絮凝处理水华的环境安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水体富营养化现象日益严重,引起蓝藻水华频繁爆发,给淡水生态系统及其功能造成严重破坏,甚至还会威胁人类的健康。在各种治理水华的技术与措施中,絮凝沉降法由于具有快速、有效的优点而被广泛应用,其中天然矿物絮凝法由于粘土来源丰富并且没有二次污染,尤其经过改性后粘土投加量也显著降低,被认为是一种具有发展前景的防治技术方法之一。但是絮凝法处理水华只是将藻细胞从水体中转移到沉积物中,并没有彻底将藻细胞消除。絮凝处理后的藻细胞在沉积物中的死亡分解及藻毒素的释放很可能会对环境产生危害,因此有必要对絮凝处理水华的环境安全性进行研究。本文以水华优势藻类铜绿微囊藻为研究对象,通过模拟絮凝处理水华的过程,研究了铜绿微囊藻经絮凝沉降之后在水-沉积物中的分布和细胞分解过程,以及细胞内微囊藻毒素(MC)在沉积物中的释放和降解规律,进而对絮凝法应急处理水华的有效性及环境安全性进行评价。具体研究内容和结果如下:
     1.沉积物中MC提取方法的优化
     沉积物中MC的提取是研究MC在沉积物中迁移转化规律的基础,为了能对MC进行有效提取,对MC的提取方法进行了优化。分别从提取剂甲醇的浓度、提取剂用量、提取时间、提取次数进行优化,最终得到最优的提取方法为:使用浓度为75%的甲醇进行提取,提取剂用量为7 mL,提取时间为20 min,重复提取三次,提取率可达95%以上。
     2.有氧条件下絮凝处理水华的环境安全性研究
     以水华优势藻类铜绿微囊藻作为研究对象,通过模拟絮凝应急处理水华的过程,研究了有氧条件下铜绿微囊藻经絮凝沉降后藻细胞在水-沉积物中的分布和细胞分解过程,以及细胞内MC在沉积物中的释放和降解规律。结果表明,PAC、海泡石和PAC/海泡石联用均可有效去除水华藻类,除藻率都可以达到99%以上。其中PAC/海泡石联用不仅能快速沉降藻细胞,还能有效防止藻细胞重悬浮,避免水华的再次爆发。沉积物中的藻细胞经过约28天逐渐死亡分解,而絮凝处理既不会加速细胞的分解,也不会延缓细胞的死亡。MC在经过9天左右的滞后期后,开始缓慢降解,在20-28天左右降低到检测限以下,不同絮凝剂处理对MC的降解规律没有显著性影响。絮凝处理对水相中TOC和TN的变化也没有显著性影响,只是在实验后期(20天左右),水相中TOC和TN浓度会大幅增加,需加强水质的检测与管理。
     3.厌氧条件下絮凝处理水华的环境安全性研究
     在完全厌氧的条件下,研究了铜绿微囊藻经絮凝沉降后藻细胞在水-沉积物中的分布和细胞分解过程,以及细胞内MC在沉积物中的释放和降解规律。结果表明,在厌氧条件下,藻细胞生物量经过8天左右的滞后期后开始快速减少,第24天已检测不到藻细胞的存在。絮凝处理及不同的絮凝剂对藻细胞的分解没有显著影响。厌氧条件下沉积物中藻细胞分解较快,这有利于有害藻类的去除。PAC和PAC/海泡石联用在厌氧条件小均可有效抑制藻细胞的重悬浮,对防止水华的再次爆发有较好的效果。MC经过约8天的滞后期后快速降解,第24天降低到检测限以下。厌氧条件下MC在4天时间内可以降解90%以上,说明厌氧条件下沉积物中MC的降解菌活性较强。水相中TOC及TN含量在20天后会大幅增加,需加强检测与管理。
The frequency of cyanobacteria blooms has been increasing in recent years in China, which is attributed to the eutrophication of fresh water bodies. Cyanobacteria blooms pose a series of problems on the functions of water body, and even threaten human health. Numerous techniques have been studyed for the control of water bloom. Flocculation is an efficient and inexpensive technique and has been widely used in water treatment. Previous studies showed that it can be used to control water blooms, especially with the natural or moditied clays as flocculator. However, the algal cells are not removed completely from water bodies after flocculation, and they still accumulate in the sediment of water bodies. The decomposition of the algal cells in the sediment, or the release of algal toxin may cause new environmental problems. It is necessary to investigat the environmental safety of water bloom conrol by flocculation. In this thesis, we studied the distribution and decomposition of the Microcystis aeruginosa in the water-sediment phase, and the release and degradation of Microcystin (MC) in the sediment to evaluate the effectiveness and environmental safety of this process by simulating the process of using flocculation in emergent control of algal bloom. The main content and results were as follows:
     1. The optimization method for extracting MC in sediments
     The extraction method of MC from sediment is a precondition for the research of MC. In order to extract MC from sediment effectively, it's necessary to optimize the extraction method. The concentration of methanol, volume of extraction reagent, extraction time, number of extractions was optimized in this study. The result showed that optimal extraction method was:75% of methanol,7 mL,20 min, repeat three times, and the extraction yield could over 95%.
