多物理场下金属微互连结构的电迁移失效及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品不断向微型化和高性能化发展,导致金属微互连结构的电流密度急剧增加,极易引起电迁移诱致失效的可靠性问题。本文针对金属微互连结构的电迁移失效问题,提出考虑“电子风力”、温度梯度、应力梯度和原子浓度梯度共同作用下的多物理场耦合计算模型,并结合电迁移试验,揭示微互连结构在多场载荷交互作用下的迁移特性和失效特征,为金属微互连结构的设计和可靠性评价提供必要的理论和数值分析基础。
     本文首先基于电迁移的基本理论,分析引起电迁移失效的驱动机制;对基于互连引线电迁移失效提出的传统原子通量散度有限元法进行改进,并分析和讨论该方法的适用性及存在的问题。
     其次,综合考虑“电子风力”、温度梯度、应力梯度和原子浓度梯度等驱动机制,通过加权余量法对电迁移演化方程进行求解,导出原子浓度重分布迭代方程;通过ANSYS电-热-结构耦合分析获得模型的电流密度分布、温度分布和应力分布,基于FORTRAN编写的原子浓度重分布算法获得不同时刻的原子浓度,依据空洞/小丘形成和扩展失效准则电迁移动态空洞演化进行模拟并获得失效寿命。将该算法分别应用于SWEAT结构和CSP结构,并将模拟结果与试验结果进行比较,验证了算法的可靠性和精度;研究原子浓度梯度对电迁移失效的影响,发现其对电迁移起抑制作用,不考虑原子浓度梯度项将会低估电迁移的失效寿命;建立电迁移灵敏度分析方程及其相应的数值算法,考虑设计变量为激活能、初始自扩散系数和材料力学性能参数等对互连焊球结构进行电迁移灵敏度分析,结果表明,互连焊球的电迁移对激活能非常敏感,材料力学性能参数对电迁移影响最小。
     进一步,分别对0.18μm功率器件工艺的Al互连直线结构和Al互连通孔结构在不同温度和不同电流条件下进行标准晶圆级电迁移加速试验和封装级电迁移试验,获得电迁移失效寿命;并通过扫描电镜观察其电迁移失效后的微观形貌,分析其失效机理;基于提出的原子浓度积分算法分别对试验结构进行数值模拟和寿命预测,并将数值结果与试验结果进行比较。结果表明:原子浓度积分算法可以准确预测出空洞失效的位置,并预测出合理的失效时间;通过电迁移试验和数值模拟均证实化学机械抛光技术和扩散阻挡层厚度对Al互连直线结构的电迁移失效寿命有重要影响。
As the electronic products continue to push for miniaturization and high performance, the current densities in IC metal interconnects increase dramatically, which may cause electromigration (EM) failure. This thesis studies the electromigration failure of metal micro-interconnects, and presents a coupled multi-physics model for simulating such a failure. The present model considers four driving forces including the electron wind force, stress gradient, temperature gradient, as well as atomic concentration gradient induced forces. The coupled multi-physics modeling is combined with electromigration test to investigate the electromigration induced failure mechanisms of metal interconnects, which will provide us a theoretical and numerical analysis foundation for guiding the design and reliability evaluation of metal micro-interconnects.
     Firstly, according to the basic EM theory, the driving mechanisms of EM are summarized. The improved Atomic Flux Divergence (AFD) method is introduced and the existed problems of AFD method are discussed.
