聚丙烯/纳米粒子共混复合材料的形态、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)是半结晶热塑性聚合物,具有密度小、耐热性好、易加工等优点,是一种综合性能优良的通用塑料。但由于其韧性差、缺口冲击强度低、缺口敏感性大等缺陷,极大地限制了聚丙烯在各个领域中的应用。为了克服这一缺点,目前仍然主要采用三元乙丙橡胶(EPDM)、聚烯烃热塑性弹性体(POE)等对其共混改性,但是弹性体的加入常常不可避免地使材料的一些性能如模量、抗张强度和熔体流动性等有所下降。而粉末纳米橡胶的出现,一方面在低用量的条件下起到增韧聚合物的作用,另一方面在一定程度上克服了传统增韧方法的缺陷。另外,要扩大聚丙烯应用范围成为工程塑料的替代,则聚丙烯的刚性和强度也需要进一步的提高。碳纳米管是近年来发展起来的一种新材料,由于其结构独特、性能优异以及具有大的长径比,它作为理想的增强材料被应用在聚合物中。
     本论文综述了聚丙烯改性的发展和现状,并在此基础上介绍了本课题的立题背景。其主要目的在于通过引入粉末纳米橡胶、碳纳米管,对聚丙烯进行增韧增强,制备具有更好性能的复合材料,并讨论了结构和性能之间的关系。具体工作如下:
     1.采用动态保压和普通注塑两种方法制备PP/ENP复合材料,研究了不同的加工方法对共混物形态及性能的影响。动态保压技术的引入,使得聚合物熔体在剪切力场下反复流动,高聚物分子高度取向,材料的力学性能得到明显的提高;同时,剪切力有助于橡胶的分散,在橡胶含量为2%时,动态样条的拉伸
Polypropylene is a semi-crystalline polymer with some excellent properties, such as low relative density, thermal property, easy processability. However, its application is highly limited because of its brittleness at room and low temperatures. Elastomeric nano-particles have been used to enhance the toughness of PP with a small amount. Compared with traditional way, this method can achieve a good balance of toughness and stiffness of PP. In order to extend its application range, the stiffness of PP needs to be improved. Recently, carbon nanotubes have triggered considerable interest. Due to their unique structure, excellent properties and very high aspect ratio, they are used to improve the stiffness of polymer.The development and status of the modification of PP have been reviewed in this paper. The main purpose of this work is focused on preparing composites with better performance via blending PP with ENP or CNTs, studying the relationship between structure and properties. The major work of this paper is as follow:1. Two methods, dynamic packing injection molding and conventional injection molding, were used to prepare PP/ENP composites. The effect of processing method on the morphology and properties was investigated. Because the shear force introduced to the melt during packing stage can induce the molecular orientation, the mechanical property of dynamic samples was much higher than that of static samples. In addition, the shear force can help for good dispersion. At 2wt% of ENP content, both tensile strength and impact strength increased for dynamic samples, while the properties of static samples decreased. From the results of DSC and PLM, it can be seen that ENP could serve as nucleating agent, which increased the crystallization
    temperature and also caused the decreasing of crystal size.2. The viscosity of matrix and the processing method can affect the dispersion of ENP. Two kinds of PP with different MFI were used to blend with HDPE and ENP. The results showed that the impact strength keeps constant when ENP was added into the two kinds of PP/HDPE. It may be because that ENP can not have uniform dispersion and HDPE mainly act as toughening agent. Masterbatch and one-step methods were used to prepare the PP/HDPE/ENP blends. From the mechanical property of the blends, it can be seen that better dispersion of ENP could be achieved through masterbatch than one-step method.3. The brittle-ductile transition of PP/EPDM/Elastomeric Nano-Particle (ENP) was studied. Compared to PP/EPDM binary blends, the brittle-ductile transition of PP/EPDM/ENP ternary blends occurred at lower EPDM content. SEM results of the fractured surfaces of the composites indicated that at the same EPDM content, PP/EPDM/ENP ternary blends had smaller particle size, better dispersion and a smaller interparticle distance comparing to PP/EPDM binary blends, which promoted the brittle-ductile transition.4. The mechanical properties and morphology of the PP/CNTs composites were investigated, a simultaneous increase of tensile strength and impact strength has been achieved for dynamic samples of PP/CNTs composites containing only 0.6wt% CNTs. The dynamic packing injection molding could provide much strong shear force for better dispersion of CNTs in PP matrix. The result of PLM showed that the crystal size of PP decreases when CNTs was added into the matrix. It may be one of reasons that the mechanical property was improved. From the DSC result, it can be seen that the crystallization temperature increased by 10°C at 0.3wt% of CNTs content.
