云南某锡石—硫化矿选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国锡矿资源丰富,锡石硫化矿储量较大,现在开采的也绝大部分都是锡石硫化矿。锡石硫化矿类型多,伴生有用矿物种类多,综合利用价值高,有着较高的经济价值和学术研究价值。
     本论文主要在云南某地锡石硫化矿的工艺矿物学等性质研究的基础上做不同工艺试验研究和工艺分析研究,考查提高回收率的有效工艺以及探索各工艺提高回收率的有效措施。
     由于矿石中的锡石多是由锡石单体构成的集合体,集合体粒度也不大。磨矿过程中当集合体解离出来时,也易造成集合体内部锡石单体之间的解离,最终造成解离后的锡石单体粒度极细,其粒度和锡石单体粒度基本一致;矿石中含有多种金属元素,如铜、铅、锌等,有害元素砷。该矿属于难选锡石硫化矿。
     重选是锡石选矿的主要方法,本文研究以重选为主。首先探索以不同的磨矿粒度进行摇床直接重选和分级入摇床选别试验。由于矿石中大量的硫化物存在和锡石易碎的特点,严重影响了锡石的回收。根据矿石的性质,试验确定采用浮-重联合流程,浮选脱硫可以使锡更多富集于浮选尾矿中,这样硫化物对摇床重选的影响可以减小,但由于锡石与硫化矿的致密共生关系,致使还是有部分锡损失与浮选泡沫中,这部分锡在今后的研究工作中应考虑回收。
     本研究的主攻方向以浮选脱硫后的尾矿为研究对象。经过对尾矿的阶段磨选和分级入摇床选别后,锡的品位和回收率得到明显提高,研究结果表明:
     (1)重选是选别该矿的主要方法,但硫化物对重选影响很大;
     (2)粗磨入选,能拿早拿、能丢早丢,多产品结构。预先脱出硫化矿物是提高锡精矿品位和回收率,简化工艺流程,降低生产成本的有效途径;
     (3)该锡石硫化矿采用粗磨浮选脱硫一浮选尾矿分级入摇床选别流程指标较好:原矿含锡2.34%,产出锡精矿含锡30.14%,锡回收率39.56%;富中矿含锡4.77%,锡回收率22.74%;贫中矿含锡2.2%,锡回收率20.84%,故三个等级的产品共回收锡83.14%。
     (4)锡石的细粒嵌布是影响回收率的主要因素,为进一步提高回收率,同时得到高品位锡精矿,后续工作应将重点放在细粒锡石的回收上。
Zhere are plenty of tin ores in China, Cassiterite-sulfide ore reserves are larger, and now also mostly mined cassiterite-sulfide ore. Cassiterite-sulfide ore of many types and associated minerals useful for many kinds of comprehensive utilization of high-value, has higher economic value and the scholarly research value.
     In this paper, in a place of Yunnan, mainly work is to do experimental research and process analysis study on cassiterite-sulfide ore based on the different processes:mineralogy and other properties of the process, examined the effective process to improve the recovery rate, as well as to explore the process to improve the recovery rate of effective measures.
     Because in the ore, the constitution of tinstone aggregate mainly by the tinstone monomer, the aggregate granularity is not big.When in the rubbing process, the aggregate comes out, also easy to create he dissociation in interior between the tinstone aggregate and tinstone monomert, finally creates the tinstone monomer granularity is extremely thin after the dissociation, its granularity and tinstone monomer granularity basic consistent; In the ore includes many kinds of metallic elements, like copper, lead, zinc and so on, harmful element arsenic. This ore belongs the tinstone-sulphide ore which difficultly to choose.
     The main method dressing of tinstone is the gravity separation, this main study is separates by gravity primarily in this article. The first explores carries on the table to separate by gravity and the graduation directly enters the table classification experiment by different rubbing granularity. Because the ore has massive sulfide existence and tinstone brittle characteristic, influenced tinstone recycling seriously. According to the ore nature, the experiment determined that uses the union flow:floats gravity separation, the flotation process desulphurization may cause the tin to concentrate in the flotation tailings, such sulfide may reduce the fluence to the table gravity separation, but as a result of the compact paragenesis relations in tinstone and the sulphide ore, caused part of tin loss the flotation process froth, this part of tin should consider the recycling in present's research work.
     The main attack direction in this research is the tailings after flotation process. Passes through the stage elects and grades enters the table classification in tailings, the tin personal status and the returns-ratio have the distinct enhancement, the findings indicated:
     (1) Separates by gravity is the main method to classifies this ore, but the sulfide influence the gravity separation is very serious;
     (2) selected by rough grinding, can take takes early, can lose loses early, multi-product mix. Leaves the sulfide mineral is the efficient path to advance enhances the tin concentrate personal status and the returns-ratio, the simplification technical process, and reduces the production cost;
     (3)The target of this tinstone-sulphide ore uses the rough grinding flotation process desulphurization-flotation tailings graduation to enter the table classification flow to be good:The crude ore content tin 2.34%, deliver the tin concentrate content tin 30.14%, tin returns-ratio 39.56%; Rich middling content tin 4.77%, tin returns-ratio 22.74%; Poor middling content tin 2.2%, tin returns-ratio 20.84%, therefore three rank's products recycle tin 83.14% altogether.
     (4) the fine grain inlays of tinstone is the primary factor affects the returns-ratio, to further raise the returns-ratio, simultaneously obtains the high grade tin concentrate, the following work should place emphasis with the recycling in fine grain tinstone.
