硫铁矿废水制备铁黑颜料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫铁矿废水系硫铁矿开采过程中或开采后产生的含铁量高、酸性强的天然废水,会严重污染周围环境。利用硫铁矿废水制备铁黑颜料,不仅可以达到处理废水消除其危害环境的目的,而且可以使废物资源化,充分利用了硫铁矿废水中的铁资源,具有重要的现实意义。
     本论文以硫铁矿废水为原料,探索性地研究了中和沉淀、湿法氧化法制备铁黑颜料工艺流程的可行性及较优的工艺条件,通过电解除铜和添加柠檬酸、十二烷基磺酸钠及聚乙二醇三种分散剂,探讨制备高着色力铁黑颜料的条件。
     结果表明:快速均匀地向硫铁矿废水中加入质量分数10%的NaOH溶液至pH值等于9,以200r/min的搅拌速度搅拌溶液3min,不加任何阴阳离子的PAM,静置沉淀120min,可使硫铁矿废水中和沉淀达到最大沉降效果且处理后上清液达标排放。
     中和沉淀得到的氢氧化亚铁溶胶在反应初始pH值9~10,反应温度80~90℃,反应时间2.5~3h,搅拌速度100~200r/min,烘干温度60~80℃条件下能制备得到铁黑颜料。在初始pH值9.5、反应温度85℃、反应时间2.5h、搅拌速度150r/min、80℃恒温烘干的工艺条件下,能制备得到较优的铁黑颜料。经过XRD、SEM及铁黑颜料技术指标检测分析,表明该铁黑颜料粒径在60nm左右,Fe_3O_4含量在95%以上,各项指标均能达到氧化铁黑颜料行业标准中一级品的要求。但铁黑颜料中Cu_2O的存在使其带有红相,并且Fe_3O_4粒子之间有明显的团聚现象。
     经2.0V直流电电解30min后的硫铁矿废水,通过中和沉淀、湿法氧化初期添加0.75ml质量分数1%的柠檬酸,能制备得到高着色力铁黑颜料。其经XRD、SEM、色光性能检测分析,结果表明色光更接近标准样品,基本不带红相,黑色更纯正;团聚现象有明显改进,粒径也有一定程度的减小。
The pyrite wastewater which is produced during or after the iron pyrite exploitation contains lots of iron with low acidity and has a potential harm to environment. The utilization of pyrite wastewater to prepare black iron pigment has important significance. This is not only due to the treatment of the pyrite wastewater and elimination of environmental pollution, but also making wastewater to resource and recovery of iron resource from pyrite wastewater.
     In our study, the process feasibility and optimal conditions of black iron pigment preparation from pyrite wastewater were explored through precipitation and wet oxidation. The preparation conditions of high tinting strength black iron pigment were discussed via electrolytic removal of copper and addition of dispersants such as citric acid, sodium lauryl sulfate and polyethylene glycol.
     The result showed that rapidly and equably adding 10% NaOH to pyrite wastewater until the condition of pH 9, stirring rate 200r/min for 3 minuts, no PAM addition and 120 minuts precipitation resulted in the optimal effect, at the same time the wastewater reached the discharge standard.
     Ferrous hydroxide which got from precipitation was able to make black iron pigment through reacting at 80~90℃f or 2.5~3h with the origimal pH of 9~10, stirring at 100~200r/min and drying at 60~80℃. Black iron pigment with high quality was obtained at the conditions of origimal pH 9.5,reaction temperature 85℃,reaction time 2.5h, stirring rate 150 r/min and drying temperature 80℃. XRD and SEM analysis showed that the particle size of the prepared black iron pigment was about 60nm,and Fe_3O_4 content was higher than 95%. The product could reach the requirements for the first-grade standard in black iron pigment industry. But in the black iron pigment, there was a little Cu_2O which made the product with some red color. Between the Fe_3O_4 particles, there was visible aggregation.
     After electrolyzed pyrite wastewater for 30min by 2.0V DC, black iron pigment with high tinting strength could be made through precipitation, wet oxidation and adding 0.75ml 1% citric acid at the beginning of reaction. XRD, SEM and color analysis showed that the high tinting strength black iron pigment had closer color to the standard sample and basicly with no red color in it. The agglomeration was obviously improved, the size of particle was in a little decrease.