     Secondly, the atomic concentration redistribution equation is derived from EM evolution equation by a weighted residual method with considering a variety of EM driving mechanisms which includes the electron wind force, stress gradient, temperature gradient and atomic concentration gradient. The electric-thermal-structural coupled analysis based on ANSYS multi-physical simulation platform is performed to obtain the current density, temperature and stress distribution of the studied model. An EM atomic concentration redistribution algorithm is developed using FORTRAN code to get atomic concentration distribution of different time. The dynamic simulation of EM void evolution is performed to get TTF (Time to Failure) based on the criterion of void/hillock incubation and propagation. The simulated results based on SWEAT and CSP structures show good agreement with experimental observations, which verify the correction of the present developed algorithm. The impact of atomic concentration gradient on EM is studied and it shows that the atomic concentration will be retarded by considering the atomic concentration gradient item in the time-dependent EM evolution equation. Without consideration of the atomic concentration gradient, the TTF will be underestimated. The sensitivity analysis equations with considering EM parameters and mechanical properties of material as design variables are derived for EM sensitivity analysis. The results show that the EM is very sensitive to the activation energy of material and the mechanical properties of material have the minimal impact on EM.
     The standard wafer-level electromigration accelerated test and package level electromigration test are performed for metal line and via interconnect structures by using 0.18μm power technology respectively. The TTFs are obtained from the tests, at the same time, the microstructure evolution and damage mechanism are examined by scanning electron microscope (SEM) observation. The above mentioned algorithm is used to simulate the failure of these test structures and the results show that the predicted TTFs and EM failure location are well agreement with the test results. Both EM test and modeling results disclose the significant influence of chemical-mechanical planarization and barrier metal thickness on the EM failure life.
引文
[1]尹立孟,张新平.电子封装微互连中的电迁移[J].电子学报, 2008, 36(8): 1610-1614.
    [2] Tu K N. Recent Advances on electromigration in very-large-scale-integration of interconnects [J]. Journal of Applied Physics, 2003, 94 (9): 5451-5473.
    [3]张金松,吴懿平,王永国,陶媛.集成电路微互连结构中的热迁移[J].物理学报, 2010, 59(6): 4395-4402.
    [4] Pierce D G, Brnsiusi P G. Electromigration: A review. Microelectronics Reliability, 1997, 37(7): 1053-1072.
    [5] Chen C, Liang S W. Electromigration issues in lead-free solder joints [J]. Journal of Materials Science: Materials in Electronics, 2007, 18 (1-3): 259-268.
    [6] Korhonen M A, B?rgesen P, Tu K N, Li C Y. Stress evolution due to electromigration in confined metal lines [J]. Journal of Applied Physics, 1993, 73(8): 3790-3799.
    [7] Tan C M, Roy A. Investigation of the effect of temperature and stress gradients on accelerated EM test for Cu narrow interconnects [J]. Thin Solid Films, 2006, 504 (1-2): 288-293.
    [8] Fiks V B. On the mechanism of the mobility of ions in metals [J]. Sov. Phys. Solid State,1959,1: 14.
    [9] Huntington H B, Grone A R, Current-induced marker motion in gold wires [J]. Journal of Physics and Chemistry of Solids, 1961, 20(1-2): 76-87.
    [10] Ho P S, Huntington H B. Electromigration and void observation in silver. Journal of Physics and Chemistry of Solids, 1966, 27(8): 1319-1329
    [11] Huntington H B. Effect of driving forces on atom motion. Thin Solid Films, 1975, 25(2): 265-280
    [12] Duryea T W, Huntington H B. The driving force for electromigration of an atom adsorbed on simple metal surface. Surface Science, 1988, 199(1-2): 261-281
    [13] Schwarzenberger A P, Ross C A, Evetts J E, Greer A L. Electromigration in the presence of a temperature gradient: experimental study and modeling [J]. Journal of Electronic Materials, 1988, 17(5): 473-478.
    [14] Weiling G., Li Z, Zhu H, Zhang W, Ji Y, Sun Y, Sheng G. Temperature gradient impact on electromigration failure in VLSI metallization [C]. Proceedings of the Semi-Therm Symposium, 1998: 122-127.
    [15] Nguyen H V, Salm C, Krabbenborg B, Weide-Zaage K, Bisschop J, Mouthaan A J, Kuper F G.. Effect of thermal gradients on the electromigration lifetime in power electronics [C]. IEEE 42nd Annual International Reliability Physics Symposium, 2004: 619-620.