     2. Research on the environmental safety of water bloom control by flocculation under aerobic conditions
     The distribution and decomposition of Microcystis aeruginosa cells, and the release and degradation of intracellular microcystin under aerobic conditions were investigated through simulation experiments to evaluate the efficiency and environmental safety of this treatment process. Results showed that cells were efficiently removed from water column with polymeric aluminum chloride (PAC), sepiolite or both of them, amd the removal rate were more than 99%. Furthermore, PAC together with sepiolite effectively prevented the recruitment of deposited cells. The cells in sediments decomposed gradually after 24-28 days. Flocculation process neither accelerated cells decomposition nor slowed cell death. MC was degraded to be below the detected limit within 20 to 28 days after nine days delay. Flocculation had no negative effect on the release and degradation of MC, nor the TOC and TN concentration in the water phase. But in the late stage of experiment (about 20 days), TN and TOC concentration increased significantly, it was need more attention.
     3. Research on the environmental safety of water bloom control by flocculation under anaerobic conditions
     The distribution and decomposition of the cells, and the release and degradation of intracellular microcystin under anaerobic conditions were investigated to evaluate the efficiency and environmental safety of this treatment process. Results showed that cells were degraded to be below the detected limit within 24 days after eight days delay under anaerobic conditions. Flocculation process had no significantly affected on the decomposition of cells. The rapid decomposition of cells favored the removal of harmful algae. Furthermore, PAC and PAC together with sepiolite effectively prevented the recruitment of deposited cells. MC was degraded to be below the detected limit within 24 days after eight days delay under anaerobic conditions. Ninety percent of MC was degraded in four days, demonstrating that the microorganisms can efficiently degrade MC under anaerobic conditions. TN and TOC concentrations in the water phase would increase significantly (after 20 days), it was need more attention.
引文
[1]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].中国环境科学出版社,1990:10.
    [2]刘建康.东湖生态学研究[M].北京:科学出版社,1991.
    [3]刘红涛.铜绿微囊藻生长与环境因子的关系及其铜胁迫下的毒理学效应[D].武汉:华中师范大学,2003.
    [4]蔡履冰.太湖流域水体富营养化成因及防治对策的初步研究[J].中国环境检测,2003,19(3):51-54.
    [5]Moss B, Madgwick J, Philips G. A guide to the restoration of nutrient-enriched shallow lakes[M]. UK:Broads Authority, Norfolk,1996.
    [6]Zhang WH, Xu XQ, Qiu ChQ. Advance in study on microcystins in aquatic environment[J]. Research of Environmental Sciences(in Chinese),2001.14(2):57-61.