引文
[1] Paul D R, Barlow J W. Multiphase polymer alloys. Proceedings of the IUPAC International Symposium on Macromolecules, Frontiers of Macromolecular Science, 1988, p 381
    [2] Walsh D J, Rostawi S..Polymer blends and mixtures. NATO ASI Series, Series E: Applied Sciences 1985, 89:469
    [3] Yu D W, Xanthos M, Gogos C G. LDPE/PP blends modified by peroxide and radiation induced reactions. J.Appl.Polym.Sci. 1994,52:99
    [4] 沈家瑞,等编著.聚合物共混合金.广州:华南理工大学出版社,1999.
    [5] 苏伟梁,廖兵,黄玉惠.高聚物共混增容技术的研究进展。高分子材料科学与工程,2001,17(5):1.
    [6] 林启昭主编,高分子复合材料及应用,中国铁道部出版社,1988.
    [7] Kurauchi, T. Ohta, J. Energy absorption in blends of polycarbonate with ABS and SAN. J. Mater. Sci. 1984, 19:1699
    [8] 胡圣飞,徐生钧,李纯清。超微刚性无机粒子及其填充塑料。现代塑料加工应用,1998(2):63.
    [9] 赵永仙,任巍,于晓军。EPDM/PP共混物老化性能的研究。塑料工业,1999,27(4):30
    [10] 常平,洪重奎。乙丙橡胶增韧聚丙烯共混物中橡胶相形态。塑料科技,2002,1:4
    [11] 唐德敏,许晓秋,冯建新。PP/EPDM共混体系界面的研究。中国塑料,1998,12(3):59
    [12] 张启霞,范宏,卜志扬,李伯耿。三元乙丙橡胶共混改性聚丙烯。合成橡胶工业,2004,27(3):161
    [13] 白福臣,杨永宽,刘南安,王蔚玲。PP/SBS复合材料的冲击行为和缺口处的形态。塑料科技,1994,2:30
    [14] Helena Maria Wilhelm, Maria Isabel Felisberti.Morphology and mechanical properties of polypropylene/maleated styrene-butadiene-styrene triblock copolymer blends. J.Appl. Polym. Sci. 2002,86:359
    [15] Silivis H Graig, Gieslinski Robert C, Murray Daniel J. Soc Antomot Eng. 1995, Spee Pub:69
    [16] 张金柱。新型热塑性弹性体POE的性能及其在PP增韧改性中的应用。塑料科技,1999,4 (2):5
    [17] Paul S, Kale D D. Impact modification of polypropylene copolymer with a polyolefinic elastomer. J Appl Polymer Sci. 2000, 76(9):1480
    [18] S Hong, A A Bushelman, W J MacKnight, S P Gido. Morphology of semicrystalline block copolymers:polyethylene-b-atactic-polypropylene. Polymer, 2001,42:5909.
    [19] P Schmidt, J Baldrian, J Scudla, J Dybal. Structural transformation of polyethylene phase in oriented polyethylene/polypropylene blends: a hierarchical structure approach. Polymer, 42(2001):5321.