    [16] Tan C M, Zhang G, Gan Z H. Dynamic study of the physical processes in the intrinsic line electromigration of deep-submicron copper and aluminum interconnects [J]. IEEE Transactions on Device and Materials Reliability, 2004, 4(3): 450-456.
    [17] Huang A T, Gusak A M, Tu K N, LaiY S. Thermomigration in SnPb composite flip chip solder joints [J]. Applied Physics Letters, 2006, 88(14): 141911.
    [18] Ye H, Basaran C, Hopkins D. Thermomigration in Pb-Sn solder joints under Joule heating during electric current stressing [J]. Applied Physics Letters, 2003, 82(8): 1045-1047.
    [19] Ouyang F Y, Tu K N, Lai Y S, Gusak M A. Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration [J]. Applied Physics Letters, 2006, 89(22): 221906
    [20] Lloyd J R. Electromigration in integrated circuit conductors [J]. Journal of Physics D: Applied Physics, 1999, 32(17): 109-118.
    [21] Blech I A, Tai K L. Measurement of stress gradients generated by electromigration [J]. Applied Physics Letters, 1976, 30 (8): 387-389.
    [22] Blech I A, Herring C. Stress generation by electromigration [J]. Applied Physics Letters, 1976, 29(3): 131-133.
    [23] Blech, I A. Electromigration in thin aluminum films on titanium nitride [J]. Journal of Applied Physics, 1976, 47(4): 1203-1208.
    [24] Wei C C, Chen C. Critical length of electromigration for eutectic SnPb solder stripe. Applied Physics Letters, 2006, 88 (18): 182105.
    [25] Li C Y, B?rgesen P, Sullivan T D. Stress-migration related electromigration damage mechanism in passivated, narrow interconnects [J]. Applied Physics Letters, 1991, 59(12) 1464–1466.
    [26] Lloyd J R, Smith P M, The effect of passivation thickness on the electromigration lifetime of Al/Cu thin film conductors [J]. Journal of Vacuum Science & Technology A, 1983, 1(2): 455-458.
    [27] Lloyd J R. Electromigration and mechanical stress [J]. Microelectronics Engineering, 1999, 49(1-2): 51-64.
    [28] Kisselgof L, Baranowski S P, Broomfield M C, Spooner T, Elliott L, Brooke L, Lloyd J R, Thermally induced stress and electromigration failure [C]. Proceedings of SPIE, 1992, 1805: 154-163.
    [29] Basaran C, Lin M, Ye H. A thermodynamic model for electrical current induced damage [J]. International Journal of Solids and Structures, 2003, 40(26): 7315-7327.
    [30] Black J R. Electromigration-a brief survey and some recent results [J]. IEEE Transactions on Electronic Devices, 1969, 16(4): 338-347.
    [31] Ames I, d’Heurle F M, Horstmann R E. Reduction of Electromigration in Aluminum Films by Copper Doping [J]. IBM Journal of Research and Development, 1970, 14(4): 461-463.
    [32] Spolenak R, Kraft O, Arat E. Effects of alloying elements on electromigration [J]. Microelectronics Reliability, 1998, 38(6-8): 1015-1020.
    [33] Cho J, Thompson C V. Grain size dependence of electromigration-induced failures in narrow interconnects [J]. Applied Physics Letters, 1989, 54(25): 2577-2579.
    [34] Huang J S, Yeh E C C, Zhang Z B, Tu K N. The effect of contact resistance on current crowding and electromigration in ULSI muti-level interconnects [J]. Materials Chemistry and Physics, 2002, 77(2): 377-383
    [35]刘静,吴振宇,汪家友,杨银堂.铜互连电迁移可靠性的研究进展[J].微电子学, 2007, 37(3): 364-368.
    [36] Brandenburg S, Yeh S. Electromigration studies of flip chip bump solder joints [C]. Processing of the Surface mount International Conference and Exposition, 1998: 337-344.
