反应合成AgSnO_2材料组织均匀化过程的材料应力状态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AgCdO材料曾一度被认为是最好的电接触材料,它具有优良的灭弧性能,在中等负荷开关中具有“万能触点”之称。然而,随着电器开关不断对电触点提出的小型化、高可靠性、长寿命等苛刻的性能要求,AgCdO材料不仅在抗磨损、抗熔焊、耐电弧浸蚀等性能指标上已显露明显不足,而且AgCdO触点燃弧产生的Cd蒸气有毒,不符合环保要求。AgSnO2由于其优良抗电弧侵蚀性、耐磨损性、开关运行特性和更好的抗熔焊性而成为最有希望代替AgCdO的一种材料。
     但是,相对AgCdO而言,采用常规方法制备的AgSnO2的加工性能要差得多,在线材拉丝时很容易出现断线的情况。使得规模生产无法得到有效保证,而且在铆钉的打制过程中也较容易出现开裂现象。
     本课题利用有限元方法,模拟AgSnO2的挤压过程,分析了挤压过程中第二相颗粒的分布情况、应力应变行为、速度位移情况以及挤压力变化情况;并与实验结果相比较,分析变形规律,为AgSnO2材料的产业化生产提供有效的理论依据。
     本文利用MSC.Marc有限元软件,模拟了纯银的挤压过程,AgSnO2的传统一次挤压和多梯度变径一次挤压过程,以及真应变为4、7.25、10、12.5的挤压过程。
     从纯银的挤压模拟过程中可以看出,金属的流动情况与实际非常相似,并分析了银的应力、应变情况。
     AgSnO2的传统一次挤压和多梯度变径一次挤压的模拟结果表明:在挤压过程中,应力主要集中在Sn02颗粒上,且变化较大,而Ag基体所受到的应力较小且较为平稳;Ag基体的塑性应变要比Sn02颗粒的塑性应变大,在挤压过程中,Sn02颗粒几乎不变形;随着挤压比的增大,挤压力增大;相对于传统一次挤压,多梯度变径一次挤压过程中材料的边部的速度与中心材料的速度的差值没有传统一次挤压的差值大,这将有利于减少材料的缩尾的现象的产生;相对于同一挤压变形量而言,多梯度变径一次挤压的挤压力要比传统一次挤压的挤压力小。
     比较真应变为4、7.25、10、12.5AgSnO2的挤压模拟结果可出:随着挤压真应变的增大,Sn02颗粒的分布情况如下:Sn02颗粒围成环状,渐渐被挤压成扁椭圆、带状,经过多次的挤压后,最后均匀地分布在Ag基体中,达到理想的效果。
AgCdO material was once considered to be the best electrical contact material. it has fine performance of extinguishing arc, which was called the "universal contact" in the field of middle-load switches. However, with the harsh performance requirements such as going miniaturization, high-reliability, long life on the electrical contact, AgCdO material has shown the obvious insufficiency in anti-attrition, anti-melt weld, arc erosion-resistant and so on. Moreover, as its toxin, does not meet the environmental protection requirement. Because of its fine anti-arc erosion, wearability, switching and better anti-melt welds, AgSnO2 becomes the most promising substitute for AgCdO material.
     However, the machinability of AgSnO2 which was made by the conventional method is much worse than AgCdO. It is very prone to break in the wiredrawing situation. It will be unable to ensure the scale production. Moreover, It will be also more prone to crack in riveting process.
     The finite element method was used in this object. The extrusion process of AgSnO2 material was simulated. The distribution of particles, the relation of stress and strain, the velocity and displacement, and the force were analyzed. The last, comparing with experimental results, analyzing the law of deformation, it will offer an effective theoretical foundation for the industrialization manufacture of AgSnO2 material.
     In this paper, MSC.Marc finite element software was used to simulate the extrusion of pure silver. Traditional one extrusion and multi-gradient adjustable radius one extrusion of AgSnO2 were simulated. As well as extrusion processesing were simulated which the true strain is 4,7.25,10 and 12.5.