    [7]国家环境保护总局.中国环境年鉴(1999卷)[M].北京:中国环境报社,1999:204-205.
    [8]吴邦灿等.现代环境监测技术[M].北京:中国环境科学出版社,1999.
    [9]Chen YW, Gao XY. Study on variationgs in spatial and temporal distributiong of Microcystis in Northwest Taihu. Lake and its relations with light and temperature[J]. Ecology of Taihu Lake, 1998(2):142-148.
    [10]Hua JB, Zong ZX. Experimental research on formation of algae bloom in Yanghe reservoir[J]. Acta Scicentiarum Naturalium Universitis Pekinesis,1994,30(4):476-484.
    [11]沈英嘉,陈德辉.不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响[J].湖泊科学,2004,16(3):285-288.
    [12]Coles JF, Jones RC. Effectof temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river[J]. Journal of Phycology,2001, 36(1):7-16.
    [13]Paerl HW, Tucker J, Bland PT. Carotenoid enhancement and its role in maintaining blue-gree (Microcystis aeruginosa) surface blooms[J]. Limnology Oceanography,1983,28(5):847-857.
    [14]刘光钊.水体富营养及其藻害[M].北京:中国环境科学出版社,2005:6-7.
    [15]Agusti S, Phlips EJ. Light absorption by cyanobacteria:Implications of the colonial growth form[J]. Limnology Oceanography,1992,37(2):434-441.
    [16]Ganf GG, Oliver RL. Vertical separation of light and available nutrients as a factor causing replacement of green algae in the plankton of stratified lake[J]. Journal of ecology,1982,70: 829-844.
    [17]Kromkamp J, Van D, Heuvel A, et al. Phosphorus uptake and photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa[J]. European Journal of Phycology 1989,24(4):347-355.
    [18]Sommer U. Comparison between steady and non-steady state competition:experiments with natural phytoplankton[J]. Limnology Oceanography,1985,30(2):335-346.
    [19]Fujimoto N, Sudo R. Nutrient-limited growth of Microcystis aeruignosa and Phormidium tenue and competition under various N:P supply ratios and temperatures[J]. Limnology Oceanography,1997,42:250-256.
    [20]Schindler DW. Evolution of phosphorus limitation in lakes[J]. Science,1977,195:260-262.
    [21]Smith VH. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J]. Science,1983,221:669-671.
    [22]Reynolds CS. Phytoplankton periodicity:the interactions of from, function and environmental variability[J]. Freshwater Biology,1984,14(2):111-142.
    [23]Chorus I, Bartram J. Toxic cyanobacteria in water:a guide to their public health consequences, monitoring and management[M]. London:Eand FN Spon,1999:41-49.
    [24]钱大富,马静颖,洪小平.水体富营养化及其防治技术研究进展[J].青海大学学报,2002,20(1):28-31.
    [25]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展,2007,9:896-905.
    [26]张毅敏,张永春,左玉辉.前置库技术在太湖流域面源污染控制中的应用探讨[J].环境污染与防治,2003,25(6):342-344.
    [27]张智,林艳,梁健.水体富营养化及其治理措施[J].重庆环境科学,2002,24(3):52-55.
    [28]高延耀,夏四清,周增炎.城市污水生物脱氮除磷工艺评述[J].环境科学,1999,20:110-112.
    [29]龚云华.污水生物脱氮除磷技术的现状与发展[J].环境保护,2000,7:23-25.
    [30]李春雁,崔毅.生物操纵法对养殖水体富营养化防治的探讨[J].海洋水产研究,2002,23:71-75.
    [31]张丽彬,王金鑫,王启山,等.浮游动物在生物操纵法除藻中的所用研究[J].生态环境,2007,16(6):1648-1653.
    [32]殷琨.水体富营养化的影响及其防治技术[J].中国资源综合利用,2006,24:19-22.
    [33]夏韵,邢奕,周北海.严重富营养化湖泊治理技术的探讨[J].中国科技论文在线.