引文
[1]胡天喜,文书明.硫铁矿选矿现状与发展[J].化工矿物与加工, 2007, (8):1-4.
    [2]刘敬勇,赵永久.硫铁矿资源开采利用过程中的环境污染问题及控制对策[J].中国矿业, 2007, 16(7): 55-57.
    [3] Ata Akcil, Soner Koldas. Acid Mine Drainage (AMD): Causes, treatment and case studies[J]. Journal of Cleaner Production, 2006, 14: 1139-1145.
    [4]刘文颖,肖利萍,梁冰.矿山酸性废水治理的研究及SAPS技术展望[J].矿业研究与开发, 2008, 28(1): 71-73.
    [5] Barrie Johnson D, Hallberg Kevin B. Acid mine drainage remediation options:a review[J]. Science of the Total Environment, 2005, 338: 3-14.
    [6] Gazea B,Adam K, Kontopoulos A. A Review of passive systems for the treatment of acid mine drainage[J]. Minerals Engineering, 1996, 9(1): 23-42.
    [7]潘科,李正山.矿山酸性废水治理技术及其发展趋势[J].四川环境,2007, 26(5): 83-87.
    [8] Morgan BE, Lahav O, Loewenthal RE. Advances in seeded ambient temperature ferrite formation for treatment of acid mine drainage[J]. Environmental science and technology, 2005, 39(19): 7678-7683.
    [9] Wei Xinchao, Viadero Jr Roger C. Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294(2): 280-286.
    [10] Rao S R, Gehr R, et al. Acid mine drainage as a coagulant[J]. Minerals Engineering, 1992, 5: 1011-1020.
    [11] Marcello R R, Galato S, et al. Inorganic pigments made from the recycling of coal mine drainage treatment sludge[J]. Journal of Environmental Management, 2008, 88: 1280-1284.
    [12]张首才,张金晶,左青卉.利用废铁屑制备氧化铁黑的研究[J].吉林师范大学学报:自然科学版, 2004, (1): 70-71.
    [13]黎盛斯.中国硫铁矿成矿学演化的物质基础[J].化工矿产地质, 1995, 17(1): 1-20.
    [14]卢璟莉,鞠泽青.硫铁矿矿坑废水的处理现状与进展[J].矿业工程, 2005, 3(5): 51-53.
    [15]朱益民,陈坤,黄幸纾,等.矿山废水污染对居民疾病死亡谱和肾功能的影响[J].中国公共卫生, 1999, 15(4): 314-315.
    [16] Barrie Johnson D., Hallberg Kevin B. The microbiology of acidic mine waters[J]. Research in Microbiology, 2003, 154: 466-473.
    [17]倪师军,李珊,李泽琴,等.矿山酸性废水的环境影响及防治研究进展[J].地球科学进展, 2008, 23(5): 501-508.
    [18]钟常明,方夕辉,许振良.超低压反渗透膜浓缩处理矿山酸性废水[J].水处理技术, 2008, 35(5): 70-73.
    [19] Margarete Kalin, Andrew Fyson, William N. Wheeler The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage[J]. Science of the Total Environment, 2006, 366: 395-408.
    [20]杨根祥.矿山酸性废水的污染与治理技术研究[J].西部探矿工程, 2000, 67(6): 51-52
    [21] Margarete Kalin, Andrew Fyson, William N Wheeler. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage[J]. Science of the Total Environment, 2006, 366: 395-408
    [22] Gazea B., Adam K., Kontopoulos A.. A Review of passive systems for the treatment of acid mine drainage. Minerals Engineering,1996, 9(1): 23-42.
    [23] Potgieter Vermaak S S. Comparison of limestone, dolomite, and fly ash as pretreatment agents for acid mine drainage[J]. Minerals Engineering, 2006, 19(4): 454-462.
    [24]马尧,胡宝群,孙占学.矿山废水处理的研究综述[J].铀矿冶, 2006, 25(4): 199-203.