     It can be seen from the silver extrusion simulation processing that the flowing of metal was very similar to the actual situation. The stress and the strain of silver were analyzed.
     Result of the traditional one extrusion and multi-gradient adjustable radius one extrusion of AgSnO2 extrusion simulation show that:In the course of extrusion,the stress is concentrated on the SnO2 particles mainly, and changes, quickly. And the stress of the Ag matrix is smaller and more stable; The equivalent of plastic strain of the Ag matrixs is greater than SnO2 particles. In the course of extrusion, the SnO2 particles do not deform nearly; With the extrusion ratio greater, the force of extrusion is greater too. Comparing with traditional one extrusion, the margin of the velocity between the surface part of the ingot and the center of the ingot is less in multi-gradient adjustable radius traditional one extrusion. It will help to reduce the phenomenon of shrinking in the end of material. Compared to the same deformation, the force of multi-gradient adjustable radius one extrusion is less than one extrusion.
     Comparing with the result of AgSnO2 extrusion simulation which the true strain is 4, 7.25,10,12.5, with the true strain increasing, we can find out that those SnO2 particles which reprent as the ring-type,are extruded gradually into the oblate or fibriform shape, through a series of extrusion, uniformly distributed in a Ag matrix, achieving the ideal effect finally.
引文
[1]马战红,陈敬超,等.银基电触头产品的发展状况[J].昆明理工大学学报,2002,27(2):17
    [2]郑冀,等.新型银氧化锡电接触材料[J]-稀有金属材料与工程,2005,34(3):483
    [3]陈妙农.我国电触头行业面临新的挑战[J].电工材料,2005,(1):29
    [4]王宝珠,王胜恩,等.新型银-金属氧化物触头材料成分设计与制粉[J].河北工业大学学报,2001,30(3):77
    [5]张国庆,邓德国,等.AgSnO2复合材料变形断裂分析[J].电工合金,2000,(3):15
    [6]Amitabh Verma, Amitava Roy,等.银氧化锡氧化铟电触头材料的加工及其特性[J].电工合金,1992,(1):43
    [7]刘辉,戚颖,等.新型银氧化锡触头材料在汽车电器中的应用[J].汽车电器,2001,(1):16
    [8]堵永国,白书欣,等.一种全新AgSnO2触点材料的设计与制备[J].电工合金,2000,(1):15
    [9]程礼椿,李震彪,等.汽车继电器用新型AgSnO2无毒触头材料[J].电工合金,1997,(2):6
    [10]M.Ohta,等.新型银-金属氧化物触头材料[J].电工合金,1994,(1):46
    [11]邵文柱,崔玉胜,等.电接触材料的发展与现状[J].电工合金,1999,(1):11
    [12]张万胜AgSnO2触头材料在低压电力工程开关装置中的应用[J].电工合金,1995,(4):30
    [13]程礼椿,李震彪.接触器用Ag-SnO2触头材料的优化问题[J].电工合金,1993,(4):1
    [14]郑冀,朱家佩,等.添加卤化银对电接触材料性能影响的研究[J].固体润滑,1989,9(3):164
    [15]程礼椿,李震彪,等.添加物对AgSnO2触头材料运行性能的影响与作用[J].电工合金,1995,(2):7
    [16]张尧卿,郑冀.AgSnO2电接触材料研究概述[J].材料导报,2006,20(4):53
    [17]张万胜.电触头国外基本情况[J].电工合金,1995,(1):6
    [18]程礼椿.触头材料近期发展评述[J].电工技术杂志,1997,(2):2
    [19]陈仲,廖宏彬,张明江,等.欧洲电触头产业发展状况[J].电工材料,2002,(3):37
    [20]李英民,王俊勃,等.新型AgSnO2触头材料的发展现状[J].电气开关,2003,41(3):20
    [21]张万胜编译,新工艺制备的Ag/SnO2系材料[J].电工合金,1997,2:15-19.
