江苏低品位难选蓝晶石矿选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝晶石作为高级耐火材料原料,用途十分广泛,需求也不断增加,质量相对较好且杂质含量低的蓝晶石富矿已经消耗殆尽,大量中低品位且有害组分含量高的蓝晶石的开发利用已经迫在眉睫。
     江苏沭阳低品位蓝晶石矿主要化学成分为SiO2 71.68%、A12O3 20.98%、TFe2O3 2.78%、TiO 21.35%, Fe、Ti杂质含量较高,主要以赤褐铁矿、钛铁矿金红石和钙铁榴石形式存在。原矿风化严重,脉石矿物种类繁多,共生关系密切,蓝晶石颗粒大小不均匀,铁染现象明显,含铁、钛的脉石矿物一般以包裹体形式存在,使蓝晶石与脉石矿物的分离变得困难,是该矿石选矿试验的重点和难点。
     选矿试验表明,适宜的磨矿方式为球磨,磨矿细度为-0.074mm65.28%。脱泥对蓝晶石浮选影响重大,酸法工艺尤为明显,适宜的脱泥粒度下限为20μm。磁选可以除去大部分的含铁矿物,除铁率为84.64%,适宜的磁选条件为磁场强度1.0T,矿浆流速3.5cm/s,脉动频率1000次/分。
     在碱性(pH9-9.5)条件下,适宜的捕收剂为油酸钠和癸脂;酸性(pH3-3.5)条件下,适宜的捕收剂为石油磺酸钠。然而,用油酸钠和癸脂作捕收剂的碱法工艺难以取得合格的蓝晶石精矿,用石油磺酸钠作捕收剂的酸法工艺精矿品位和回收率较高,但TiO2含量超标。探索了三种流程除杂,碱酸流程难以取得合格精矿;磁-浮-重联合流程能取得合格精矿,但精矿回收率低,流程复杂。分支浮选流程能取得符合LJ-55标准要求的蓝晶石精矿。
     分支浮选流程中+0.045mm粒级通过“一粗两精”就能获得合格精矿,且闭路精矿A12O3品位54.75%,回收率69.48%,回收率较高,产品质量基本满足LJ-55标准要求;-0.045mm粒级中,铁钛杂质嵌布粒度较细,难以去除,最终精矿A12O3品位48.17%,回收率14.87%,用来生产对铁钛含量要求较低的产品原料。分支浮选流程总回收率达到84.35%。
     石油磺酸钠与矿物作用机理研究表明,石油磺酸钠在蓝晶石表面的吸附量远大于石英,且在蓝晶石表面的吸附方式以物理吸附和化学吸附两种方式共存。
As high-grade refractories raw material, kyanite is widely used and the market demand is increasingly greater. But the relatively high-quality and low impurity content kyanite has consumed, and the development and utilization of low grade and high harmful components content of kyanite is imperative.
     The low grade kyanite in JiangSu Shu Yang is complicated, main chemical composition is SiO271.68%、Al2O320.98%、TFe2O32.78%、TiO21.35%, the content of iron and titanium impurity is high, and exist in the form of hematite-limonite、ilmenite、rutile and andradite. The mineral weathering seriously and has variety of gangue minerals, which commensal relation is intimate. The grain size is inhomogeneous and dyed by iron and titanium, these gangues exist in the form of inclusions, which makes it difficult to separate kyanite from gangue minerals. This is the key points and difficult points of this mineral separation.
     The result of investigation on mineral processing technology show that the suitable grinding way is ball-milling and suitable fineness is-0.074mm 65.28%. Desliming has a great influence on kyanite, especially acid process, the suitable lower limit particle size for desliming is 20μm. Magnetic separation process may remove most of the iron-bearing minerals, and the iron removal rate is 84.64%. The optimum condition for magnetic separation is magnetic field conditions LOT, velocity 3.5 cm/s, pulse 1000r/min.