    [25]张希衡.水污染控制工程[M].北京:冶金工业出版社, 1997: 11-13.
    [26]栾兆坤,汤鸿霄.酸、碱废水的中和絮凝作用[J].中国环境科学, 1997, 17(1): 87-92.
    [27] Green R., Waite T. D., Melville M. D.. Treatment of acid sulfate soil drainage by direct application of alkaline reagents[J]. Water Air Soil Pollut, 2006, 178: 59-68.
    [28]丁希楼,丁春生.石灰石-石灰乳二段中和法处理矿山酸性废水[J].能源环境保护, 2004, 18(2): 27-29.
    [29] Pepe Herrera S., Hiroyuki Uchiyama, Toshifumi Igarashi, etal. Acid mine drainage treatment through a two-step neutralization ferrite-formation process in northern Japan: Physical and chemical characterization of the sludge[J]. Minerals Engineering, 2007, (20): 1309-1314.
    [30] Meanally S, Beneficid L. Nickel removal from a synthetic nickel plating wastewater using sulfide and carbonate for precipitation and coprecipitation[J]. Science. Technology, 1984,19(23): 191.
    [31]谢光炎.硫化沉淀浮选法处理矿山井下废水研究[J].有色金属(选矿部分), 2003, 55(2): 41-43.
    [32]张景来.冶金工业污水处理技术及工程实例[M].北京:化学工业出版社, 2003, 7.
    [33]陶有胜.沉淀浮选法处理矿山含重金属废水技术初探[J].四川环境, 1993, 12(2): 1.
    [34]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社, 1993, 111.
    [35]李亚新,苏冰琴.硫酸盐还原菌和酸性矿山废水的生物处理[J].环境污染治理技术与设备, 2000, 1(5): 17-21.
    [36]方艳.硫酸盐还原菌生理特性及其在废水处理中的应用[J].工业安全与环保, 2006, 32(5): 17-20.
    [37] Gerhard Stucki. Biological Sulfuric Acid Transformation Reactor Design and Process Optimization[J]. Biotech. Bio-eng, 1993, 41(3): 303-315.
    [38] Maree J P. A Biological Treatment of Mining Effluents[J]. Environ Tech Letters, 1987, (8): 53-64.
    [39] Tong Jong, Parry David L. Removal of Sulfate and Heavy Metals by Sulfate Reducing Bacteria in Short-Term Bench scale Up flow An aerobic Packed Bed Reactor Runs[J]. Water. Research, 2003, (37): 3379-3389.
    [40] Gerald J Zaguryl. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment[J]. Chemosphere, 2006, 64(8): 944-954.
    [41]唐志坚,张平,左社强.低浓度含铀废水处理技术的研究进展[J].工业用水与废水, 2003, 34(4): 9-12.
    [42]徐乐昌.德国铀矿山和水冶厂退役治理状况[J].铀矿冶, 2001, 20(3): 161-170.
    [43]阳承胜.宽叶香蒲人工湿地对铅锌矿废水净化效能的研究[J].深圳大学学报, 2000, 17(2): 51-57.
    [44] Sheoran A.S., Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review[J]. Minerals Engineering, 2006, (19): 105-116.
    [45] Shelp Gene. S. The amelioration of acid mine drainage by an in situ electrochemical method [J]. Applied Geochemistry, 1996, 11(5): 425-432.
    [46] Nigel J. Bunce, Michelle Chartr, Peter Keech. Electrochemical Treatment of acidic aqueousFerrous sulfate and Copper sulfate as models for acid mine drainage[J]. Water Research, 2001, 35(18): 4410-4416.
    [47]王卫星,曹波,徐政和,等. Ca2+对铁氧体法处理酸性矿山废水的影响[J].国外金属矿选矿, 1998, 26(5): 41-44.
    [48] Herrera P., Uchiyama H., Igarashi T., etal. Treatment of acid mine drainage through a ferrite formation process in central Hokkaido, Japan: Evaluation of dissolved silica and aluminium interference in ferrite formation[J]. Minerals Engineering, 2007, (20): 1255-1260.