    [37] Jen M H R, Liu L C, Lai Y S. Electromigration test on void formation and failure mechanism ofFCBGA lead-free solder joints [J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(1): 79-88.
    [38] Liu C Y, Chen C, Tu K N. Electromigration in Sn-Pb solder strips as a function of alloy composition. Journal of Applied physics, 2000, 88(10): 5703-5709
    [39] Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology [J]. Materials Science and Engineering, 2002, 38(2): 55-105
    [40] Choi W J, Yeh E C C, Tu K N. Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization [J]. Journal of Applied physics, 2003, 94(9): 5665-5671.
    [41] Lee T Y, Tu K N, .Frear D R. Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization. Journal of Applied physics, 2001, 90(9): 4502-4508
    [42] Ou S Q, Tu K N. A study of electromigration in Sn3.5Ag and Sn3.8Ag0.7Cu solder lines [C]. 2005 Electronic Components and Technology Conference, 2005: 1445-1450.
    [43] Ren F. Nah J W, Suh J O, et al. Effect of electromigration on mechanical behavior of solder joints [C]. Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005: 66 - 69
    [44] Xu L H. Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints [J]. Applied Physics Letters, 2006, 89(2): 221909.
    [45] Kumar A, He M, Chen Z, Teo P S. Effect of electromigration on interfacial reactions between electroless Ni-P and Sn-3.5%Ag solder [J]. Thin Solid Films, 2004, 462-463(9): 413-418.
    [46] Ding M. Effect of contact metallization on electromigration reliability of Pb-free solder joints [J]. Journal of Applied physics, 2006, 99(9): 094906.
    [47] Gan H, Tu K N. Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples [J]. Journal of Applied physics, 2005, 97(6): 063514.
    [48] ASTM, F1259M-96, Standard guide for design of flat, straight-line test structures for detecting metallization open-circuit or resistance-increase failure due to electromigration, 1996
    [49] JEDEC, JESD87, Standard test structures for reliability assessment of Al Cu metallization with barrier materials, 2001
    [50] Andreas Martin, Rolf-Peter Vollertsen. An introduction to fast wafer level reliability monitoring for integrated circuit mass Production [J]. Microelectronic Reliability, 2004(44): 1209-1231.
    [51] Tan C M , Yeo K N C. Reliability statistics perspective on standard wafer-level electrom igration accelerated test (SWEAT ) [J ]. Journal of Electronic Testing, 2001, 17 (1): 63-68.
    [52]吴丰顺,张伟刚,张金松,吴懿平.无铅互连凸点电迁移失效的四探针测量[J].华中科技大学学报(自然科学版), 2007.36(6): 85-88.
    [53] Liang S W, Chang Y W, Shao T L, Chen C and Tu K N. Effect of bump size on current density and temperature distributions in flip-chip solder joints [J]. Microelectronics Reliability, 2009, 49 (5): 544-550.
    [54] Roy A,Tan C M. Experimental investigation on the impact of stress free temperature on the electromigration performance of copper dual damascene submicron interconnect. Microelectronics Reliability, 2006, 46(9-11): 1652-1656.
    [55] Dalleau D, Weide-Zaage K. Three-dimensional voids simulation in chip metallization structures: a contribution to reliability evaluation [J]. Microelectronics Reliability, 2001, 41(9-10): 1625-1630.
    [56] Dalleau D. 3-D time-depending simulation of void formation in metallization structures [D]. Germany: University Hannover, 2003.
    [57] Weide-Zaage K, Dalleau D Danto Y, Fremont H. Dynamic void formation in a DD-copper-structure with different metallization geometry [J]. Microelectronics Reliability, 2007, 47(2-3): 319-325.
    [58] Li W, Tan C M, Hou Y. Dynamic simulation of electromigration in polycrystalline interconnect thin film using combined Monte Carlo algorithm and finite element modeling [J]. Journal of Applied Physics, 2007, 101(10): 104314.