     The optimum collecter is sodium oleate and decyl in alkaline medium (pH9-9.5), and sodium petroleum sulfonate in acid medium (pH3-3.5). However, it is difficult to obtain eligible kyanite concentrate in alkaline medium using sodium oleate and decyl. In acid mediun, using sodium petroleum sulfonate may easier to obtain high recovery and high grade kyanite concentrate, but the content of TiO2 is overproof. It has explore three process to remove impurity. The result shows that it is difficult to obtain eligible concentrate when using alkaline-acid process. Magnetic-flotation-reelect alignment process can be obtained, but the process complex and recovery lower. While, ramified flotation can meet the qualification of LJ-55.
     In ramified flotation process,+0.045mm can obtain eligible kyanite concentrate, closed-circuit test can obtain concentrate that basically satisfied the demand of LJ-55, the grade of concentrate is 54.75%, and the recovery is higher. But in -0.045mm fraction, it is difficult to remove iron and titanium impurity because their fine grit. The grade is Al2O3 48.17% and recovery 14.87%, it can be used in raw material which iron and titanium impurity has less influence. The total recovery of ramified flotation process achieve 84.35%.
     The research on the mechanism shows that the adsorption of collector on the kyanite surface was much more than that of quartz surface. The collector effect in the kyanite surface with chemical and physical adsorption.
引文
[1]林彬荫.蓝晶石红柱石硅线石[M].北京:冶金工业出版社,2003.
    [2]周乐光.矿石学基础(第2版)[M].北京:冶金工业出版社,2005.
    [3]宋丹波.蓝晶石族矿物的选矿[J].四川建材学院学报,1991,6(4):31~39.
    [4]夏绍柱,冯起贵,候若洲等.红柱石、硅线石、蓝晶石矿物资源及其选矿[J].金属矿山,1994,(2):37~44.
    [5]古阶祥.非金属矿物原料特性与应用[M].武汉:武汉工业大学出版社,1990.
    [6]中华人民共和国冶金工业部.YB4032-91.蓝晶石硅线石红柱石[S].北京:冶金工业部,1992.
    [7]G.Bulut, C.Yurtsever. Flotation behaviour of Bitlis kyanite ore[J]. Miner. Process.2004,(73): 29~36.
    [8]F.D.阿伊汉等.用于陶瓷工业中的Bitlis Massif蓝晶石矿石的选矿[J].国外金属矿选矿,2005,(3):34~38.
    [9]Taggart, A.F.. Handbook of Mineral Dressing Ores and Industrial Minerals. Wiley, New York,1954.
    [10]Amanullah, S., Rao, G.M., Satyanarayana, K..Beneficiationof mica-quartz-bearing kyanite. Industrial Minerals,1990(April),24~29.
    [11]Guanghuan, W. Chinese resources and processing technology for kyanite minerals. Industrial Minerals,1990(March),95-98.
    [12]Brandao, P.R.G., Mendes, S.I.C.. Kyanite from Minas Gerais,Brasil:characterization for use in ceramic. Innovations in Mineraland Coal Processing,7th International Mineral Processing Symposium, Istanbul, Turkey,1998,295-301.
    [13]Jamerson, H., Dixon, G, Brown, J.J.. Mineralogy of the kyanite beneficiation process.7th United International Technical Conference on Refractories (UNITECR),2001,4~8 November, Cancun,Mexico.
    [14]Sweet, P.C.. Silimanite group, kyanite and related minerals. In:Carr, D.D. (Ed.),Industrial Minerals and Rocks. Society for Mining, Metallurgy, and Exploration, Littleton, CO,1994, 921~928.
    [15]李湘洲.蓝晶石及其选矿现状[J].化工矿山技术,1995,24(4):57~60.
    [16]高鹏义,张兴仁.蓝晶矿的选矿[J].矿产综合利用,1981,(1):45-55.
    [17]弓爱君,王建森.蓝晶石浮选剂制备[J].非金属矿,1995,(5):30~31.
    [18]董宏军,陈荩,毛钜凡.蓝晶石类矿物的选矿工艺与理论述评[J].国外金属矿选矿,1993,(12):8-11.
    [19]StanleyJ.Lefond, Industrial Minerals and Rocks(4th Edition).AIME, NewYork,1975; 729~736.
    [20]李高勇,王兴铜.河南桐柏蓝晶石选矿研究[J].非金属矿,1989,(1):23-28.