    [49] Morgan BE, Loewenthal RE, Lahav O. Fundamental study of a one-step ambient temperature ferrite process[J]. Water Sa, 27(2): 277-282.
    [50]王卫星,徐政和,芬奇. J.常温铁氧体法处理酸性矿山废水初探[J].有色金属, 1996, (5): 21-26.
    [51]李军.铁氧体沉淀法处理重金属废水[J]. Electroplating and Pollution Control, 1999, 19(1): 30-31.
    [52]孙时元.利用重金属沉淀和离子交换处理矿山酸性水[J].矿业快报, 2000, (23): 21.
    [53] Robinson R E G, Robinson R. Effluent treatment, e.g. acid mine drainage, by neutralizing acid, removing cations by ion exchange using cation resin, treating eluates, adsorbing anions using anion exchange resin, and regenerating the anion exchange resin: US, US2009026141-A1[P]. 2009.
    [54]杨群,宁平,陈芳媛,等.矿山酸性废水治理技术现状及进展[J].金属矿山, 2009, (1): 131-134.
    [55]钟常明,许振良,方夕辉,等.超低压反渗透膜处理矿山酸性废水及回用[J].水处理技术, 2007, 33(6): 77-80.
    [56] Zhong Chang-Ming, Xu Zhen-Liang, Fang Xi-Hui, Cheng Liang. Treatment of Acid Mine Drainage (AMD) by Ultra-Low-Pressure Reverse Osmosis and Nanofiltration[J]. Environmental engineering Science, 2007, 24(9): 1297-1306.
    [57]周军,方少明,张宏忠,等.反渗透膜在水处理中的研究进展[J].过滤与分离, 2006, 16(2): 12-15.
    [58]钟常明,方夕辉,许振良.超低压反渗透膜浓缩处理矿山酸性废水[J].水处理技术, 2008, 34(5):70-73.
    [59]杨喜云.硫铁矿烧渣制备铁黑颜料和Fe_3O_4磁粉及基础理论研究[D].湖南,中南大学,2005.
    [60]戴道生,钱昆明.铁磁学[M].北京:科学出版社, 1987, 1-200.
    [61]李必成,刘克俊,吴熙群.磁铁矿微粉的开发研究[J].矿冶, 2002, 11(2): 29-32.
    [62]林治华.氧化铁颜料性能和应用介绍[J].上海涂料, 1997, (4): 209-216.
    [63]郭秋宁,杨意名,刘毅.利用钛白副产品FeSO4制备氧化铁黑[J].广西化工, 1999, 28(1): 40-42.
    [64]王敏.氧化铁颜料在建材业中的应用[J].山东建材, 2004, 25(4): 54-56.
    [65]李永庆.国内氧化铁行业现状及发展趋势[J].化工科技市场, 2004, (10): 27-31.
    [66]于文广,张同来,张建国,等.纳米四氧化三铁(Fe_3O_4)的制备和形貌[J].化学进展, 2007, 19(6): 884-892.
    [67] Meng JH, Yang GQ, Yan LM, Wang XY. Synthesis and characterization of magnetic nanometer pigment Fe_3O_4[J]. Dyes and Pigments, 2005, 66(2): 109-113.
    [68]梁晓平,苏成德.硫铁矿烧渣回收铁的研究[J].中国矿业, 2006, 15(3): 41-43.
    [69]林治华. 2006年我国氧化铁行业经济运行分析[J].中国涂料, 2007, 22(5): 16-19.
    [70]林治华.氧化铁行业的发展趋势[J].中国涂料, 2004, (9): 16-17.
    [71]杨喜云,龚竹青,陈白珍.高着色力氧化铁黑颜料的制备[J].涂料工业. 2003, 33(7): 22-23.
    [72]樊耀亭,刘长让.氧化铁颜料生产工艺的改进[J].山东化工, 1991, (3): 36-39.
    [73]周宏民.钛白副产硫酸亚铁制备氧化铁系颜料工艺的研究[D].湖南,湘潭大学: 2001.