    [59] Liu Y, Liang L H, Irving S, Luk T. 3D Modeling of Electromigration Combined with Thermal-Mechanical Effect for IC Device and Package [J]. Microelectronics Reliability, 2008, 48(6): 811-824.
    [60] Dandu P, Fan X J, Liu Y, Diao C. Finite element modeling on electromigration of solder joints in wafer level packages [J]. Microelectronics Reliability, 2008, 50(4): 811-824.
    [61] Tan C M, Hou Y J, Li W. Revisit to the finite element modeling of electromigration for narrow interconnects. Journal of Applied Physics, 2007, 102(3): 1-7.
    [62] Dandu P, Fan X J, Liu Y. Some Remarks on Finite Element Modeling of Electromigration in Solder Joints [C]. Proceedings of Electronic Components and Technology Conference, 2010: 396-402
    [63] Basaran C, Zhao Y, Tang H, Gomez J. A damage-mechanics-based constitutive model for solder joints. Journal of Electronic Packaging, 2005, 127(9): 208-216.
    [64] Basaran C, Lin M H. Damage mechanics of electromigration induced failure. Mechanics of Materials, 2008, 40(1-2): 66–79.
    [65]任韬,翁妍,徐洁晶,汪辉.铜互连线内电流拥挤效应的影响[J].半导体技术, 2007, 32(5): 378-381.
    [66]陈军,毛昌辉.铝铜互连线电迁移失效的研究[J].稀有金属, 2009, 33(4): 288-292.
    [67]杜鸣,马佩军,郝跃.具有冗余设计的铜互连线电迁移可靠性评估[J].固体电子学研究与进展, 2009, 29(4): 602-605.
    [68]吴振宇,杨银堂,柴常春,李跃进,汪家友,刘静. Cu互连应力迁移温度特性研究[J].物理学报, 2009, 58(4): 2625-2630.
    [69]吴振宇,杨银堂,柴常春,李跃进,汪家友,刘静.通孔尺寸对铜互连应力迁移失效的影响[J].物理学报, 2008, 57(6): 3730-3734.
    [70]张金松,奚弘甲,吴懿平,吴丰顺. Cu-Ni/ Solder/ Ni-Cu互连结构的电迁移[J].半导体学报, 2008, 29(1): 174-178.
    [71]吴懿平,张金松,吴丰顺,安兵. SnAgCu凸点互连的电迁移[J].半导体学报, 2006, 27(6): 1136-11140.
    [72]吴丰顺,张伟刚,张金松,吴懿平.无铅互连凸点电迁移失效的四探针测量[J].华中科技大学学报, 2007, 35(6): 85-88.
    [73]徐广臣,何洪文,聂京凯,郭福. Ni颗粒对SnBi焊点电迁移的抑制作用[J].电子元件与材料, 2008, 27(11): 60-63.
    [74]徐广臣,何洪文,郭福.焦耳热作用下共晶锡铋焊点电迁移特性[J].半导体学报, 2008, 29(10): 2023-2026.
    [75]何洪文,徐广臣,郭福. Sb掺杂对SnAgCu无铅焊点电迁移可靠性的影响[J].电子元件与材料,2008, 27(8): 65-67.
    [76]何洪文,徐广臣,郝虎,雷永平,郭福. SnAgCu无铅焊点的电迁移行为研究[J].电子元件与材料, 2007, 26(11): 53-55.
    [77]尹立孟,张新平.电迁移致无铅钎料微互连焊点的脆性蠕变断裂行为[J].电子学报, 2009, 37(2): 253-257.
    [78]陆裕东,何小琦,恩云飞,王歆,庄志强.电迁移作用下SnPb与Ni(P)界面金属间化合物的极性生长[J].金属学报, 2009, 45(2): 178-182.