    [22]李镇隆,高压水雾化制粉技术在电触头制造领域中的应用[J].电工合金,1998,3:45-46.
    [23]邓忠民,吕贤勇,郑福前,谢明,刘建良,施安,内氧化粉体制备的Ag-SnO2接点材料的显微结构[J].贵金属,2000,21(4):12-15
    [24]余海峰,新型AgC电接触材料制备及其性能研究[博士学位论文],上海大学,2004,12
    [25]简德湘,高能球磨法制备Ag/SnO2电接触材料的研究[硕士学位论文],天津大学,2004,12
    [26]刘海英,王亚平,丁秉钧,纳米Ag/SnO2触头材料的制备与组织分析[J].稀有金属材料与工程,2002,31(2):122-124
    [27]张昆华,反应合成法制备银二氧化锡工艺及组织性能研究[工程硕士学位论文],昆明理工大学,2004,5
    [28]谢忠光,等.我国银氧化锡电触头材料质量分析[J].电工材料,2005,(1):9
    [29]谭光讯,覃向忠.高压氧化技术在制造AgSnO2电触头材料上的应用[J].电工材料,2004,‘(2):11
    [30]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.371
    [31]秦蜀爵,王文龙,张国定.颗粒形状对SiCp/LD2复合材料塑性的影响[J].金属学报,1998,34(11):1193
    [32]Qin S Y, Chen C R, Zhang G D, et al. The effect of particle shape on ductility of SiCp reinforced 6061A1 matrix composites [J]. Materials Sciencce and Engineering,1999, A272(2):363-370.
    [33]D.J.Lloyd. Particle reinforced aluminum and magnesium matrix composites[J]. International Materials Review,1994,39(1):1
    [34]J. Llorca, C. Gonzalez. Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites [J].the Mechanics and Physics of Solids,1998,46 (1):1
    [35]Y.P.Qiu, G.J.Weng. A theory of plasticity for porous materials and particle reinforced composites[J]. Applied Mechanics,1992,59(2):261
    [36]张文龙SiC/Al复合材料大应变变形和再结晶[D].哈尔滨.哈尔滨工业大学.1999
    [37]贾玉玺.挤压加工对SiCp/Al复合材料组织和性能的影响[J].塑性工程学报.2000.7(4):5-7.
    [38]胡明,费维栋,姚忠凯等.非连续增强金属基复合材料的变形行为[J].宇航材料工艺2001(1):10-14
    [39]CHANKC,HANBQ. Superplasficity deformation mechanisms of SiC whisker and particulate reinforced aluminium composites[A]. Eleventh International Conference on Composite Materials[C],[I.s.]:[s.n.].1997,3:479-485.
    [40]YAMAMOTO H,NISHIMURA H,MIYAZAKI A, Formability of superplastic aluminum alloy compo sites reinforced with SiC particles[J].Materials Processing Technology.2000,101:198-208.
    [41]GENG L, HU J Q, LIU B. High temperature compressive deformation behavior of SiCJ6061Al composite at liquid-solid dual phase zone[A].Eleventh International Conference on Composite Materials[C]-[s.l.]:[s.n.].1997,3:550-555
    [42]NINOMIYA T, HIRA H,KANETAKE N, et al.Superplasfic forming of aluminum matrix composite sheets reinforced'by SiC particles [A].Eleventh International Conference on Composite Materials[C], [I.s.]:[s.n.].1997,3:198-204
    [43]WHJJAMCH J. Commercial processing of metal matrix composites[J].Materials Science and Engineering,1998,A244:75-79
    [44]TONG G Q, CHAN K C. Deformation behavior of a PM A16013/15SiCp Composite sheet at elevated temperature[J].Materials Letters.1999,38:326-330
    [45]NIEH T G, HENSHALL C A, WADSWORTH J, Superplasticity at high strain ratesin a SiC whisker reinforcedA 1 alloy [J].Scripta Metallurgica.1984,18:1405-1410.