    [34]沈银武,刘永定,吴国樵,等.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报,2004,25(2):131-136.
    [35]王波,张光明,王慧.超声波去除铜绿微囊藻研究[J].环境污染治理技术与设备,2005,6(4):47-49.
    [36]高延耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999.
    [37]高健,赵春禄.传统PAC混凝除藻方法的改进[J].青岛科技大学学报,2005,26:120-123.
    [38]吴玉宝,王启山,王玉恒,等.混凝.气浮除藻工艺中混凝剂的选择[J].给水排水,2008,34:154-156.
    [39]马放,杨基先,金文标,等.环境生物制剂的开发与应用[M].北京:化学工业出版社,2004.
    [40]刘杏,邵林广,张丽芳.生物絮凝剂的研究现状及发展趋势[J].孝感学院学报,2001,21(6):39-42.
    [41]李素清,柯水洲,袁辉洲,等.微生物絮凝剂的研究进展[J].净水技术,2008,27(1):5-8.
    [42]董军芳,林金清,曾颖,等.微生物厂硫酸铝复合絮凝剂在自来水原水中的应用[J].应用化工,2002,31(2):35-38.
    [43]赵春禄,于彦君.粘土矿复合聚合氯化铝凝聚给水中的藻类[J].环境化学,2004,23:301-305.
    [44]付军,闫海,王东升,等.聚铝及其加载粘土矿物高效絮凝沉降铜绿微囊藻的研究[J].环境污染治理技术与设备,2006,7:76-79.
    [45]刘振儒,田重威.壳聚糖复合粘土矿凝聚铜绿微囊藻的研究[J].环境工程,2004,6.80-82.
    [46]Pan Gang, Zhang Ming-Ming, Chen Hao, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅰ. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Poliution,2006, 141(2):195-200.
    [47]Zou Hua, Pan Gang, Chen Hao, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅱ. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan[J]. Environmental Poliution,2006,141(2):201-205.
    [48]吴萍,俞志明.有机改性粘土对赤潮藻絮凝沉降的动力学研究[J].环境科学,2007,28:1518-1823.
    [49]Pan Gang, Zou Hua, Chen Hao, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils.Ⅲ. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified lacal soils[J]. Environmental Poliution,2006,141(2):206-212.
    [50]刘光钊.水体富营养化及其藻害[M].北京:中国环境科学出版社,2005.
    [51]潘纲,张明明,闫海,等.黏土絮凝沉降铜铝微囊藻的动力学及其作用机理[J].环境科学,2003,9:1-10.
    [52]邹华,潘纲,陈濒.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J].环境科学,2004,25:40-43.
    [53]邹华,潘纲,阮文权.壳聚糖改性粘土絮凝除藻的机理探讨[J].环境科学与技术,2007,30:8-13.
    [54]邹华,潘纲,陈灏.离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响[J].环境科学,2005,26:148-151.
    [55]俞志明,宋秀贤,张波,等.粘土表面改性及对赤潮生物絮凝作用研究[J].科学通报,1999,44(3):308-311.
    [56]吴萍,俞志明.新型表面活性剂改性粘土去除赤潮藻研究[J].海洋与湖沼,2006,11(37):511-516.
    [57]郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展,2002,21:500-506.
    [58]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25:589-595.
    [59]Tsujimura S, Tsukada H, Nakahara H, et al. Seasonal variation of Microcystis populations in sediments of Lake Biwa, Japan[J]. Hydrobiologia,2000,434:183-192.
    [60]吴晓东,孔繁翔,张晓峰,等.太湖与巢湖水华蓝藻越冬和春季复苏的比较研究[J].环境科学,2008,29:1313-1318.
    [61]Lam-Anders H. Algal recruitment from lake sediments in relation to grazing, sinking and dominance patterns in the phytoplankton community[J]. Limnology Oceanography,1996,41(6): 1312-1323.
    [62]吴生才,陈伟民.太湖底泥中微囊藻环境适应性的实验研究[J].海洋湖沼通报,2004,4:41-45.