    [79]余春,李培麟,刘俊龑,陆皓,陈俊梅.典型Sn基焊料凸点互连结构电迁移异同性[J].半导体学报, 2007, 28(4): 619-624.
    [80]严群.材料科学基础[M].北京:国防工业出版社, 2009.
    [81] He F F, Tan C M. Circuit level interconnect reliability study using 3D circuit model [J]. Microelectronics Reliability, 2010, 50(3): 376-390.
    [82] Weide-Zaage K, Dalleau D, Yu X Y. Static and dynamic analysis of failure locations and void formation in interconnects due to various migration mechanisms [J]. Materials Science in Semiconductor Processing, 2003, 6(1-3): 85-92.
    [83]梁利华,张元祥,刘勇,陈雪凡.金属互连结构的电迁移失效分析新算法[J].固体力学学报, 2010, 31(2): 164-172.
    [84] Ye H, Basaran C, Hopkins D C. Numerical simulation of stress evolution during electromigration in IC interconnect lines [J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(3): 673-681.
    [85] Jeon I, Park Y B. Analysis of the reservoir effect on electromigration reliability [J]. Microelectronics Reliability, 2004, 44(6): 917-928.
    [86] Gee S, Kelkar N, Huang J, Tu K N. Lead-free and PbSn bump electromigration testing [C]. Proceedings of InterPACK 2005, 2005: 1-6.
    [87] Shi X Q, Wang Z P, Pang H L, Zhang X R. Effect of temperature and strain rate on mechanical properties of 63Sn/37Pb solder alloy [J]. Journal of Electronic Package, 1999, 121(3): 179-185.
    [88]王仕南.三维互连凸点电迁移有限元模拟[D].浙江:浙江工业大学, 2007.
    [89] Reddy J N. An Introduction to the Finite Element Method [M]. 3rd ed. New York: McGraw2Hill, 2006.
    [90] Sasagawa K, Hasegawa M, Saka Mand, Abe H. Prediction of electromigration failure in passivated polycrystalline line [J], Journal of Applied Physics, 2002, 91(11): 9005-9014.
    [91] Clement J J. Vacancy supersaturation model for electromigration failure under dc and pulsed dc stress [J]. Journal of Applied Physics, 1992, 71(9): 4264-4268.
    [92] JEDEC. JEP119A: A Procedure for Performing SWEAT, 2003.
    [93]焦慧芳,章晓文,孔学东,孙青,吴文章. VLSI金属化互连可靠性的快速评价技术[J].固体电子学研究与进展, 2001, 21(1): 75-81.
    [94] Von H J, Antonin G. New SWEAT method for fast, accurate and stable elect romigration testing on wafer level [C]. Integrated Reliability Workshop Final Report, 2000: 85-89.
    [95] Dalleau D, Weide-Zaage K, Danto Y. Simulation of time depending void formation in copper, aluminum and tungsten plugged via structures [J]. Microelectronics Reliability, 2003, 43 (9-11):1821-1826.
    [96] Wilson S R, et al. Handbook of multilevel metallization for integrated circuits: materials, technology, and applications [M]. Park Redge: Noyes Publications, 1993.
    [97] Zhao J H, Ryan T, ea al. Measurement of elastic modulus, poisson ratio, and coefficient of thermal expansion of on-wafer submicron films [J]. Journal of Applied Physics, 1999, 85(9): 6421-6424.
    [98] Sharpe W N, Yuan J B, Vaidyanathan R. Measurement of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon [C]. 8th IEEE International Workshop on Microelectromechanical Systems, Nagoya, Japan, 1997.
    [99] Jeon I, Park Y B. Analysis of the reservoir effect on electromigration reliability [J]. Microelectronics Reliability, 2004, 44(6): 917-928.
    [100] Lowwolafe O J, Lee C, Kawasaki H, et al. Effect in TiN anneal ambient on the microstructure and electromigration performance of Al-based alloys [C]. Proceedings of Material Research Society Symposium, 1993, 95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700