    [21]吴艳妮,丁晓姜,杨丽珍.内蒙×××蓝晶石矿可选性试验研究[J].化工矿产地质,2008,30(2):104~107.
    [22]孔建河,姚书长,杨子魁.我国蓝晶石选扩工艺及流程研究[J].国外金属矿选矿,1997,(7):40~42.
    [23]张建乐.隐山蓝晶石矿碱法浮选[J].非金属矿,1987,(4):25-27.
    [24]郭珍旭,吕良,岳铁兵,周文雅.蓝晶石提纯工艺技术研究[J].矿产保护与利用,2008,(6):34~36.
    [25]S.Amanullah, G.M.Rao and K.Satyanarayana, Beneficiation of mica-quartz-bearing Kyanite. Industrial Minerals Pressing Supplement,24~29,1990.
    [26]李志章.蓝晶石类矿物选矿工艺和生产实践[J].昆明冶金高等专科学校学报,2000,16(2):44-47.
    [27]杨大兵,张一敏,赵自光.隐山蓝晶石矿选矿工艺流程及综合利用研究[J].矿产保护与利用,2003,(3):17~19.
    [28]夏绍柱,冯起贵,候若洲等.红柱石、硅线石、蓝晶石矿物资源及其选矿(续前)[J].金属矿山,1994,(3):36-42.
    [29]岳铁兵,曹进成,牛兰良,王燕.蓝晶石英岩型矿石选矿提纯工艺探索[J].中国非金属矿工业导刊,2003,(4):61~62.
    [30]董宏军,陈荩,毛钜凡.表面酸处理对蓝晶石可浮性的影响及机理研究[J]. 1994,46(4):37~41.
    [31]崔亨变,吴在贤.蓝晶石与红柱石的界面现象与浮游特性.日本矿业会志,1965,81(927):614~620.
    [32]Smolik J J, Harman, Fuerstenau D W.Surface characteristic and flotation of aluminosilicate.Trans of SME/AIME,1966,235:367~375.
    [33]李继松.蓝晶石的浮选方法[J].金属矿山,1995,(2):49~51.
    [34]张一敏.蓝晶石分选提纯研究[J].矿产综合利用,1999,(5):8-11.
    [35]毛矩凡,刁艳艳,孙宝岐.联合调整剂在蓝晶石与石英浮选分离中的作用[J].金属矿山,1995,(8):30~33.
    [36]毛钜凡,张志京.蓝晶石类矿物浮选的表面化学研究[J].国外金属矿选矿,1993,(6):28-33.
    [37]旷福生.碱性介质中蓝晶石的浮选研究[J].金属矿山,1984,(1):41~44.
    [38]董宏军,陈荩,毛钜凡.金属离子对蓝晶石可浮性的影响及机理研究[J].非金属矿,1996,(1):27~29.
    [39]苏永江,余郑生,赵东力,姬道新.含铁质蓝晶石选矿工艺研究[J].非金属矿,2003,26(6):35~37.
    [40]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001.
    [41]韦书立,魏克武.烷基磺酸盐浮选蓝晶石的研究[J].矿产综合利用,1991,(1):49~52.
    [42]Fuerstenau D W. Collelation of Contact Angles, Adsorption Density, Zeta Potentials and Flotation Rate. Trans. AIME.,1957, (208):1365~1367.
    [43]Fuerstenau M C.浮选[M].北京:冶金工业出版社,1951:47-49.
    [44]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988.
    [45]胡熙庚,黄和慰.浮选理论与工艺[M].长沙:中南工业大学出版社,1994.
    [46]阿列克谢耶夫B C.蓝晶石矿选矿理论与实践(夏绍柱,刘明鉴1983年译),1976.
    [47]Cases JM, Trans. AIME,1970,247:123~127.
    [48]Choi HS, Oh J. Inst. Min. Metall, Japan,1965,81:614~620.
    [49]B.C.AJIekceeB.蓝晶石矿石的选矿和处理[J].矿产综合利用,1981,(4):96~105.
    [50]崔林,刘均彪.金红石和石榴石浮选分离的研究[J].化工矿山技术,1986,(5):32-33.
    [51]任爱军,赵希兵.山西某金红石矿选矿试验研究[J].有色金属(选矿部分),2008,(2):15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700