    [63]Jolanda MHV. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis[J]. Freshwater Biology,2005,50:854-867.
    [64]张晓峰,孔繁翔,曹焕生,等.太湖梅梁湾水华蓝藻复苏过程的研究[J].应用生态学报,2005,16(7):1346-1350.
    [65]陶益,孔繁翔,曹焕生,等.太湖底泥水华蓝藻复苏的模拟[J].湖泊科学,2005,17(3):231-236.
    [66]Reynolds CS. Growth and buoyancy of Microcystis aetuginosa Kutz.Emend.Elenkin in a shallow eutrophic lake[J]. Proceedings of the Royal Society of London,1973,184:29-50.
    [67]Duy TN, Lamp KS, Shaw GR, et al. Toxicology and risk assessment of freshwater cyanobacterial(blue-green algae) toxins in water[J]. Reviews of Environment Contamination and Toxicology,2000,163:113~186.
    [68]Bishop CT, Anet EFLJ, Gorham PR. Isolation and identification of the fast-death factor in Microcystis aeruginosa NRC-1 [J]. Can J Biochem Physiol,1959,37(3):453.
    [69]Konst H, McKercher PD, Gorham PR, et al. Symptoms and pathology produced by toxic Microcystis aeruginosa NRC-1 in laboratory and domestic animals[J]. Can J Comp Med Vet Sci, 1965,29(9):221.
    [70]Botes DP, Tuiman AA, Wessels PL, et al. The structure of cyanoginosin-LA, a cyclic peptide from cyanobacterium Microcystis aeruginosa[J]. Journal of the Chemical, perkin transactions, 1984, Ⅰ:2311.
    [71]Kunimitsu K. Chemistry and toxicology of cylic hepatapetide toxins, the microcystins from cyanobacteria[J]. Microbiol.Cult.coil.,1994,10:5-33.
    [72]Williams DE, Dawe SC, Kent Ml, et al. Bioaccumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcyctins in mussel tissues[J]. Toxicon,1997,35(11):1617-1625.
    [73]Harada KI. Isolation and characterization of the minor components associated with microcystins LR and RR in the Cyanobacterium(blue-green)[J]. Toxicon,1990,28(1):55.
    [74]Svrcek C, Smith D W. Cyanobacteria toxins and the current state of knowledge on water treatment options:a review[J]. Journal of Environmental Engineering and Scicence,2004,3(3): 155-185.
    [75]张青学,俞敏娟.铜绿微囊藻(Microcystis aeruginosa)水华毒性及毒素的研究[J].环境科学学报,1989,9(1):86-94.
    [76]Harada KI, Tsuji K, Watanabe MF, et al. Stability of microcystins from cyanobacteria-Ⅲ: Effect of pH and temperature[J]. Phycologia,1996,35(6):83-88.
    [77]张维昊,宋立荣,徐小清,等.大然水体中微囊藻毒素归趋的初步研究[J].长江流域资源与环境,2004,13(1):84-88.
    [78]Tsuji K, Nalto S, Kondo F, et al. Stability of microcystins from cyanobacteria:effect of light on decomposition and isomerization[J]. Environmental Science & Technology,1994,28(1): 173-177.
    [79]Welker M, Steinberg C. Indirect photolysis of cyanotoxins:One possible mechanism for their-low persistence[J]. Water Research,1999,33(5):1159-1164.
    [80]Tsuji K, Watanuki T, Kondo F, Ishikawa N, et al. Stability of microcystins from cyanobacteria: Effect of light on decomposition and isomerization[J]. Toxicon,1995,33(12):1619-1631.
    [81]Jones GJ, Bourne DG, Blakeley RL, et al. Degradation of cyanobacterial hepatotoxin microcystins by aquatic bacteria[J]. Natural Toxins,1994(a),2:228-235.
    [82]Jones GJ, Orr PT. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay[J]. Water Research,1994,28(4):871-876.