引文
[1]锡的选矿编写组.锡的选矿.北京:冶金工业出版社,1972
    [2]黄位森.锡[M].北京:冶金工业出版社.2000:197-233
    [3]许志华.锡工艺矿物学[J].广东有色金属学报,1999(2):79-85
    [4]胡熙庚.有色金属硫化矿选矿.冶金工业出版社,1987(5):362
    [5]潘基泽.泡金山锡石硫化矿选矿试验研究.昆明理工大学,2003
    [6]国土资源部信息中心.世界矿产综合年评(2000-2001)[M].北京:地质出版社,2002
    [7]国土资源部矿产开发管理司.中国矿产资源主要矿种开发利用水平与政策建议[M].北京:冶金工业出版社,2002
    [8]云南省人民政府矿业开发调研组.云南矿业发展若干对策研究[R]..2000
    [9]云南省地矿局全省地质资料处.云南省矿产资源对建设保证程度论证分析[R].1990
    [10]云南省经济技术研究中心,云南省科学技术委员会,云南省矿产资源管理委员会.云南矿业发展战略研究(1986-2000)[R].1986
    [11]2008年云南锡业公司将继续保持全球锡行业第一地位.中国铅锌锡锑,2008(3): 37
    [12]郑树荣.世界锡资源形势预测.昆明理工大学学报,2000(4):2
    [13]肖仪武.第五届全国矿产资源综合利用学术会议论文集.北京:冶金工业出版社,1996
    [14]国外锡金属(技术经济参考资料).昆明有色冶金设计研究院技经科,1979(2)
    [15]Baldauf H.Schoenherr J and Schubert H.In:Extration of steel Alloying Metals.Lulea,1983
    [16]houot R.Int J.Miner Process,1991,32 (1):45-47
    [17]B.A will.Mineral Processing Tehnology,1979
    [18]王文潜.国外锡选矿生产简况.昆明冶金研究所情报室,1975(1)
    [19]有关世界锡矿的几个问题.云南冶金地质研究所,1979(10)
    [20]EL-Shall H.et al.Mineral Metallurgical procelling,1993,10 (2):25-26
    [21]Tin international statistical supplement.1979
    [22]国外选矿快报,1994(16):20
    [23]黄位森.锡.冶金工业出版社,2000(1)82-183,(2)14-216
    [24]潘基泽.泡金山锡石硫化矿选矿试验研究[硕士学位论文].昆明理工大学,2003
    [25]刘学海.有色金属(选矿部分),1993(1):18-20
    [26]张继文.黄金,1994,15(4):45-46
    [27]吕永信.微细与超细难选矿泥射流流膜离心分离法.北京:冶金工业出版社,1994
    [28]张文彬等.中国矿业(增刊,第四届全国选矿设备学术会集)[J]12001:33-41
    [29]文书明,国外金属矿选矿[J],1998(4):46-48
    [30]科技出版社.解离是选锡的前提.锡的选矿.86
    [31]科技出版社.脱硫是选锡的关键.锡的选矿.86
    [32]矿产资源综合利用手册.科学出版社,2002,2(1)
    [33]黄位森.锡.冶金工业出版社,2000,182-183,214-21
    [34]蒋荫林.锡硫化锡铜矿选矿工艺现状分析.锡业科技,第四卷第四期:6-11
    [35]张俞明等.大厂锡石多金属硫化矿浮选分离的实践与探讨.矿产保护与利用,1999(4):31-34
    [36]梁玉麟,郭树清.大厂锡石多金属硫化矿的选矿工艺流程商榷.广西冶金,1999(4):2
    [37]杨奕旗,张俞明,邬清平.大厂锡石多金属硫化矿选矿技术现状及发展方向.国外金属矿选矿,1998(4):2-3
    [38]Ron R.X Lyman G..J., International Joarnal of Mineral Processing,1993,37:3-4
    [39]Subrahman yam TV and Foresberg KS. Fine particles processsing, shear floceuation and carrier flotation—a revies[J]. Int. J Min. Proccess,1990(30): 265-286
    [40]孙玉波.首届重选技术研讨会论文汇编,1984:4-22
    [41]黄枢.首届重选技术研讨会论文汇编,1884:3-12
    [42]Fyiedman, S.L.Miller C.0, Ind.Eng.C hem
    [43]列奇维.物理化学流体力学,1965,2:44-46
    [44]HbaHoB B. Ⅱ,H3By3.LIBet.MeT-Tnsl,1983
    [45]Thunaes A.等.Trans.A.I.M.E 1973
    [46]Bagnold R.A.Proc.Royal Society.1968
    [47]Michell F.B.8t h Internationalc ongro f Miner.Proc,1968:292
    [48]Burt R.O. InternaTionalJ our of Miner. Proc.1966
    [49]萨梅金等.浮选理论现状与远景[M].北京:冶金业出版杜,1984:107-116
    [50]Colombo,A.F.and Frommer,DW..Ch.47 in Flotation,1976,A.M.Gaudin Memorial
    [51]Kent,W.and Ralston,J.Inter.J..Mimer Process.1985,14:217-232
    [52]Clauss,C.R.A.et.al.Inter.J.Miner.process.1979(1)27-34
    [53]Attia,Y.A..Tnter.J.miner.Process.1977(3):191-195
    [54]朱玉霜,朱建光.浮选药剂的化学原理.2.中南工业大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700