    [19] 吴培熙,张留成 聚合物共混改性北京。中国轻工业出版社,2001.197
    [20] 任巨光,窦强。我国聚丙烯增韧改性研究进展。现代塑料加工应用,2002,14(3):42
    [21] 杨军,王迪珍等。PP/UHMWPE原位成纤复合材料的混炼及成型工艺研究。中国塑料,1999,13(11):34
    [22] JAFARI S. H, GUPTA A. K. Journal of Applied Polymer Science, Crystallization behavior of polypropylene in polypropylene/nylon 6 blend. 1999,71:1153
    [23] C. Marco, G. Ellis ,M. A. Golez, I. G. Fatou ,T. M. Arribas, I. Compoy. Rheological properties, crystallization, and morphology of compatibilized blends of isotactic polypropylene and polyamide. Journal of Applied Polymer Science,1997,65:2665
    [24] Adriana Tedesco,Patricia F Krey,Ronilson V Barbosa and raouel S Mauler.Polymer International, 2001,51:105.
    [25] Merz E H, Flaver G G, Baer M, Polym Sci, 1956, 22:3257
    [26] 温变英,李振中,权英,增韧机理概说。塑料,1998,28(4):7
    [27] Schmitt J, Keskkula H, J Appl Polym Sci, 1960, 3:132
    [28] Buckall C B, Smith R R, Stress-whitening in high-impact polystyrenes Polymer,1965, 6:437
    [29] Buchnall C B, Fracture and failure of multiphase polymers and polymers composites, Adv Polym Sci, 1978, 27:121
    [30] Newman S, Strella S, Stress-strain behavior of rubber-reinforced glassy polymers, J Appl Polym Sci,1965, 9:2297
    [31] Buchnall C B, Clayton D, Keast W D, Rubber-toughening of plastics em dash 2. Creep mechanism in HIPS/PPO blends. J Mater Sci. 1972, 7:1443
    [32] Donald R, Buchnall C, Pure and Appl Chem, 1976, 46:277
    [33] 朱晓光,漆宗能,材料研究学报,1997,11(6):623
    [34] Bragaw C G, Polym Preprints, 1970, 11:368
    [35] Wu S, Phase structure and adhesion in polymer blends: A criterion for rubber toughening, Polymer,1985, 26:1855
    [36] Wu S, A generalized criterion for rubber toughening; The critical matrix ligament thickness, J Appl Polym, 1988, 35:549
    [37] Margolina A and Wu S, Percolation model for brittle-tough transition in nylon/rubber blends Polymer,1988, 29:2170
    [38] Broggreve R J M, Gaymans R J, Schuijer J et al. Brittle-tough transition im nylon-rubber blends: Effect of rubber concentration and particle size, Polymer, 1978, 28:1489-1496
    [39] Margolina A.Toughening mechanism for nylon/rubber blends: The effect of temperature Polym Commun, 1990, 31:95-96
    [40] Strake J U, Michler G H, Grellmann W et al. Fracture toughness of polypropymene copolymer:influence of interparticle distance and temperature. Polymer, 1998, 39:75
    [41] 吕素平,漆宗能。聚合物共混体脆韧转变的损伤竞争理论-1.损伤竞争准数与脆韧转变判据,中国科学B辑,1994,24(10):1028
    [42] Wu X Z, Xu X G, Zhu X G, et al., PPS-Regional meeting of Asia/Australia abstracts(Shanghai),1991:121
    [43] Kucauchi T, Ohta T, Energy absorption in blends of polycarbonate with ABS and SAN, J Mater Sci, 1984, 19:1699
    [44] Sue H, Huang J, Yee A F, Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene, Polymer, 1992, 33:4868
    [45] Koo K K, Inoue T, and Miyasaka K, Toughened plastics consisting of brittle particles and ductile matrix, Polym Eng Sci, 1985, 25:741
    [46] Angola J C, Fujita Y, Sakai T and Inoue T, Compatibilizer-aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix, J Polym Sci, Part B: Polym Phys, 1988, 26:807
    [47] Li D M, Zheng W G, Qi Z N, The J-intergrat fracture toughness of PP/CaCO_3 composites, J Mater Sci,1994, 29:3754