    [74]朱骥良,吴申年.颜料工艺学(第二版)[M].北京:化学工业出版社, 2002. [75周宏民,刘跃进,熊双喜.湿法合成氧化铁颜料规律的探讨[J].无机盐工业, 2001, (33)3: 16-18.
    [76]黄平峰,叶海波.我国合成氧化铁颜料的生产现状和发展方向[J].中外技术情报, 1996, (4): 7-9.
    [77]周宏民,刘跃进,熊双喜.国内合成氧化铁颜料生产技术概况及发展趋势[J].化学世界, 2000, (8): 395-398.
    [78]张仲伟,陈吉春,李旭.硫铁矿烧渣制备铁系化工产品研究[J].矿业快报. 2005, 21(7): 17-19, 59.
    [79]沈腊珍.利用钢厂除尘灰合成纳米级磁性氧化铁黑颜料的研究[D].天津,天津大学: 2003.
    [80]黄平峰.用钛白副产硫酸亚铁生产氧化铁系列颜料[J].无机盐工业. 2003, 35(5): 7-9.
    [81]旷申昌.氨法铁黑合成原因分析及动力学研究[J].河北化工, 2007, 30(12):38-40.
    [82] Sugimoto T, Matijevic E. Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide [J]. Journal of Colloid and Interface Science, 1980, 74(1): 227-237.
    [83] Kiyama M. Conditions for the Formation of Fe_3O_4 by the Air Oxidation of Fe(OH)2 Suspensions[J]. Bulletin of t he Chemical Society of Japan, 1974, 47(7): 1646-1650.
    [84] Tolchev A V, Kleschov D G, bagautdinova R R, etal. Temperature and pH Effect on Composition of a Precipitate Formed in FeSO4-H2O-H+/OH—H2O2 System[J]. Materials Chemistry and Physics, 2002, 74(3): 336-339.
    [85] Misawa M, Hashimoto K, Shimodaira S. The Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature[J]. Corrosion Scie nce, 1974, 14: 131-149.
    [86] Meng JianHua, Yang GuiQin, Yan LeMei, Wang XiuYu. Synthesis and characterization of magnetic nanometer pigment Fe_3O_4[J]. Dyes and Pigments, 2005, (66): 109-113.
    [87]孙智辉.硫铁矿烧渣制备纳米氧化铁黑研究[D].武汉,武汉理工大学: 2006, 21.
    [88]杨喜云,龚竹青,陈白珍,等.《氧化铁黑颜料的制备》[J].涂料工业, 2001, (3): 21-23.
    [89]蔡红云,邹月飞.《用钛白副产绿矾生产高着色力氧化铁黑颜料》[J].环境保护, 1995, (2): 41-44.
    [90]杨喜云,龚竹青.分散剂对Fe_3O_4表面化学特性的影响[J].中南大学学报(自然科学版), 2005, 35(2): 243-247.
    [91] Lee J , Isobe T ,Senna M . Preparation of Ultrafine Fe_3O_4 particles by Precipitation in the Presence of PVA at High pH[J]. Journal of Colloid and Interface Science, 1996, 177: 490-496.
    [92] Heath P, Wanida C, Timothy G, etal. Structural and Magnetic Properties of Nanoscale Iron Oxide Particles Synthesized in the Presence of Dextran or Polyvinyl Alcohol[J]. Journal of Magnetism and Magnetic Materials, 2001, 225: 41-46.
    [93] Lian Suoyuan, Kang Zhenhui, Wang Enbo. Convenient synthesis of single crystalline magnetic Fe_3O_4 nanorods[J]. Solid State Communications, 2003, 127: 605-608.
    [94]郑兰香,彭国新.超细四氧化三铁微粒的制备[J].精细化工, 1995, 12(6): 11-12.
    [95]曾桓兴. Fe_3O_4超微粒子合成及其粒度估测[J].仪表材料, 1990, 21(5): 274-276.
    [96]任欢鱼,刘勇健,庄虹.醇-水共热法制备了Fe_3O_4磁流体[J].苏州科技学院学报(自然科学版), 2003, 20(1): 14-16.