    [46]ZHANG L B, HAI J T, Metal matrix composites in China[J].Materials Processing Technology, 1998,75:1-5
    [47]CHAN K C, HAN B Q. High-strain-rate superplasticity of particulate reinforced aluminium matrix composites [J].Mechanical Sciences.1998,40:305-311
    [48]KIM N H. KANG C G. KIM B M. Die design optimization for axisymmetric hot extrusion of metal matrix compo sites[J]. Mechanical Sciences,2001,43:1507-1520.
    [49]YILMAZ S, ARAN A. Finite element analysis of the effect of particle alignment on the deformation behavior for a ductile matrix containing hard particles [J]. Canadian Metallurgical Quarterly,1999,38: 201-205.
    [50]G.Bao,J. W.Hutchinson and R.M.McMeeking. Particle reinforcement of ductile matrices against plastic flow and creep[J].Acta Metal].Mater,1991,39 (8):1871-1882
    [51]T. Christman, A.Needleman and S.Suresh.An experimental and numerical study of deformation in metal-ceramic composites[J],Acts. Metall.,1989,37 (11):3029-3050
    [52]连建设,丁向东,江中浩,胡平.短纤维增强金属基复合材料拉伸变形的屈服行为的理论研究[J].金属学报,2000,36(2):202-20
    [53]A.Levy and J.M.Papazian. Tensile properties of short fiber-reinforced SiC-Al composites.part2: finite element analysis[J], Metall.Trans.1990,21 A(2):411-420
    [54]C.R.Chen, S.Y Qin, S.X.Li, J.L. Wen. Finite element analysis about effects of particle morphology on mechanical response of composites [J],Mater. Sci& Eng,2000,2 78(A):96-105
    [55]Owen D R J et al.. Advanced Computational Strategy for 3-D Large Scale Metal Forming. Simulation of Materials Processing:Theory, Method and Applications, Shen & Dawson(eds). Rotterdam:Balkema,1995
    [56]王助成,邵敏.有限单元法基本原理和数值方法[M],北京:清华大学出版社,1999
    [57]李尚健主编.金属塑性成形过程模拟[M].北京:机械工业出版社,1999
    [58]王助成.有限元法[M],北京:清华大学出版社,2003,5-8
    [59]Laue K, Stenger H. Extrusion(processes,machinery,tooling), AMERICAN SOCIETY FOR METALS,1981,50,11,7
    [60]刘静安,匡永祥,梁世斌等.铝合金型材生产应用技术,重庆:重庆国际信息质询中心,1994
    [61]温景林编.金属挤压工艺实践,沈阳:东北大学印刷厂,1985
    [62]工藤英明,塑性学,东北:森北出版株式会社,1968
    [63]Laue K, Stenger H. Extrusion(processes,machinery,tooling), AMERICAN SOCIETY FOR METALS,1981,50,11,7
    [64]Avitgur B, Handbook of Metal-forming Processes, JOHN WILEY & SONS,1983,114-126, 153-171
    [65]谢永生,王祖唐,金其坚.弹塑性有限元分析不同型线凹模静液挤压时的应力和应变状态[J],机械工程学报,1985,21(2):13-27
    [66]Thomser E G, Yang C T, Kobayashi S, Mechanics of Plastic Deformation in Metal Processing[J], McMillan,1965,302
    [67]曹起驤,肖颖,叶绍英等.用光电扫描云纹法研究轴对称挤压[J],模具技术,1986,(3):14-37
    [68]谢建新,曹乃光.三维光塑性法及其在挤压变形研究中的应用[J],中南矿冶学院学报,1986,(5):53-61
    [69]杨守山.金属塑性加工学[M],北京:冶金工业出版社,1980
    [70]马怀宪主编.金属塑性加工学(挤压,拉拔与管材冷轧)[M],北京:冶金工业出版社,1991
    [71]Clode M P, Sheppard T, Materials Science and Technology,1990,6:755-763
    [72]《轻金属材料加工手册》编写组,轻金属材料加工手册(下)[M],北京:冶金工业出版社,1980