    [48] Fu Q, Wang G H, Shen J S, Polyethylene toughened by CaCO_3 particle: Brittle-dutile transition of CaCO_3-toughened HDPE, J Appl Poly Sci, 1993, 49:673
    [49] Fu Q, Wang G H, Effect of morphology on brittle-ductile transition of HDPE/CaCO_3 blends,J Appl Poly Sci, 1993, 49:1985
    [50] Fu Q, Wang G H. Polyethylene toughened by CaCO_3 particle—Percolation model of brittle-ductile transition in HDPE/CaCO_3 blends, Poly Int, 1993, 30:309
    [51] 傅强,王贵恒,刘春晓,HDPE/CaCO3共混物中的“芯—壳”模型。高分子材料科学与工程,1993,3(3):120
    [52] Fu Q, Wang G H. The effect of matrix toughness on the brittle-ductile transition of HDPE/CaCO_3 blends. Chinese J Polym Sci, 1994,12(4):309
    [53] Fu Q, Wang G H. Polyethylene toughened by CaCO_3 particle: The interface behavior and fracture mechanism in high density polyethylene/CaCO_3 blends. Polymer,36:2397
    [54] 刘英俊。聚丙烯塑料改性及应用进展。工程塑料应用,1995,23(5):49
    [55] 李正忠等,塑料工业,1988,40(4):89
    [56] 张耀庭等,塑料,1982,1(3):104
    [57] Xiaojun Li, Keliang Hu,Mingrong Ji, Yunlan Huang, Guien Zhou. Calcium dicarboxylates nucleation of β-polypropylene Journal of Applied Polymer Science, 2002,86:633
    [58] 赵劲松等。聚丙烯复合材料的性能与形态。塑料 1990,19(3):3
    [59] 张师军,乔金梁。纳米级橡胶新材料的制备及其应用。化工新型材料 2005,33(2):46
    [60] Liu Yi-Qun, Zhang Xiao-Hong, Guo Mei-Fang, Qiao Jin-Liang. Special effect of ultra-fine rubber particles on plastic toughening.Chinese Journal of Polymer Science (English Edition), 2002,v 20, n 2, p 93
    [61] Zhang Xiao-Hong, Wei Gen-Shuan, Qiao Jin-Liang. Study of a new route by which to make fully cured thermaplastic elastomer with plastic and ultrafine powered rubber. Macromol. Symp. 2003, 193:261
    [62] Zhang M, Liu Y, Zhang X, Gao J, Huang F, Song Z, Wei G, Qiao J. The effect of elastomeric nano-particles on the mechanical properties and crystallization behavior of polypropylene Polymer 2002; 43(19):5133
    [63] Huang F, Liu Y, Zhang X, Wei G, Gao J, Song Z, Zhang M, Qiao J. Effect of Elastomeric Nanoparticles on Toughness and Heat Resistance of Epoxy Resins. Macromol Rapid Commun 2002;23(13):786
    [64] Qiao J, Wei G, Zhang X, Zhang S, Gao J, Zhang W, Liu Y, Li J, Zhang F, Zhai R, Shao J, Yan K, Yin H. US Patent 6,423,760, July 23; 2002.
    [65] Peng J, Qiao J, Zhang S, Wei G. A Novel Impact Modifier for Nylon 6. Macromol Mater Eng 2002;287:867-70.
    [66] Peng J, Zhang X, Qiao J, Wei G. Radiation preparation of ultrafine carboxylated styrene-butadiene rubber powders and application for nylon 6 as an impact modifier. J Appl Polym Sci 2002;86(12):3040
    [67] Yiqun Liu, Xiaohong Zhang, Jianming Gao, Fan Huang, Banghui Tan, Genshuan Wei, Jinliang Qiao. Toughening of polypropylene by combined rubber system of ultrafine full-vulcanized powdered rubber and SBS. Polymer 2004, 45:275
    [68] M. Arroyo Ramos, Effect of talc surface treatment on the mechanical properties of composites based on PP/LDPE blend matrices.Polymer Engineering and Science,1991, 31(4):245
    [69] Web 2 Yen Chiang, Polypropylene composites.11: Structure-property relationships in two-and three-component polypropylene composites. Polymer Engineering and Science, 1992, 32(10):641
    [70] Velasco JI, De Saja JA, Martinez AB. Crystallization behavior of polypropylene filled with surface-modified talc. J Appl Polym Sci 1996;61:125.