    [97]李启厚,肖松文,刘志宏.湿法化学制粉中的粉末结构形貌控制研究进展[J].中国粉体技术, 1999, 5(2): 21-23.
    [98]胡书春,周祚万,楚珑晟.纳米PEG/Fe_3O_4磁流体的制备.西南交通大学学报, 2004, 39(6): 805-808.
    [99]王全胜,刘颖,王建华,等.沉淀氧化法制备Fe_3O_4的影响因素研究[J].北京理工大学学报, 1995, 14(2): 200-205.
    [100] Oscar Perales Perez, Yoshiaki Umetsu, Hiroshi Sasaki. Precipitation and densification of magnetic iron compounds from aqueous solutions at room temperature[J]. Hydrometallurgy, 1998, 50: 223-242.
    [101]梅业玲.用钛白副产硫酸亚铁制备氧化铁黑[J].涂料工业, 1997, 27(1): 31-32.
    [102] Teja Amyn S., Koh Pei-Yoong. Synthesis, properties, and applications of magnetic iron oxide Nanoparticles[J]. Progress in Crystal Growth and Characterization of Materials, 2008, 25:1-24.
    [103]温普红,宋周周.用硫酸渣为原料制备铁黑工艺研究[J].无机盐工业, 1994, 26(1): 31-34.
    [104]叶青,徐卫红.两种重铬酸钾测铁实验方法的比较[J].上饶师范学院学报, 2002, 22(6):46-48
    [105]付慧莉.三氯化钛-重铬酸钾容量法快速测定铁矿石中全铁量[J].山东冶金, 2000, 22(3): 59-60.
    [106]陶丽霞,王成端,向迎洪,等.絮凝沉淀处理含241Am废水时絮凝体粒径分布的影响因素初探[J].辐射保护, 2006, 26(3): 177-180.
    [107]高廷耀,顾国维.水污染控制工程[M].第二版,北京:高等教育出版社, 2005.
    [108]汪美松.絮凝-电解-SBR联合处理羧基丁苯乳胶废水[D].江苏:江苏大学; 2006.
    [109]王旭,詹怀宇,何北海,等.废纸中粘胶物胶体分散特性的模拟研究[J].中国造纸学报, 2002, 17(2): 49-52.
    [110]陈皓.印染废水混凝预处理优化技术研究[D].南京:河海大学, 2008.
    [111]郑德库,胥成龙.絮凝剂在造纸废水处理中的应用[J].黑龙江造纸, 2003, (3): 29-30.
    [112] Lee Jiwon, Isobe Tetsuhiko, Senna Mamoru. Preparation of Ultrafine Fe_3O_4 Particles by Precipitation in the Presence of PVA at High pH[J]. Journal of colloid and interface Science, 1996, (177): 490-494.
    [113]晋玉秀,杨秀培,刘建军,等.阴极还原法治理含铜废水的影响因素[J].矿冶工程, 2005,25(6): 55-57.
    [114]印永嘉,奚正楷,李大珍.物理化学简明教程[M].第三版,北京:高等教育出版社, 2004.
    [115] Guo Liang, Pei Guang-Ling, Wang Ting-Jie, etal. Polystyrene coating of Fe_3O_4 particles using dispersion polymerization[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, (293): 58-62.
    [116] Lee Sang-Yup, Harris Michael T. Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents[J]. Journal of Colloid and Interface Science, 2006, 293(2): 401-408.
    [117] Liu Xianqiao, Guan Yueping, Ma Zhiya, etal. Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization[J]. Langmuir, 2004, 20: 10278-10282.
    [118]汪汉斌,刘祖黎,卢强华,等.柠檬酸根对纳米Fe_3O_4颗粒的生长及性能的影响[J].无机化学学报, 2004, 20(11): 1279-1284.
    [119]李松波,王正德.在十二烷基磺酸钠分散体系中制备超细Fe_3O_4[J].包头钢铁学院学报, 2004, 24(2): 175-178.
    [120]胡书春,周祚万,楚珑晟.纳米PEG/Fe_3O_4磁流体的制备[J].西南交通大学学报, 2004, 39(6): 805-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700