    [83]Hyenstrand P, Rohrlack T, Beattie KA, et al. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water[J]. Water Research,2003,37(14):3299-3306.
    [84]Jones GJ, Bourne DG, Blakeley RL, et al. Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria[J]. Natural Toxins,1994,2(4),228-235.
    [85]Saito T, Sugiura N, Itayama T, et al. Degradation characteristics of microcystins by isolated bacteria from Lake Kasumigaura[J]. Water Supply Research Technology,2003,52(1):13-18.
    [86]Harada K, Imanishi S, Kato H, et al. Isolation of Adda from microcystin-LR by microbial degradation[J]. Toxicon,2004,44(1):107-109.
    [87]Ishii H, Nishijima M, Abe T. Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium[J]. Water Research,2004,38(11):2667-2676.
    [88]Hashimoto EH, Kato H, Kawasaki Y, et al. Further Investigation of Microbial Degradation of Microcystin Using the Advanced Marfey Method[J]. Chemical Research in Toxicology,2009,22 (2):391-398.
    [89]Park HD, Sasaki Y, Maruyama T, et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake[J]. Environmental Toxicology, 2001,16(4):337-343.
    [90]Maruyama T, Park HD, Ozawa K, et al. Sphingosinicella microcystinivorans gen.nov., sp.nov., a microcystin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56:85-89.
    [91]Lionel Ho, Hoefela D, Sainta CP, et al. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter[J]. Water Research,2007,41(20): 4683-4693.
    [92]Mulan Z, Gan P, Hai Y. Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp.USTB-05[J]. Journal of Environmental Sciences-China,2010,22(2):168-175.
    [93]Rapala J, Berg KA, Lyra C, et al. Paucibacter toxinivorans gen.nov., sp nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin[J]. International Journal of Systematic and Evolutionary Microbiology,2005,55:1563-1568.
    [94]Lemes GAF, Kersanach R, Luciano da SP, et al. Biodegradation of microcystins by aquatic Burkholderia sp.from a South Brazilian coastal lagoon[J]. Ecotoxicology and Environmental Safety,2008,69(3):358-365.
    [95]Hu LB, Yang JD, Zhou W, et al. Isolation of a Methylobacillus sp.that degrades of Microcyctin toxins associated with cyanobacteria[J]. New Biotechnology,2009,26 (3-4): 205-211.
    [96]刘海燕,宦海琳,汪育文,等.微囊藻毒素降解菌S3的分子鉴定及其降解毒素的研究[J].环境科学学报,2007,27(7):1145-1150.
    [97]Manage PM, Edwards C, Singh BK, et al. Isolation and Identification of Novel Microcystin-Degrading Bacteria[J]. Applied and Environmental Microbiology,2009,75(21): 6924-6928.
    [98]Codd GA, Bell SG, Kaya K, et al. Cyanobacterial toxins, exposure routes and human health[J]. European Journal of Phycology,1999,34:405-415.
    [99]罗岳平,施周,王仕汇,等.用粘土作助凝剂提高聚合氯化铝除藻效果的研究[J].中国给水排水,2007,23:61-65.
    [100]Mohamed ZA. Alum and lime-alum removal of toxic and nontoxic phytoplankton from the nile river water:Laboratory study[J]. Water Resources Managenment,2001,15(4):213-221.
    [101]Lam AKY, Prepas EE, Spink D, et al. Chemical control of hepatotoxic phytoplankton blooms:Implications for human health[J]. Water Research,1995,29(8):1845-1854.
    [102]Brunberg AK, Blomqvist P. Recruitment of Microcystis(Cyanophyceae) from lake sediments: The importance of littoral inocula[J]. Journal of Phycology,2003,39(1):58-63.
    [103]陈晓国,杨霞,陈锦,等.滇池沉积物菌群对微囊藻毒素的厌氧生物降解[J].环境科学,2009,30(9):2527-2531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700