    [71] Liu XH, Wu QJ. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 2001;42:10013
    [72] Qiu W, Mai KC, Zeng HM. Effect of silane-grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites J Appl Polym Sci 2000;77:2974.
    [73] 赵文聘,黄海清,潘永,徐长旭。高性能玻纤增强聚丙烯的研究。工程塑料应用。2001,29(9):10
    [74] 许干,蒋国吕。增强改性聚丙烯力学性能的研究。北京化工大学学报。1998,25(4):98
    [75] Truckenmuller F, Fritz H G. Injection molding of long fiber-reinforced thermoplastics: A comparison of extruded and pultruded materials with direct addition of roving strands. Polymer Engineering and Science, 1991,31 (18):1316
    [76] Thomason JL. The influence of fiber lengthen and concentration on the properties of glass fiber reinforced polypropylene. Composites Part A, 2002, 33:1641
    [77] 王茂章。碳纤维的制造性质及应用。北京科学出版社,1984:116
    [78] 许嘉敏。CF的表面化学改性及表征。高分子材料科学与工程,1990,17(1):66
    [79] 陶国良,蒋必彪。碳纤维/聚丙烯复合材料的研究。江苏石油化工学院学报,1999,11(3):9
    [80] 倪燕,鲁希华,林中清,左天骏。短纤维增强聚丙烯复合材料性能的研究。塑料工业,1995,4:31
    [81] Iijima S, Helical microtubes of graphite carbon. Nature (London):1991,354:56
    [82] Iijima S,Ichihashi T. Single-shell carbon nanotubes of 1-nm diamete Nature 1993,363:603
    [83] Rinzler A.G, Hafner J.H, Nikolaev P, Lou L, Kim S.G, Tomanek D, Nordlander P, Colbert D.T, Smalley R.E, Unraveling nanotubes: field emission from an atomic wire. Science 1995, 269:1550.
    [84] Kannan B, Mark B. Chemically Functionalized Carbon Nanotubes Small, 2005, 1(2):180
    [85] 李学峰,官文超,闫晗。聚合物/碳纳米管的研究进展。合成材料老化与应用。2003,32(3):19
    [86] Yacaman M.J, Yoshida M.M, Rendon L, Santiesteban J.G. Catalytic growth of carbon microtubules with fullerene structure, Appl. Phys. Lett. 1993,62:202.
    [87] Iijima S, Ajayan P.M, Ichihashi T. Growth model for carbon nanotubes, Phys. Rev. Lett. 1992,69:3100.
    [88] Ebbesen T.W, Ajayan P.M. Large-scale synthesis of carbon nanotubes, Nature (London) 1992,358:220.
    [89] Journet C, Maser W.K, Bemier P, Loiseau A, Lamy M, Lefrant S, Deniard P, Lee R, Fischer J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature (London) 1997,388:756.
    [90] Ivanov V, Nagy J.B, Lambin Ph, Lucas A, Zhang X.B, Zhang X.F, Bernaerts D, Amelinckx S, Van Landuyt The study of carbon nanotubules produced by catalytic method, J. Chem. Phys. Lett. 223 (1994) 329.