    [73]谢建新,刘建安,任小灵.铝加工,1996,19(5):36
    [74]谢建新,刘建安,任小灵.铝加工,1996,19(6):47
    [75]秦蜀爵,张国定,王文龙.SiCp/LD2复合材料低塑性的因素研究[J],材料工程,1999,11:14-16
    [76]陈勇军,王渠东,彭建国,翟春泉,丁文江,大塑性变形制备细晶材料的研究、开发与展望 [J].材料导报,2005,19(4):77-80
    [77]Valiev R Z, Nanomaterial advantage[J]. Nature,2002,419:887
    [78]Valley R Z, Korznikov A V, M ulyukov R R[J]. Mater Sci EngA,1993,168:141
    [79]Zhernakov V S, Latysh V V, et al. The developing of nanostructured SPD Ti for structural use[J]. Scripta Mater,2001,44:1772
    [80]Segal V M, Reznikov V I,Drobyshevski A E, et al. Metally,1981,1:115
    [81]Iwahashi Y, Wang J T, Horita Z J, et al. Scr Mater,1996,35(2):143
    [82]Furukawa M, Horita Z J, Langdon T G. Mater Sci Eag,2002, A332:97
    [83]Segal V M. Mater Sci Eng,1995, A197:157
    [84]魏伟,陈光,ECAP等径角挤压变形参数的研究[J].兵器材料科学与工程,2002,25 (6):61-64
    [85]Ruslan Z Valiev, Igor V Alxandrov. Development of severe plastic deformation techneques for the fabrication bulk nanostructured materials. Ann Chim Sci Mater,2002,27(3):3
    [86]A.Revesz, S. Hobor, P.J. Szabo, A.P. Zhilyaev, Zs. Kovacs, Deformation induced crystallization in an amorphous Cu60Zr20Ti20 alloy by high pressure torsion, Materials Science and Engineering A xxx (2007)xxx-xxx
    [87]魏伟,陈光,大塑性变形制备纳米结构金属[J].稀有金属,2003,27 (3):361-365
    [88]Costa. A L M, Reis A C C, Kestens L, et al. Mater Sci Eng,2005, A406:279
    [89]K. Dai a, L. Shawb, Comparison between shot peening and surface nanocrystallization and hardening processes [J].Materials Science and Engineering A,2007:21971
    [90]H.Utsunomiya et al., Continuous grain refinement of aluminum strip by conshearing[J], Materials Science and Engineering A,2004,372:199-206.
    [91]H.Utsunomiya, Y.Saito, H.Suzuki, T.Sakai, Proc.Inst.Mech.Engr.B.2001,215:947.
    [92]H.Utsunomiya, Y.Saito, Okamura, T.Sakai, in:T.Maki, S.Takaki(Eds.), Proceedings of the International Symposium on Ultrafine Grained Steels, ISU,Tokyo,2001,146-149.
    [93]Y. Saito, H. Utsunomiya, H. Suzuki, T. Sakai, Improvement in the r-value of aluminum strip by a continuous shear deformation process[J], Scripta Mater,2000,42:1139-1144.
    [94]邓忠民,洪友士等,SPD纳米材料制备方法及其力学特性[J].力学进展,2003,33(1):56-64
    [95]赵新,高聿为等,制备块体纳米/超细晶材料的大塑性变形技术[J].材料导报,2003,17(12): 5-8
    [96]王素梅,孙庚宁等,大塑性变形法制备块体纳米材料[J].金属热处理,2003,28(5):5-7
    [97]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟,北京:冶金工业出版社,1997
    [98]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2001
    [99]陈火红.MSC.Marc Finite Element Analysis examples Guide [M].北京:机械工业出版社,2002
    [100]陈火红,于军泉,席源山.MSC.Marc/Mentat 2003 [M].北京:科学出版社,2004
    [101]MARC Analysis Research Corporation, Theory and User Information (Volume A),73-75[

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700