature reduction degradation of iron ore sinters [J]. Transactions of the Institution of Mining and Metallurgy.1994,103(2): 126.
    [27]Inaba T, Nagano M, Endo M, etal. Investigation of Plasma Treatment for Ha zardous Wastes Such As Fly Ash and Asbestos [J]. Electrical Engineering in Jap an,1999,126(3):73-82.
    [28]郑雅杰,龚竹青,陈白珍等.硫铁矿烧渣湿法制备铁系产品的原理和途径分析[J].环境污染治理技术与设备,2001,2(1):48-54.
    [29]刘家永,沈国鹏,贺三豹.硫铁矿烧渣生产聚合硫酸铁的研究[J].化工矿物与加工,2003,32(10):18-20.
    [30]夏畅斌,何湘柱.高岭土和硫铁矿烧渣研制聚合硅酸铝铁混凝剂[J].无机盐工业,2000,32(6):35-39.
    [31]马同森.复合净水剂的制备及应用研究[J].污染防治技术,1996,9(1):37-39.
    [32]万鹰听,刘建军.聚硅氧化铝铁混凝剂(PSAFC)的制备及应用研究[J].环境科学研究,2002,15(5):14-16.
    [33]陈永红,张玲玲.固体废渣制取复合净水剂的研究[J].污染防治技术,1999,12(3):171-173,186.
    [34]李明玉,刘佩红,汤心虎等.硫铁矿烧渣一步法生产固体复合混凝剂及应用[J].硫酸工业,2003,(5):14-17.
    [35]龚竹青,郑雅杰.硫铁矿烧渣制备硫酸亚铁及效益估算[J].环境保护,2000,(8):44-46.
    [36]刘立华,郑雅杰,龚竹青.聚合铁盐絮凝剂的研究进展与发展趋势[J].现代化工,2002,22(10):18-21.
    [37]王雪松.黄铁矿烧渣的特性及利用[J].环境工程,1999,17(1):58-61.
    [38]韦德科,崔湘玲.硫铁矿烧渣的利用探讨[J].化工矿山技术,1997,26(4):38-40.
    [39]胡永平,张德海.从黄铁矿烧渣中回收铁的新工艺[J].化工矿山技术,1995,24(6):22-25,14.
    [40]蒋馥华,张萍.黄铁矿烧渣制备聚合硫酸铁实验[J].硫酸工业,1995,(1):14-16.
    [41]王艳平,李松柏.硫铁矿烧渣还原条件的模糊分析[J].硫酸工业,1993,(2):52-54,33.
    [42]张勋道,吴国迎.硫铁矿烧渣综合利用工艺的比较[J].硫酸工业,1998,(5):42-44.
    [43]朱申红,荀志远.化学选矿用于处理黄铁矿烧渣[J].化工矿山技术,1997,26(6):37-39.
    [44]古映莹,徐文泱,杨天足等.氧化—还原焙烧工艺综合处理二次硫铁尾矿[J].矿产综合利用,2008,(4):41-44.
    [45]刘德洪,金文杰,朱新宇.微生物法脱除大石桥硫铁矿烧渣中硫的研究[J].安全与环保,2006,32(8):10-11.
    [46]杨蓓德,金文杰,刘德洪.浮选法脱除硫铁矿烧渣硫[J].矿业研究与开发,2006,26(2):52-54.
    [47]Nunez A C, Vinals O J. Study of spanish pyrite cinders:Cl2-HCl leaching of fluidized-bed arsenical cinders-1.Transactions of the Institution of Mining and Metallurgy, Section C:Mineral Processing and Extractive Metallurgy,1993:162-172.
    [48]吴仲.锌精矿沸腾焙烧过程中砷锑杂质的脱除[J].无机盐工业,2006,38(5):43-44.
    [49]付一鸣,姜澜.铜转炉烟灰焙烧脱砷的研究[J].有色金属冶炼部 分,2000,(6):14-16.
    [50]刘景槐,李学军.含砷铜精矿回转窑焙烧脱砷工艺研究[J].湖南有色金属,2000,(1):23-24,59.
    [51]张荣良,丘克强,谢永金等.铜冶炼闪速炉烟尘氧化浸出与中和脱砷[J].中南大学学报(自然科学版),2006,37(1):73-78.
    [52]覃用宁,黎光旺,何辉.含砷烟尘湿法提取白砷新工艺[J].云南冶金,2003(3):37-40,56.
    [53]陈维平,李仲英,边可君等.湿式提砷法在处理工业废水及废渣中的应用[J].中国环境科学,1999,19(4):310-312.
    [54]赵晓军,张旭.高砷氯氧锑碱浸脱砷试验研究[J].云南冶金,2005,34(6):37-39,46.
    [55]张子岩,刘建华,万林生等.用氢氧化钠浸出含钻高砷铁渣中砷的试验研究[J].湿法冶金,2005,24(2):105-107.
    [56]蔡练兵,刘维,柴立元.高砷铅阳极泥预脱砷研究[J].矿冶工程,2007,27(6):44-47.
    [57]崔日成,杨洪英,张谷平等.pH值对浸矿细菌的活化以及金精矿脱砷的影响[J].东北大学学报(自然科学版),2008,29(11):1597-1600;
    [58]田晓娟,王艳,杜德平等.微生物氧化脱砷浸取金的方法[J].物探与化探,2008,(3):298-300,303.
    [59]王恩德,关广岳.含砷金矿石的细菌浸出研究[J].东北工学院学报,1992(6):527-531.
    [60]Kitae B. Mirobial desufarizadon of solubilinedcoal [J]. Biotechnology Letter, 2002,24:421-405
    [61]Vamerali T, Bandiera M, Coletto L, etal. Phytoremediation Trials On Metal-And Arsenic-contaminated Pyrite Wastes [J]. Environmental Pollution 2009,157 (3):887-894.
    [62]Fellet G, Marchiol L, Perosa D. The application of phytoremediation technol ogy in a soil contaminated by pyrite cinders [J]. Ecological engineering,2007,31 (3):207-214.
    [63]Giunti M, Baroni D, Bacci E. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxic ology,2004,72(2):352-357.
    [64]Clauss E, Pentinghaus H. Acidic pyrite cinders:Environmental toxicity, depos ition and reuse [J]. Sixth International Congress on Applied Mineralogy ICAM 2 000, Jul 17-19,2000, Goettingen, Germany, (12):499-502.
    [65]岩石矿物分析编写小组.岩石矿物分析[M].地质出版社,北京,1974:165-166,227-236.
    [66]华东化工学院分析化学教研组等编.分析化学[M].高等教育出版社,1989:1-118,198-247.
    [67]天津大学物理化学教研室编.物理化学[M].高等教育出版社,1992:130-198.
    [68]吴德礼,化学法处理黄铁矿烧渣的试验研究[硕士学位论文],青岛,青岛建筑工程学院,2003年3月.
    [69]罗康碧,罗明河,李沪萍.反应工程原理[M].北京:科学出版社.286,290-291等.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700