    [91] 陈卫祥,陈文禄,徐铸德。纳米碳管的特性及其高性能的复合材料。复合材料科学报,2001,18(4):1
    [92] 董树荣,张文彬,涂江平。新型纳米材料—纳米碳管。材料科学与工程,1998,16(2):19
    [93] Poncharal P, Wang Z L, Ugarte D. Science. 1999, 283:1513
    [94] Matsumoto K, Kinosita S, Gotoh Y. Appl Phys Lett. 2000, 78(4):539
    [95] Liu TX, Phang IY, Shen L, Chow SY, Zhang WD. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromoleculars. 2004;37:7214
    [96] Satish K, Harit D, Mohan S. Fiber from polypropylene/nanocarbon fiber composites. Polymer. 2002,43:1701
    [97] Zhaoxia J, Pranwda K.P, Guoqin X. Dynamic mechanical behavior of melt processed muti-walled carbon nanotube/polymethyl methacrylate composites. Chemical Physics Letters. 2001,337:43
    [98] Xia HS, Wang Q, Li KS, Hu GH. Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process.J Appl Polym Sci 2004;93:378
    [99] 贾志杰,王元正,梁吉。关于尼龙—6/碳纳米管复合材料的研究。材料工程 1999,14(2):32
    [100] 贾志杰,王元正,梁吉。PA6/碳纳米管复合材料的复合方法的研究。新型炭材料 1998,9:3
    [101] Junhua F, Meixiang W,. Daoben Z. Snthesis and properties of carbon nanotube-polypyrrole composites. Synthetic Metals. 1999,102:1266
    [102] Zhaoxia J, Pranwda K.P, Guoqin X. Nonlinear optical properties of some polymer/ muti-walled carbon nanotube composites.
    [103] Michael J.O, Peter B, Lars M.E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters. 2001,342:65
    [104] M.J.Bevis. gamma phase in injection moulded isotactic polypropylene. Polymer, 1994, 35:2048
    [105] 姜朝东,博士论文,四川联大,1998
    [106] Q.Guan, K.Shen, J.Ji and J.Zhu. The self-reinforcement of polyolefins produced by shear controlled orientation in injection molding. J. Appl. Polym, Sci., 1995,58:2131
    [107] 申开智。低压动态保压注射模塑ABS的自增强。工程塑料应用,1995,23(1):12
    [108] Yong Wang, Hao Zou, Qiang Fu Super polyolefin blends achieved via dynamic packing injection molding: tensile strength. J. Appl. Polym, Sci. 2002, 85(2):236
    [109] Qiang Fu, Yong Wang, Qijun Li, Gong Zhang. Adding EPDM Rubber Makes Polypropylene Brittle. Macromol. Mater. Eng. 2002,287:391
    [110] Van der Wal, A, Mulder, J.J, Oderkerk, J, Gaymans, R.J. Polypropylene-rubber blends: 1. The effect of the matrix properties on the impact behaviour. Polymer, 1998, 39(26): 6781
    [111] Van der Wal, A, Nijhof, R, Gaymans, R.J. Polypropylene-rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour Polymer, 1999, 40(22): 6031
    [112] Jiang, W.; Tjong, S.C.; Li, R.K.Y. Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed Polymer, 2000, 41(9): 3479
    [113] Huang, Li; Pei, Qingwu; Yuan, Qiang; Li, Haidong; Cheng, Fengmei; Ma, Jiachun; Jiang, Shengxiang; An, Lijia; Jiang, Wei. Brittle-ductile transition in PP/EPDM blends: effect of notch radius Polymer, 2003, 44(10): 3125
    [114] 张云灿,陈瑞珠。PP/EPDM/CaCO2三元共混体系的脆韧转变研究。高分子材料科学与工程。1998,14(5):128-130
    [115] 黄健,张云灿。PP/EPDM/高岭土三元共混体系的脆韧转变。工程塑料应用。2000,28(10):6
    [116] 邬润德,周治国。纳米二氧化硅增韧增强聚丙烯的研究。工程塑料应用。2003,31(11):16
    [117] Inglis C E, Stress in aplate due to the presence of cracks and sharp corners, Tranasctioon of Institute of Naval Architects, 1913
    [118] Treacy M.M, Ebbesean T. W, Gibson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996,381:678
    [119] Walters D.A, Ericson L.M, Casavant M.J. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett, 1999,74:3803
    [120] Ajayan P. M, Schadler L. S, Giannaris C, RubioA. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994,265(5176): 1212
    [121] Lin Y, Zhou B, Fernando KAS, Liu P, Lawrence FA, Sun YP. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromoleculars 2003;36:7199-204.
    [122] Rowan B, Yurii K.,Jonathan Coleman. A Generic Organometallic Approach toward Ultra-Strong Carbon Nanotube Polymer Composites J. AM. CHEM. SOC. 2004, 126:10226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700